217 research outputs found

    ADSL analogno sučelje

    Get PDF
    In this paper the Asymmetric Digital Subscriber Line (ADSL) analog front end (AFE) designs are described and compared. AFE is the part of ADSL modems most responsible for quality signal transmission over phone wires. It can be divided into the transmitting path (TX) circuitry, the receiving path (RX) circuitry and the hybrid network and transformer. The operations and realizations of each functional block are presented. There are the D/A converter, the filter and the line driver in the TX path and the voltage gain amplifier, the filter and the A/D converter in the RX path. The hybrid network and transformer process signals in both directions. Different fabrication technologies are used for the practical realizations of the AFE chip. The directions of the further developing are notified.U radu su opisane i uspoređene izvedbe ADSL analognog sučelja. Analogno sučelje kao dio ADSL modema najodgovornije je za kvalitetan prijenos signala preko telefonskih žica. Može se podijeliti u sklopove predajnog puta, prijamnog puta i hibridnu mrežu s transformatorom. Prikazan je rad i izvedbe svakog funkcijskog bloka. To su D/A pretvornik, filtar i izlazno pojačalo u predajnom putu te ulazno pojačalo, filtar i A/D pretvornik u prijamnom putu. Hibridna mreža i transformator prosljeđuju signale u oba smjera. Za praktičnu izvedbu AFE čipa koriste se razne tehnologije. Naznačene su smjernice daljnjeg razvoja

    ADSL analogno sučelje

    Get PDF
    In this paper the Asymmetric Digital Subscriber Line (ADSL) analog front end (AFE) designs are described and compared. AFE is the part of ADSL modems most responsible for quality signal transmission over phone wires. It can be divided into the transmitting path (TX) circuitry, the receiving path (RX) circuitry and the hybrid network and transformer. The operations and realizations of each functional block are presented. There are the D/A converter, the filter and the line driver in the TX path and the voltage gain amplifier, the filter and the A/D converter in the RX path. The hybrid network and transformer process signals in both directions. Different fabrication technologies are used for the practical realizations of the AFE chip. The directions of the further developing are notified.U radu su opisane i uspoređene izvedbe ADSL analognog sučelja. Analogno sučelje kao dio ADSL modema najodgovornije je za kvalitetan prijenos signala preko telefonskih žica. Može se podijeliti u sklopove predajnog puta, prijamnog puta i hibridnu mrežu s transformatorom. Prikazan je rad i izvedbe svakog funkcijskog bloka. To su D/A pretvornik, filtar i izlazno pojačalo u predajnom putu te ulazno pojačalo, filtar i A/D pretvornik u prijamnom putu. Hibridna mreža i transformator prosljeđuju signale u oba smjera. Za praktičnu izvedbu AFE čipa koriste se razne tehnologije. Naznačene su smjernice daljnjeg razvoja

    Highly Linear 2,5-V CMOS ΣΔ Modulator for ADSL+

    Get PDF
    We present a 90-dB spurious-free dynamic range sigma–delta modulator (ΣΔM) for asymmetric digital subscriber line applications (both ADSL and ADSL+), with up to a 4.4-MS/s digital output rate. It uses a cascade (MASH) multibit architecture and has been implemented in a 2.5-V supply, 0.25μm CMOS process with metal–insulator–metal capacitors. The prototypes feature 78-dB dynamic range (DR) in the 30-kHz to 2.2-MHz band (ADSL+) and 85-dB DR in the 30-kHz to 1.1-MHz band (ADSL). Integral and differential nonlinearity are within +/-0.85 and +/-0.80 LSB, respectively. The ΣΔ modulator and its auxiliary blocks (clock phase and reference voltage generators, and I/O buffers) dissipate 65.8 mW. Only 55 mW are dissipated in the ΣΔ modulator.This work was supported by the European Union under IST Project 29261/MIXMODEST and IST Project 2001-34283/TAMES-2 and the Spanish MCyT and the ERDF under Project TIC2001-0929/ADAVERE.This work was supported by the European Union under IST Project 29261/MIXMODEST and IST Project 2001-34283/TAMES-2 and the Spanish MCyT and the ERDF under Project TIC2001-0929/ADAVERE.Peer reviewe

    Design techniques for low noise and high speed A/D converters

    Get PDF
    Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital signal processing. It takes a continuous-time, continuous amplitude signal as its input and outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an A/D converter vary depending on the application. Recently, there has been a growing demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications that demand such converters include asymmetric digital subscriber line (ADSL) modems, cellular systems, high accuracy instrumentation, and medical imaging systems. This thesis suggests some design techniques for such high resolution and high sampling rate A/D converters. As the A/D converter performance keeps on increasing it becomes increasingly difficult for the input driver to settle to required accuracy within the sampling time. This is because of the use of larger sampling capacitor (increased resolution) and a decrease in sampling time (higher speed). So there is an increasing trend to have a driver integrated onchip along with A/D converter. The first contribution of this thesis is to present a new precharge scheme which enables integrating the input buffer with A/D converter in standard CMOS process. The buffer also uses a novel multi-path common mode feedback scheme to stabilize the common mode loop at high speeds. Another major problem in achieving very high Signal to Noise and Distortion Ratio (SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the A/D converters. The mismatch between the capacitor causes harmonic distortion, which may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as applicable to broadband data-converters is presented and a novel second order notch-DEM is introduced. In this thesis we present a method to calibrate the DAC. We also show that a combination of digital error correction and dynamic element matching is optimal in terms of test time or calibration time. Even if we are using dynamic element matching techniques, it is still critical to get the best matching of unit elements possible in a given technology. The matching obtained may be limited either by random variations in the unit capacitor or by gradient effects. In this thesis we present layout techniques for capacitor arrays, and the matching results obtained in measurement from a test-chip are presented. Thus we present various design techniques for high speed and low noise A/D converters in this thesis. The techniques described are quite general and can be applied to most of the types of A/D converters

    Multibit delta sigma modulator with noise shaping dynamic element matching

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Nonlinearity and noise modeling of operational transconductance amplifiers for continuous time analog filters

    Get PDF
    A general framework for performance optimization of continuous-time OTA-C (Operational Transconductance Amplifier-Capacitor) filters is proposed. Efficient procedures for evaluating nonlinear distortion and noise valid for any filter of arbitrary order are developed based on the matrix description of a general OTA-C filter model . Since these procedures use OTA macromodels, they can be used to obtain the results significantly faster than transistor-level simulation. In the case of transient analysis, the speed-up may be as much as three orders of magnitude without almost no loss of accuracy. This makes it possible to carry out direct numerical optimization of OTA-C filters with respect to important characteristics such as noise performance, THD, IM3, DR or SNR. On the other hand, the general OTA-C filter model allows us to apply matrix transforms that manipulate (rescale) filter element values and/or change topology without changing its transfer function. The above features are a basis to build automated optimization procedures for OTA-C filters. In particular, a systematic optimization procedure using equivalence transformations is proposed. The research also proposes suitable software implementations of the optimization process. The first part of the research proposes a general performance optimization procedure and to verify the process two application type examples are mentioned. An application example of the proposed approach to optimal block sequencing and gain distribution of 8th order cascade Butterworth filter (for two variants of OTA topologies) is given. Secondly the modeling tool is used to select the best suitable topology for a 5th order Bessel Low Pass Filter. Theoretical results are verified by comparing to transistor-level simulation withCADENCE. For the purpose of verification, the filters have also been fabricated in standard 0.5mm CMOS process. The second part of the research proposes a new linearization technique to improve the linearity of an OTA using an Active Error Feedforward technique. Most present day applications require very high linear circuits combined with low noise and low power consumption. An OTA based biquad filter has also been fabricated in 0.35mm CMOS process. The measurement results for the filter and the stand alone OTA have been discussed. The research focuses on these issues

    LOW-VOLTAGE LOW-POWER ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    High efficiency wide-band line drivers in low voltage CMOS using Class-D techniques

    Get PDF
    In this thesis, the applicability of Class-D amplifiers to integrated wide-band communication line driver applications is studied. While Class-D techniques can address some of the efficiency limitations of linear amplifier structures and have shown promising results in low frequency applications, the low frequency techniques and knowledge need further development in order to improve their practicality for wide band systems. New structures and techniques to extend the application of Class-D to wide-band communication systems, in particular the HomePlug AV wire- line communication standard, will be proposed. Additionally, the digital processing requirements of these wide-band systems drives rapid movement towards nanometer technology nodes and presents new challenges which will be addressed, and new opportunities which will be exploited, for wide-band integrated Class-D line drivers. There are three main contributions of this research. First, a model of Class-D efficiency degradation mechanisms is created, which allows the impact of high-level design choices such as supply voltage, process technology and operating frequency to be assessed. The outcome of this section is a strategy for pushing the high efficiency of Class-D to wide band communication applications, with switching frequencies up to many hundreds of Megahertz. A second part of this research considers the design of efficient, fast and high power Class-D output stages, as these are the major efficiency and bandwidth bottleneck in wide-band applications. A novel NMOS-only totem pole output stage with a fast, integrated drive structure will be proposed. In a third section, a complete wide-band Class-D line driver is designed in a 0.13μm digital CMOS process. The line driver is systematically designed using a rigorous development methodology and the aims are to maximise the achievable signal bandwidth while minimising power dissipation. Novel circuits and circuit structures are proposed as part of this section and the resulting fabricated Class-D line driver test chip shows an efficiency of 15% while driving a 30MHz wide signal with an MTPR of 22dB, at 33mW injected power

    Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas - part I: design and performance analysis

    Get PDF
    A novel optical beamformer concept is introduced that can be used for seamless control of the reception angle in broadband wireless receivers employing a large phased array antenna (PAA). The core of this beamformer is an optical beamforming network (OBFN), using ring resonator-based broadband delays, and coherent optical combining. The electro-optical conversion is performed by means of single-sideband suppressed carrier modulation, employing a common laser, Mach-Zehnder modulators, and a common optical sideband filter after the OBFN. The unmodulated laser signal is then re-injected in order to perform balanced coherent optical detection, for the opto-electrical conversion. This scheme minimizes the requirements on the complexity of the OBFN, and has potential for compact realization by means of full integration on chip. The impact of the optical beamformer concept on the performance of the full receiver system is analyzed, by modeling the combination of the PAA and the beamformer as an equivalent two-port RF system. The results are illustrated by a numerical example of a PAA receiver for satellite TV reception, showing that—when properly designed—the beamformer hardly affects the sensitivity of the receiver
    corecore