66 research outputs found

    Using multiple sensors for printed circuit board insertion

    Get PDF
    As more and more activities are performed in space, there will be a greater demand placed on the information handling capacity of people who are to direct and accomplish these tasks. A promising alternative to full-time human involvement is the use of semi-autonomous, intelligent robot systems. To automate tasks such as assembly, disassembly, repair and maintenance, the issues presented by environmental uncertainties need to be addressed. These uncertainties are introduced by variations in the computed position of the robot at different locations in its work envelope, variations in part positioning, and tolerances of part dimensions. As a result, the robot system may not be able to accomplish the desired task without the help of sensor feedback. Measurements on the environment allow real time corrections to be made to the process. A design and implementation of an intelligent robot system which inserts printed circuit boards into a card cage are presented. Intelligent behavior is accomplished by coupling the task execution sequence with information derived from three different sensors: an overhead three-dimensional vision system, a fingertip infrared sensor, and a six degree of freedom wrist-mounted force/torque sensor

    Modeling, design and scheduling of computer integrated manufacturing and demanufacturing systems

    Get PDF
    This doctoral dissertation work aims to provide a discrete-event system-based methodology for design, implementation, and operation of flexible and agile manufacturing and demanufacturing systems. After a review of the current academic and industrial activities in these fields, a Virtual Production Lines (VPLs) design methodology is proposed to facilitate a Manufacturing Execution System integrated with a shop floor system. A case study on a back-end semiconductor line is performed to demonstrate that the proposed methodology is effective to increase system throughput and decrease tardiness. An adaptive algorithm is proposed to deal with the machine failure and maintenance. To minimize the environmental impacts caused by end-of-life or faulty products, this research addresses the fundamental design and implementation issues of an integrated flexible demanufacturing system (IFDS). In virtue of the success of the VPL design and differences between disassembly and assembly, a systematic approach is developed for disassembly line design. This thesis presents a novel disassembly planning and demanufacturing scheduling method for such a system. Case studies on the disassembly of personal computers are performed illustrating how the proposed approaches work

    Optimization of Robot Motion Planning using Ant Colony Optimization

    Get PDF
    Motion planning in robotics is a process to compute a collision free path between the initial and final configuration among obstacles. To plan a collision free path in the workspace, it would need to plan the motion of every point of its shaping according its degree of freedom. The motion of robot between obstacles is represented by a path in configuration space. It is an imaginary concept. Motion planning is aimed at enabling robots with capabilities of automatically deciding and executing a sequence motion in order to achieve a task without ollision with other objects in a given environment. Motion planning in a robot workspace for robotic assembly depends on sequence of parts or the order they are arranged to produce a robotic assembly product obeying all the constraints and instability of base assembly movement. If the number of parts increases the sequencing becomes difficult and hence the path planning. As multiple no. of paths are possible, the path is considered to be optimal when it minimizes the travelling time while satisfying the process constraint. For this purpose, it is necessary to select appropriate optimization technique for optimization of paths. Such types of problem can be solved by metaheuristic methods.The present work utilizes ACO for the generation of optimal motion planning sequence. The present algorithm is based on ant's behavior, pheromone update & pheromone evaporation and is used to enhance the local search. This procedure is applied to a grinder assembly, driver assembly and car alternator assembly. Two robots like adept-one and puma-762 are selected for picking and placing operation of parts in their workspace

    Task planning with uncertainty for robotic systems

    Get PDF
    In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated

    Cooperative tasks between humans and robots in industrial environments

    Get PDF
    Collaborative tasks between human operators and robotic manipulators can improve the performance and flexibility of industrial environments. Nevertheless, the safety of humans should always be guaranteed and the behaviour of the robots should be modified when a risk of collision may happen. This paper presents the research that the authors have performed in recent years in order to develop a human-robot interaction system which guarantees human safety by precisely tracking the complete body of the human and by activating safety strategies when the distance between them is too small. This paper not only summarizes the techniques which have been implemented in order to develop this system, but it also shows its application in three real human-robot interaction tasks.The research leading to these results has received funding from the European Communityʹs Seventh Framework Programme (FP7/2007‐2013) under Grant Agreement no. 231640 and the project HANDLE. This research has also been supported by the Spanish Ministry of Education and Science through the research project DPI2011‐22766

    LDRD final report: Automated planning and programming of assembly of fully 3D mechanisms

    Full text link

    Task Allocation Strategies in Multi-Robot Environment

    Get PDF
    Multirobot systems (MRS) hold the promise of improved performance and increased fault tolerance for large-scale problems. A robot team can accomplish a given task more quickly than a single agent by executing them concurrently. A team can also make effective use of specialists designed for a single purpose rather than requiring that a single robot be a generalist. Multirobot coordination, however, is a complex problem. An empirical study is described in the thesis that sought general guidelines for task allocation strategies. Different strategies are identified, and demonstrated in the multi-robot environment.Robot selection is one of the critical issues in the design of robotic workcells. Robot selection for an application is generally done based on experience, intuition and at most using the kinematic considerations like workspace, manipulability, etc. This problem has become more difficult in recent years due to increasing complexity, available features, and facilities offered by different robotic products. A systematic procedure is developed for selection of robot manipulators based on their different pertinent attributes. The robot selection procedure allows rapid convergence from a very large number of candidate robots to a manageable shortlist of potentially suitable robots. Subsequently, the selection procedure proceeds to rank the alternatives in the shortlist by employing different attributes based specification methods. This is an attempt to create exhaustive procedure by identifying maximum possible number of attributes for robot manipulators.Availability of large number of robot configurations has made the robot workcell designers think over the issue of selecting the most suitable one for a given set of operations. The process of selection of the appropriate kind of robot must consider the various attributes of the robot manipulator in conjunction with the requirement of the various operations for accomplishing the task. The present work is an attempt to develop a systematic procedure for selection of robot based on an integrated model encompassing the manipulator attributes and manipulator requirements
    corecore