1,145 research outputs found

    A Policy-Based Resource Brokering Environment for Computational Grids

    Get PDF
    With the advances in networking infrastructure in general, and the Internet in particular, we can build grid environments that allow users to utilize a diverse set of distributed and heterogeneous resources. Since the focus of such environments is the efficient usage of the underlying resources, a critical component is the resource brokering environment that mediates the discovery, access and usage of these resources. With the consumer\u27s constraints, provider\u27s rules, distributed heterogeneous resources and the large number of scheduling choices, the resource brokering environment needs to decide where to place the user\u27s jobs and when to start their execution in a way that yields the best performance for the user and the best utilization for the resource provider. As brokering and scheduling are very complicated tasks, most current resource brokering environments are either specific to a particular grid environment or have limited features. This makes them unsuitable for large applications with heterogeneous requirements. In addition, most of these resource brokering environments lack flexibility. Policies at the resource-, application-, and system-levels cannot be specified and enforced to provide commitment to the guaranteed level of allocation that can help in attracting grid users and contribute to establishing credibility for existing grid environments. In this thesis, we propose and prototype a flexible and extensible Policy-based Resource Brokering Environment (PROBE) that can be utilized by various grid systems. In designing PROBE, we follow a policy-based approach that provides PROBE with the intelligence to not only match the user\u27s request with the right set of resources, but also to assure the guaranteed level of the allocation. PROBE looks at the task allocation as a Service Level Agreement (SLA) that needs to be enforced between the resource provider and the resource consumer. The policy-based framework is useful in a typical grid environment where resources, most of the time, are not dedicated. In implementing PROBE, we have utilized a layered architecture and façade design patterns. These along with the well-defined API, make the framework independent of any architecture and allow for the incorporation of different types of scheduling algorithms, applications and platform adaptors as the underlying environment requires. We have utilized XML as a base for all the specification needs. This provides a flexible mechanism to specify the heterogeneous resources and user\u27s requests along with their allocation constraints. We have developed XML-based specifications by which high-level internal structures of resources, jobs and policies can be specified. This provides interoperability in which a grid system can utilize PROBE to discover and use resources controlled by other grid systems. We have implemented a prototype of PROBE to demonstrate its feasibility. We also describe a test bed environment and the evaluation experiments that we have conducted to demonstrate the usefulness and effectiveness of our approach

    Economic-based Distributed Resource Management and Scheduling for Grid Computing

    Full text link
    Computational Grids, emerging as an infrastructure for next generation computing, enable the sharing, selection, and aggregation of geographically distributed resources for solving large-scale problems in science, engineering, and commerce. As the resources in the Grid are heterogeneous and geographically distributed with varying availability and a variety of usage and cost policies for diverse users at different times and, priorities as well as goals that vary with time. The management of resources and application scheduling in such a large and distributed environment is a complex task. This thesis proposes a distributed computational economy as an effective metaphor for the management of resources and application scheduling. It proposes an architectural framework that supports resource trading and quality of services based scheduling. It enables the regulation of supply and demand for resources and provides an incentive for resource owners for participating in the Grid and motives the users to trade-off between the deadline, budget, and the required level of quality of service. The thesis demonstrates the capability of economic-based systems for peer-to-peer distributed computing by developing users' quality-of-service requirements driven scheduling strategies and algorithms. It demonstrates their effectiveness by performing scheduling experiments on the World-Wide Grid for solving parameter sweep applications

    Parallel Differential Evolution approach for Cloud workflow placements under simultaneous optimization of multiple objectives

    Get PDF
    International audienceThe recent rapid expansion of Cloud computing facilities triggers an attendant challenge to facility providers and users for methods for optimal placement of workflows on distributed resources, under the often-contradictory impulses of minimizing makespan, energy consumption, and other metrics. Evolutionary Optimization techniques that from theoretical principles are guaranteed to provide globally optimum solutions, are among the most powerful tools to achieve such optimal placements. Multi-Objective Evolutionary algorithms by design work upon contradictory objectives, gradually evolving across generations towards a converged Pareto front representing optimal decision variables – in this case the mapping of tasks to resources on clusters. However the computation time taken by such algorithms for convergence makes them prohibitive for real time placements because of the adverse impact on makespan. This work describes parallelization, on the same cluster, of a Multi-Objective Differential Evolution method (NSDE-2) for optimization of workflow placement, and the attendant speedups that bring the implicit accuracy of the method into the realm of practical utility. Experimental validation is performed on a real-life testbed using diverse Cloud traces. The solutions under different scheduling policies demonstrate significant reduction in energy consumption with some improvement in makespan

    Virtual Cluster Management for Analysis of Geographically Distributed and Immovable Data

    Get PDF
    Thesis (Ph.D.) - Indiana University, Informatics and Computing, 2015Scenarios exist in the era of Big Data where computational analysis needs to utilize widely distributed and remote compute clusters, especially when the data sources are sensitive or extremely large, and thus unable to move. A large dataset in Malaysia could be ecologically sensitive, for instance, and unable to be moved outside the country boundaries. Controlling an analysis experiment in this virtual cluster setting can be difficult on multiple levels: with setup and control, with managing behavior of the virtual cluster, and with interoperability issues across the compute clusters. Further, datasets can be distributed among clusters, or even across data centers, so that it becomes critical to utilize data locality information to optimize the performance of data-intensive jobs. Finally, datasets are increasingly sensitive and tied to certain administrative boundaries, though once the data has been processed, the aggregated or statistical result can be shared across the boundaries. This dissertation addresses management and control of a widely distributed virtual cluster having sensitive or otherwise immovable data sets through a controller. The Virtual Cluster Controller (VCC) gives control back to the researcher. It creates virtual clusters across multiple cloud platforms. In recognition of sensitive data, it can establish a single network overlay over widely distributed clusters. We define a novel class of data, notably immovable data that we call "pinned data", where the data is treated as a first-class citizen instead of being moved to where needed. We draw from our earlier work with a hierarchical data processing model, Hierarchical MapReduce (HMR), to process geographically distributed data, some of which are pinned data. The applications implemented in HMR use extended MapReduce model where computations are expressed as three functions: Map, Reduce, and GlobalReduce. Further, by facilitating information sharing among resources, applications, and data, the overall performance is improved. Experimental results show that the overhead of VCC is minimum. The HMR outperforms traditional MapReduce model while processing a particular class of applications. The evaluations also show that information sharing between resources and application through the VCC shortens the hierarchical data processing time, as well satisfying the constraints on the pinned data

    Probabilistic grid scheduling based on job statistics and monitoring information

    Get PDF
    This transfer thesis presents a novel, probabilistic approach to scheduling applications on computational Grids based on their historical behaviour, current state of the Grid and predictions of the future execution times and resource utilisation of such applications. The work lays a foundation for enabling a more intuitive, user-friendly and effective scheduling technique termed deadline scheduling. Initial work has established motivation and requirements for a more efficient Grid scheduler, able to adaptively handle dynamic nature of the Grid resources and submitted workload. Preliminary scheduler research identified the need for a detailed monitoring of Grid resources on the process level, and for a tool to simulate non-deterministic behaviour and statistical properties of Grid applications. A simulation tool, GridLoader, has been developed to enable modelling of application loads similar to a number of typical Grid applications. GridLoader is able to simulate CPU utilisation, memory allocation and network transfers according to limits set through command line parameters or a configuration file. Its specific strength is in achieving set resource utilisation targets in a probabilistic manner, thus creating a dynamic environment, suitable for testing the scheduler’s adaptability and its prediction algorithm. To enable highly granular monitoring of Grid applications, a monitoring framework based on the Ganglia Toolkit was developed and tested. The suite is able to collect resource usage information of individual Grid applications, integrate it into standard XML based information flow, provide visualisation through a Web portal, and export data into a format suitable for off-line analysis. The thesis also presents initial investigation of the utilisation of University College London Central Computing Cluster facility running Sun Grid Engine middleware. Feasibility of basic prediction concepts based on the historical information and process meta-data have been successfully established and possible scheduling improvements using such predictions identified. The thesis is structured as follows: Section 1 introduces Grid computing and its major concepts; Section 2 presents open research issues and specific focus of the author’s research; Section 3 gives a survey of the related literature, schedulers, monitoring tools and simulation packages; Section 4 presents the platform for author’s work – the Self-Organising Grid Resource management project; Sections 5 and 6 give detailed accounts of the monitoring framework and simulation tool developed; Section 7 presents the initial data analysis while Section 8.4 concludes the thesis with appendices and references

    A Taxonomy of Data Grids for Distributed Data Sharing, Management and Processing

    Full text link
    Data Grids have been adopted as the platform for scientific communities that need to share, access, transport, process and manage large data collections distributed worldwide. They combine high-end computing technologies with high-performance networking and wide-area storage management techniques. In this paper, we discuss the key concepts behind Data Grids and compare them with other data sharing and distribution paradigms such as content delivery networks, peer-to-peer networks and distributed databases. We then provide comprehensive taxonomies that cover various aspects of architecture, data transportation, data replication and resource allocation and scheduling. Finally, we map the proposed taxonomy to various Data Grid systems not only to validate the taxonomy but also to identify areas for future exploration. Through this taxonomy, we aim to categorise existing systems to better understand their goals and their methodology. This would help evaluate their applicability for solving similar problems. This taxonomy also provides a "gap analysis" of this area through which researchers can potentially identify new issues for investigation. Finally, we hope that the proposed taxonomy and mapping also helps to provide an easy way for new practitioners to understand this complex area of research.Comment: 46 pages, 16 figures, Technical Repor
    • …
    corecore