28 research outputs found

    Master index: volumes 31–40

    Get PDF

    Subject index volumes 1–92

    Get PDF

    Scalable Parameterised Algorithms for two Steiner Problems

    Get PDF
    In the Steiner Problem, we are given as input (i) a connected graph with nonnegative integer weights associated with the edges; and (ii) a subset of vertices called terminals. The task is to find a minimum-weight subgraph connecting all the terminals. In the Group Steiner Problem, we are given as input (i) a connected graph with nonnegative integer weights associated with the edges; and (ii) a collection of subsets of vertices called groups. The task is to find a minimum-weight subgraph that contains at least one vertex from each group. Even though the Steiner Problem and the Group Steiner Problem are NP-complete, they are known to admit parameterised algorithms that run in linear time in the size of the input graph and the exponential part can be restricted to the number of terminals and the number of groups, respectively. In this thesis, we discuss two parameterised algorithms for solving the Steiner Problem, and by reduction, the Group Steiner Problem: (a) a dynamic programming algorithm presented by Dreyfus and Wagner in 1971; and (b) an improvement of the Dreyfus-Wagner algorithm presented by Erickson, Monma and Veinott in 1987 that runs in linear time in the size of the input graph. We develop a parallel implementation of the Erickson-Monma-Veinott algorithm, and carry out extensive experiments to study the scalability of our implementation with respect to its runtime, memory bandwidth, and memory usage. Our experimental results demonstrate that the implementation can scale up to a billion edges on a single modern compute node provided that the number of terminals is small. For example, using our parallel implementation a Steiner tree for a graph with hundred million edges and ten terminals can be found in approximately twenty minutes. For an input graph with one hundred million edges and ten terminals, our parallel implementation is at least fifteen times faster than its serial counterpart on a Haswell compute node with two processors and twelve cores in each processor. Our implementation of the Erickson-Monma-Veinott algorithm is available as open source

    New Approaches on Octilinear Graph Drawing

    Get PDF
    Graphenzeichnen ist ein Bereich der Informatik mit langer Tradition. Insbesondere im Bereich des orthogonalen Graphenzeichnens wird seit den 1980er Jahren motiviert durch VLSI-Design (Chip-Design) und Grundrissplanung intensiv geforscht. In dieser Arbeit wird das klassische orthogonale Modell durch neue Elemente, unter anderem aus dem oktilinearen Graphenzeichnen, erweitert. Die ersten Ergebnisse, die wir in dieser Arbeit vorstellen, befassen sich mit oktilinearem Graphenzeichnen. Dieses Modell ist altbekannt und viele Aspekte wurden schon untersucht. Wir entwickeln eine Methode mit der für planare Graphen mit einem beschränkten maximalen Knotengrad (4 und 5) Zeichnungen mit maximal einem Knick pro Kante erstellt werden können. Außerdem zeigen wir, dass Graphen mit maximalem Knotengrad 6 nicht immer mit einem Knick pro Kante gezeichnet werden können. Damit schließen wir die Lücke zwischen bekannten Ergebnissen, die besagen dass Graphen mit maximalem Knotengrad 3 immer ohne Knicke und alle Graphen bis zu einem maximalen Knotengrad von 8 mit höchstens zwei Knicken pro Kante oktilinear gezeichnet werden können. Durch Nutzerstudien konnte gezeigt werden, dass die Lesbarkeit von (Graphen) Zeichnungen durch Knicke auf den Kanten und schlecht identifizierbare Kreuzungen besonders beeinträchtigt wird. An diesem Punkt setzt unser neues Modell, das abgeschrägt orthogonale (engl. slanted orthogonal, oder kurz: slog) Graphenzeichnen an. Im slog Modell ist der kleinste erlaubte Winkel zwischen zwei aufeinander folgenden Kantensegmenten 135°. Das hat zur Folge, dass slog Zeichnungen keine normalen Knicke mehr haben, sondern sogenannte Halb-Knicke. Um Kreuzungen besser erkennbar zu machen sind im slog Modell Kreuzungen ausschließlich zwischen diagonalen Segmenten erlaubt. Wir zeigen, dass eine knick-minimale slog Zeichnung mindestens doppelt so viele Halb-Knicke benötigt, wie eine knick-minimale orthogonale Zeichnung Knicke hat. Für das slog Modell werden in dieser Arbeit Methoden zur Berechnung von knick-minimalen Zeichnungen vorgestellt. Da diese exponentielle Fläche benötigen können, wird außerdem eine Heuristik entwickelt, die nur quadratische Fl ̈ache benötigt, dafür aber mehr Knicke zulässt. Die Ergebnisse einer experimentellen Evaluation des slog Modells werden ebenfalls präsentiert. Im Anschluss erweitern wir das slog Modell zu einer flexibleren Variante die wir sloggy nennen. Das sloggy Modell hat alle Eigenschaften des slog Modells, aber Kreuzungen werden jetzt auch zwischen orthogonalen Segmenten erlaubt. Dafür wird die Anzahl Halb-Knicke beschränkt auf genau zwei Mal die Anzahl Knicke der entsprechenden knick-minimalen orthogonalen Zeichnung. Außerdem wird die Anzahl an Kreuzungen zwischen diagonalen Segmenten maximiert. Wir entwickeln eine Methode zur Berechnung solcher Zeichnungen und zeigen, dass auch hier exponentielle Fläche benötigt werden kann. Das slog und das sloggy Modell sind auf Graphen mit einem maximalen Knotengrad von 4 beschränkt. Deswegen wenden wir uns als nächstes dem Kandinsky Modell zu, einem bekannten Modell mit dem Graphen mit beliebigem Knotengrad gezeichnet werden können. Wir erweitern das bekannte Modell mit Elementen aus dem slog Modell, den Halb-Knicken, um so zuvor verbotene Konfigurationen zeichnen zu können. Mit unserer Erweiterung wollen wir die Gesamtzahl an Knicken und die Größe der Zeichnungen verkleinern. Wir entwickeln eine LP Formulierung, mit der die optimale Zeichnung berechnet werden kann. Da diese sehr lange Zeit zur Berechnung beanspruchen kann, haben wir zusätzliche eine effiziente Heuristik entwickelt. In einer experimentellen Untersuchung vergleichen wir außerdem das neue Modell mit dem klassischen Kandinsky Modell. Im letzten Kapitel vereinen wir dann unsere Modifikation des Kandinsky Modells mit dem slog Modell im sogenannten sloginsky Modell, um Graphen mit beliebigem Knotengrad mit den Vorteilen des slog Modells zeichnen zu können. Wir entwickeln eine Methode zur Berechnung knick-optimaler sloginsky Zeichnungen, aber wir zeigen auch, dass eine solche Zeichnung nicht für jede Eingabe möglich ist. Auch im sloginsky Modell kann eine Zeichnung exponentielle Fläche beanspruchen, was in der experimentellen Evaluation ebenfalls sichtbar wird

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    Journal of Telecommunications and Information Technology, 2006, nr 4

    Get PDF
    kwartalni

    Chip-Level Thermal Analysis, Modeling, and Optimization Using Multilayer Green's Function.

    Full text link
    With the continual scaling of devices and interconnects, accurate analysis and effective optimization of the temperature distribution of a ULSI chip are increasingly important in predicting and ensuring the performance and reliability of the chip before fabrication. Motivated by the design challenges, this dissertation aims at a detailed study of the areas of thermal analysis, modeling, and optimization of ULSI chips. In particular, this dissertation introduces LOTAGre, a high-efficiency O(n lg n) multilayer Green's function-based thermal analysis method. LOTAGre can analyze ULSI chips consisting of multilayer heterogeneous heat conduction materials, with either wire-bonding packaging or flip-chip packaging, under uniform or non-uniform ambient temperatures. By integrating the eigen-expansion technique and the transmission line theory, this dissertation derives the multilayer heat conduction Green's function, including the s-domain version which can be used to compute the thermal transfer impedance between two arbitrary locations in the chip and establish compact thermal models for the critical components in the chip. To aid interconnect thermal analysis, this dissertation introduces a new Schafft-type interconnect temperature distribution model which is very flexible in addressing the effects of chip packaging, surrounding ambient temperatures, and the temperature gradients within the interconnect. An efficient O(n) method is introduced to solve the interconnect temperature distribution from the model. To optimize the chip temperature distribution, this dissertation introduces an optimal power budget model that determines the optimal allocation of cell powers to different regions of the chip so that the resultant temperature distribution most closely approximates the target temperature distribution for the chip. The generalized minimal residue method and the conjugate gradient method are employed to construct top-level and front-level thermal optimizers to solve the optimal power budget efficiently. Finally, the dissertation describes the procedure to incorporate the optimal power budget model into the widely distributed Capo placement tool to enable thermal optimization in the cell placement stage.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61761/1/baohuaw_1.pd
    corecore