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In the Steiner Problem, we are given as input (i) a connected graph with non-
negative integer weights associated with the edges; and (ii) a subset of vertices
called terminals. The task is to find a minimum-weight subgraph connecting all
the terminals. In the Group Steiner Problem, we are given as input (i) a con-
nected graph with nonnegative integer weights associated with the edges; and (ii)
a collection of subsets of vertices called groups. The task is to find a minimum-
weight subgraph that contains at least one vertex from each group. Even though
the Steiner Problem and the Group Steiner Problem are NP-complete, they are
known to admit parameterised algorithms that run in linear time in the size of
the input graph and the exponential part can be restricted to the number of
terminals and the number of groups, respectively.

In this thesis, we discuss two parameterised algorithms for solving the Steiner
Problem, and by reduction, the Group Steiner Problem: (a) a dynamic pro-
gramming algorithm presented by Dreyfus and Wagner in 1971; and (b) an im-
provement of the Dreyfus–Wagner algorithm presented by Erickson, Monma and
Veinott in 1987 that runs in linear time in the size of the input graph. We develop
a parallel implementation of the Erickson–Monma–Veinott algorithm, and carry
out extensive experiments to study the scalability of our implementation with re-
spect to its runtime, memory bandwidth, and memory usage. Our experimental
results demonstrate that the implementation can scale up to a billion edges on
a single modern compute node provided that the number of terminals is small.
For example, using our parallel implementation a Steiner tree for a graph with
hundred million edges and ten terminals can be found in approximately twenty
minutes. For an input graph with one hundred million edges and ten termi-
nals, our parallel implementation is at least fifteen times faster than its serial
counterpart on a Haswell compute node with two processors and twelve cores in
each processor. Our implementation of the Erickson–Monma–Veinott algorithm
is available as open source.
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Chapter 1

Introduction

The formal birth of graph theory is believed to be on August 26, 1735: the
day Leonhard Euler (1707–1783) [39] presented his historic paper proving the
infeasibility of traversing Königsberg’s seven bridges crossing each bridge ex-
actly once. However, references to informal usage of graph theory dates back
to as early as twelfth century in Indian literature. Familysearch.org [40] and
Shoumatoff [111] have reported that, the Pandits of Haridwar, Kurukshetra
and other Hindu pilgrimages have been building family trees to trace ances-
try and marriage records. In many places these records trace family history
for over twenty prior generations stretching across nearly a millennium from
1194 to 2015. Since then graph theory has developed into an extensive and
popular branch of mathematics which has been applied to many problems in
computer science, bioinformatics, biology, chemistry, and other scientific and
not-so-scientific areas.

Many real-world problems can be translated into graph-theoretic prob-
lems and thereby a non-trivial graph algorithm yields a better solution than
an ad-hoc solution. There are well-known graph problems modelled from real-
world problems such as vertex cover, shortest path, travelling salesman, fa-
cility location, matching, and many more. One such problem motivated from
the real-world scenarios is the Steiner problem. An instance of an informal
reference to the Steiner problem dates back to the period of the Indian em-
peror Chandragupta Maurya (321–297 BC). After succeeding in conquering
and subjugating most of the provinces in Indian subcontinent, Chandragupta
Maurya wanted to build a road network to connect the five provincial cap-
itals of his empire with several parts of Western Asia to improve trade and
further strengthen his empire. From an economic point of view these newly
established roads should be as short as possible and should be built on the
basis of existing roads. Deciding which roads should be selected was a prob-
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2 CHAPTER 1. INTRODUCTION

lem for Chandragupta Maurya. We shall see that Chandragupta Maurya’s
problem can be modelled as a Steiner problem in graphs and the solution to
the problem has a core that is a Steiner tree (see Chapter 3). However, the
problem instance is merely an informal reference to the Steiner problem in
history and it is not considered as the origin of the problem. The road net-
work developed during Chandragupta Maurya’s period laid the foundation
for possibly the longest road in the Indian subcontinent known as the Grand
Trunk Road. For the history of the grand trunk road we refer the reader to a
book by Sarkar [108] and an article in Dhaka Tribune [29].

In the subsequent paragraphs we present a survey of the history of the
Steiner problem and our survey is based on a report by Brazil et al. [13].
Most mathematicians believe that the first reference to the Steiner problem
was made by Pierre Fermat (1607–1665) in 1643 in the context of finding
a point whose sum of the distances from three other points in a plane is
minimised and it is known as the Fermat problem. The Fermat problem is
closely related to one of the forty known variants of the Steiner problem known
as the Euclidean Steiner problem. The minimum distance point is called the
Toricelli point or Fermat-Torricelli point, and it is named after Evangelista
Torricelli (1608–1647) who proposed the first geometric solution for finding
such a minimum-distance point in 1646 [118, 119]. A generalisation of the
Fermat problem which seeks a point in a plane whose sum of the distances
from n given points is minimum was proposed by Thomas Simpson in the
book Fluxions in 1750.

The history of the Steiner problem is generally not well understood, es-
pecially prior to the 1930s. In many occasions the problem has been com-
pletely forgotten and then rediscovered many years later. In 1934, Jarnik
and Kössler [71] presented the shortest-interconnection network problem to
find the shortest network spanning n points in a plane. However, Jarnik and
Kössler made no reference to the Fermat problem. Later in 1941, Courant
and Robbins [25] established the connection between the Fermat problem
and the shortest interconnection network problem, and coined the name the
Steiner problem which is named after the famous German mathematician Ja-
cob Steiner (1796–1863), although Steiner’s contribution to the Steiner prob-
lem is unclear. In 1961, Melzak [94] showed that the shortest-interconnection
network could be found in a finite number of steps and he also established
many basic properties of the shortest-interconnection network. Later in 1968,
Gilbert and Pollak [56] referred the shortest-interconnection network as the
Steiner minimal tree, since the shortest connected network in a graph is a
tree. They also extended the Steiner problem to d-dimensional spaces and
studied a probabilistic version of the problem. The Steiner problem is one of
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the twenty-one original NP-complete problems discussed by Karp [77, 78].
Since the 1960s an increasingly sophisticated mathematical theory of mini-
mal networks has been developed around the Steiner problem building on a
combination of techniques from combinatorics, graph theory, geometry and
algebra. The interest in the Steiner problem stems not only from the challenge
it presents mathematically but also from its range of potential applications in
the areas such as communication and infrastructure networks, physical chip
design, social and data mining, and many more. Many influential mathemati-
cians and computer scientists including E. J. Cockayne, M. R. Garey, D. S.
Johnson, R. M. Karp, J. B. Kruskal, C. H. Papadimitriou and R. C. Prim
have investigated questions that relate to the Steiner problem.

Due to its extensive application areas, as many as forty variants of the
Steiner problem have been introduced to date and the group Steiner problem
is one among these forty known variants (Hauptmann and Karpiński [59]).
To the best of the authors knowledge, the first formal reference to the group
Steiner problem was made by Cockayne and Melzak [22] in 1969. They intro-
duced the Euclidean version of the group Steiner problem in two-dimensional
planes. The problem was further studied by Hwang and Weng [67] in 1986.
To the best of the authors knowledge, the group Steiner problem in graphs
was first studied by Riech and Widmayer [104] in 1989, they modelled an
application with regard to the layout of integrated circuits into the group
Steiner problem and further formulated two heuristics. Ihler, Reich and Wid-
mayer [68] in 1995 gave computational results and showed that the problem
is NP-hard by reducing the 3-SAT problem to the group Steiner problem.

The group Steiner problem arises in multiple applications. For example,
in VLSI circuit design where the circuit modules on a VLSI chip have multiple
connection points which can be rotated or flipped to reduce the connection
distances (Reich and Widmayer [104]). The connection points correspond to
a group of vertices in the group Steiner problem formulation, where there is
a single connection point for each circuit module. The group Steiner problem
also has a number of applications in the database and data-mining commu-
nity. We can formulate the keyword-search problem in relational databases
as the group Steiner problem. More precisely, a relational database can be
modelled as a graph; where each vertex denotes a tuple, each edge represents
a foreign-key reference between two tuples and the weight associated with an
edge represents the strength of their relationship. The keyword-search prob-
lem aims to find a set of connected tuples that cover all the given keywords
with minimum total weight on the induced edges. The optimal solution for the
keyword-search problem is a minimum-weight connected tree covering all the
keywords, and therefore the problem is an instance of the group Steiner prob-
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lem. Many researchers in data-mining community have been using the Steiner
tree and the group Steiner tree search techniques to solve numerous data-
mining problems including community detection problem (Chiang et al. [20];
Sozio and Gionis [113]), keyword search problem (Coffman and Weaver [23];
Ding et al. [32]), team formation problem (Anagnostopoulos et al. [2]; Lap-
pas, Liu and Terzi [88]), and many more. However, knowing the fact that the
Steiner and group Steiner problems are NP-complete, many solutions devel-
oped employ approximation algorithms (Bhalotia et al. [9]; Ding et al. [32];
He et al. [60]; Kacholia et al.[75]; Rozenshtein et al. [106]).

From the algorithm design perspective, the Steiner and group Steiner
problems exhibit both formidable hardness and ease of scalability, mean-
ing that even though the problems are NP-complete they admit algorithms
that run in polynomial time in the size of the host graph and the expo-
nential complexity can be isolated to a parameter independent of the size
of input graph (number of terminals and number of groups, respectively).
Furthermore, It is possible to solve the Steiner and group Steiner problems
in edge-linear time using parameterised algorithms (Erickson, Monma and
Veinott [38]; Haugardy, Silvanus and Vygen [63]). The decision variant of the
Steiner and group Steiner problems are NP-complete (Karp [77]; Ihler, Reich
and Widmayer [68]), and exact algorithms for NP-complete problems have
superpolynomial time complexity, unless P = NP . Yet, many distinct ex-
act algorithms have been developed for solving the Steiner and group Steiner
problems. We review the related work and the algorithms developed to date
in Chapter 5. In this thesis, we discuss two parameterised algorithms for
solving the Steiner problem, and by reduction, the group Steiner problem: (i)
a dynamic-programming algorithm presented by Dreyfus and Wagner [34] in
1971; and (ii) an improvement of the Dreyfus–Wagner algorithm presented
by Erickson, Monma and Veinott [38] in 1987 that runs in linear time in the
size of the input graph. Our primary objective of this thesis is to present
a parallel implementation of the Erickson–Monma–Veinott algorithm which
can scale to large graphs. In addition to this, we perform experiments to ver-
ify the scalability of our implementation with respect to its runtime, memory
bandwidth and memory usage.

The remaining chapters of this thesis are organised as follows: we will
begin with a brief introduction to the graph-theoretic preliminaries, defini-
tions and trivial proofs of graph theory in Chapter 2. In Chapter 3, we will
introduce the Steiner problem and the group Steiner problem in graphs, and
present their complexity results. For completeness and clarity, we provide
a brief introduction to the complexity theory. In Chapter 4, we review the
advances in priority queues and present pseudo-code for implementing the
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priority queues using Fibonacci heap. We also discuss an edge-linear time
algorithm based on the visit-and-label approach introduced by Dijkstra for
solving the shortest path problem, which is trivial for designing an edge-linear
time algorithm for the Steiner problem in graphs. In Chapter 5, we review
the existing work and summarise the algorithms presented for the Steiner
and group Steiner problems. We present two parameterised algorithms for
the Steiner problem, one of which is the Dreyfus–Wagner algorithm [34],
and the other is the Erickson–Monma–Veinott algorithm [38]. Furthermore,
we discuss a linear-time reduction introduced by Voß [122] for solving the
group Steiner problem as the Steiner problem. In Chapter 6, we develop a
parallel implementation of the Erickson–Monma–Veinott algorithm to solve
the Steiner problem, and by reduction, to solve the group Steiner problem.
We present an implementation of Dijkstra’s algorithm for finding a shortest
path. Additionally, we present priority-queue implementations using binary
and Fibonacci heap data-structures. In Chapter 7, we discuss the experimen-
tal results of our implementation of the Erickson–Monma–Veinott algorithm
and Dijkstra’s algorithm. Finally, we conclude this thesis in Chapter 8.
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Chapter 2

Graph-theoretic preliminaries

Graph theory is a powerful abstraction tool and provides a framework for
modelling a large set of computer-science problems including many real-world
problems. The knowledge of graph-theoretic preliminaries is essential for
understanding the advanced topics in combinatorial optimisation of graph-
theoretic problems. In this chapter, we give a brief introduction to basic
graph-theoretical terminologies, basic definitions in graph theory and famil-
iarise with the notations used in this thesis. In addition, all the definitions
will be brought to life by a number of simple yet fundamental propositions.
In this thesis, we follow the notation and terminology used in Diestel [30].
For the undefined terms, we refer the reader to introductory books in graph
theory by Diestel [30] and West [128].

2.1 Graphs

A graph G is an ordered pair (V,E) where V is a finite set of vertices (or
nodes) and E ⊆ {{u, v} : u, v ∈ V } is a set of unordered pair of distinct ver-
tices called edges, and the graph is denoted as G = (V,E). For an edge
e = {u, v} we say u and v are end-points of e.

The vertex set of a graph G = (V,E) is referred as V (G) and its edge set
as E(G). The order of G is the number of vertices in G and it is denoted
as n = |V |; the size of G is the number of edges in G and it is denoted as
m = |E|. An example of a graph is shown in Figure 2.1.

An edge e is incident to a vertex v if v is one of the end points of e. A
vertex u is said to be adjacent to vertex v if u and v are end points of an edge

7
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e ∈ E. The set of vertices adjacent to v is called the set of neighbours of v
and it is denoted as adj(v). The degree of a vertex v is the number of vertices
adjacent to v and it is denoted as deg(v) = |adj(v)|. The graph is d-regular if
all the vertices in graph have degree d. A subgraph G′ = (V ′, E ′) of a graph
G = (V,E) is a graph such that V ′ ⊆ V and E ′ ⊆ E. If G′ contains all the
edges {u, v} ∈ E with u, v ∈ V ′ then G′ is an vertex induced subgraph of G
and it is denoted as G′ = G[V ′].

v0

v1

v2

v3

v4

v5

v6

Figure 2.1: A graph on vertex set V = {v0, v1, . . . , v6} with edge set E =
{{v0, v1}, {v0, v2}, {v2, v5}, {v3, v4}}; the order of graph is |V | = 7 and its size
is |E| = 4.

2.2 Weighted graphs

A weighted graph (or network) N is a triple (V,E,w) with an underlying
graph (V,E) and a cost function w : E → Z≥0 that maps each edges e ∈ E to
a value (or weight). An example of a weighted graph is shown in Figure 2.2.

v0

v1

v2

v3

v4

v5

v6

1

2

4

5

Figure 2.2: A weighted graph on vertex set V = {v0, v1, . . . , v6} with edge set
E = {{v0, v1}, {v0, v2}, {v5, v2}, {v4, v3}} and a cost function mapping
w({v0, v1})→ 1, w({v0, v2})→ 2, w({v2, v5})→ 4, w({v3, v4})→ 5.
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2.3 Walk, trail, path, connectivity

A walk in a graph G = (V,E) is a sequence W = (v0, e0, v1, . . . , vk) of alter-
nating vertices and edges for some k ≥ 0 where vertices v0, . . . , vk ∈ V and
edges e0, . . . , ek−1 ∈ E such that for each i = 0, 1 . . . , k − 1 it holds that
ei = {vi, vi+1} ∈ E. The vertex set of W is denoted by V (W) and the edge
set is denoted by E(W). The vertices v0 and vk are called the initial and
terminal vertices ofW . If v0 = vk thenW is closed ; otherwise it is open. The
length of W in a graph is the number of edges in E(W) and it is denoted as
W (W) = k. The length of W in a network is the sum of weights of edges in
E(W) that is W (W) =

∑k−1
i=0 w(ei).

A walk with distinct edges is called a trail. A cycle is a trail with at least
two vertices with no repeated vertices, except the initial and terminal vertex.
A graph with no cycles is acyclic; otherwise it is cyclic.

A path is an open walk with distinct vertices. Two paths P and P ′ between
vertices u, v are distinct if there exists at least one vertex x such that x ∈ V (P )
and x /∈ V (P ′) or vice versa. A subpath S of a path P = {v0, e0, v1, . . . , vk} is
a path between any two vertices vi, vj ∈ V (P ) such that V (S) ⊂ V (P ) and
E(S) ⊂ E(P ).

A graph is connected if there exists a path between every pair of vertices;
otherwise it is disconnected. A vertex v is reachable from vertex u if there
exists a path from u to v. The relation is reachable from is reflexive, transitive
and symmetric. The graph distance between two vertices u, v ∈ V in a graph
G is the length of a shortest path connecting them and it is denoted as
dG(u, v).

Proposition 2.1. In a graph the union of two distinct paths between any
two distinct vertices contains a cycle.

Proof. Let P = (v0, e0, v1, . . . , vm) and P ′ = (v′0, e
′
0, v
′
1, . . . , v

′
n) be two distinct

paths such that their end vertices satisfy v0 = v′0 and vm = v′n. Let us choose
an intermediate vertex vi such that vj = v′j for all 0 ≤ j ≤ i and vi+1 6= v′i+1,
such an intermediate vertex always exists otherwise P = P ′. Let k be the
minimum index of a vertex for some i < k ≤ m such that vertex vk is identical
to vertex v′p for some index i < p ≤ n; such an index must exist otherwise we
contradict vm = v′n. Let S and S ′ be the subpaths between vk and v′p along
the paths P and P ′, respectively, then S and S ′ are disjoint. The union of S
and S ′ clearly forms a cycle. If there exists an index x such that vertex vx is
identical to vertex v′q for some index x < k, it contradicts the minimality of
k. If x = k then vx = v′p.
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Proposition 2.2. In a connected network N = (V,E,w) there exists a path
between any two vertices with length at most W (N) =

∑
e∈E w(e).

Proof. Let N be a connected network. Since N is connected there exists a
path between any two distinct vertices in N . For the sake of contradiction,
let us assume that P be a path between any two vertices in N such that
W (P ) > W (N). Clearly, this is possible if at least one edge is repeated in
P . On the other hand, it contradicts our initial assumption that P is a path
and no edges are repeated. Hence in a connected network there exists a path
between any two vertices with length at most W (N).

Corollary 2.3. In a connected network N = (V,E,w) there exists no path
with length greater than W (N) =

∑
e∈E w(e).

2.4 Trees

An acyclic graph is a forest. A connected forest is a tree. A vertex with degree
one in a tree is called a leaf vertex. A vertex with degree greater than one is
called an internal vertex. A tree is trivial if it consists of a single vertex. An
example of a forest and a tree is shown in Figure 2.3.

A tree is rooted if a special vertex is singled out and the special vertex is
called the root vertex. In a rooted tree, the parent of a vertex is the vertex
connected to it on the path to the root; every vertex except the root vertex
has an unique parent. A child of a vertex v is a vertex for which v is the
parent. The set of vertices having the same parent in a rooted tree is called
a set of siblings.

The length of a longest path in a tree is its diameter. The height of a
rooted tree is the length of longest path from root vertex to any leaf vertex.
The depth of a vertex in a rooted tree is the length of the path from the
vertex to the root vertex of the tree; the level of a vertex in a rooted tree is
one more than the depth of the vertex, more precisely level of v is 1+ depth
of v. The rank of a vertex v in a tree is the number of children of v and it is
denoted as rank(v).

Proposition 2.4. Every tree with at least two vertices has at least one leaf
vertex.

Proof. Let us consider a tree with at least two vertices. Since a tree is a
connected acyclic graph, every vertex has at least degree one. For the sake
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of contradiction suppose a tree has no leaf vertices. Start a walk from some
arbitrary vertex, since the graph has no leaf vertices each vertex has degree
two or more. So we can always leave a vertex by an edge different from the
one by which we reached and there are no dead ends. Nevertheless, there
are only finitely many vertices in graph, so we will end up visiting a vertex
which is previously visited and it forms a cycle. However, this contradicts the
definition of a tree. Hence, there exists at least one leaf vertex in a tree.

v0

v1

v2

v3

v4

v5 v6

v7

(a)

v0

v1

v2

v3

v4

v5

v6

v7

(b)

Figure 2.3: An example of (a) a forest; and (b) a tree.

Proposition 2.5. A connected graph is a tree if and only if there exists an
unique path between any two vertices in the graph.

Proof. Let G = (V,E) be a graph with exactly one path between every pair
of vertices. So that makes G connected. Let us assume that G has a cycle on
vertex v ∈ V then there exists an intermediate vertex u in the cycle such that
there are at least two distinct paths from u to v. However this contradicts
our initial assumption that every pair of vertices in G has exactly one path.
Hence G is a connected graph without cycles which makes G a tree.

Conversely, let G = (V,E) be a tree. By the definition of a tree G is a
connected acyclic graph. So there is at least one path between every pair
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of vertices in G. For the sake of contradiction let us assume that there are
more than one distinct paths between vertices u, v ∈ V . However, the union
of two distinct paths between u and v contains a cycle, this contradicts our
assumption that G is a tree (see Proposition 2.1). Hence, there exists an
unique path between any two vertices in a tree.

Proposition 2.6. A tree with n ≥ 1 vertices has exactly n− 1 edges.

Proof. We prove the result using induction. The result is true for a tree with
n = 1 and n = 2 vertices since the number of edges in a tree with one vertex
is zero and the number of edges in a tree with two vertices is one. Let us
assume that the result is true for all trees less than or equal to n− 1 vertices.
Consider a tree T = (V,E) with n > 2 vertices and an arbitrary leaf vertex
v ∈ V (from Proposition 2.4, such a leaf vertex always exists in a tree).
By deleting v from T , we obtain tree T ′ with n− 1 vertices; however from
induction hypothesis, all trees with n− 1 vertices have n− 2 edges. Since v
is a leaf vertex there is exactly one edge incident to v in T thus T has one
more edge than T ′. Hence the number of edges in a tree with n vertices is
n− 1.

Corollary 2.7. A tree with n− 1 ≥ 0 edges has exactly n vertices.

Proposition 2.8. A connected graph with n ≥ 1 vertices and n− 1 edges is
a tree.

Proof. Let G be a connected graph with n ≥ 1 vertices and n− 1 edges, then
we show that G is acyclic. For the sake of contradiction, let us assume that
G is a cyclic graph and has at least one cycle. So remove an edge from a
cycle at a time and continue the process until the resultant graph is a tree
(connected acyclic graph). Let T be the tree formed after removing edges
from G then clearly T has less number of edges than G, which contradicts
the proof of Proposition 2.6. Hence G is acyclic and therefore it is a tree.

2.5 Binary trees

A binary tree is a rooted tree in which each vertex has at most two children.
This means that every vertex in a binary tree has degree at most three and
it is often convenient to designate each child of a vertex as its left or right
child. A binary tree is proper if every internal vertex has two children. More
precisely, in a proper binary tree every vertex has zero or two children. An
example of a binary tree is shown in Figure 2.4.
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A binary tree is perfect if all the levels are completely filled or equivalently,
all leaf vertices are at the same depth. A binary tree is complete if every level
except possibly the last level is completely filled and all leaf vertices are as far
left as possible. An example of a complete-binary tree is shown in Figure 2.5.

v0

v1 v2

v3 v4 v5

v6 v7

Figure 2.4: A binary tree on vertex set {v0, v1, . . . , v7} with root vertex v0
and leaf vertices v4, v6, v7. Each vertex in a binary tree can be designated a
left and a right child; for example, the left child of vertex v0 is v1 and the
right child is v2. The height of the tree is three.

v0

v1 v2

v3 v4 v5 v6

v7 v8 v9 v10 v11 v12

Figure 2.5: An example of a complete-binary tree with vertex set
{v0, v1, . . . , v12}, root vertex v0 and leaf vertices v6, v7, . . . , v12. Every level
except the last level is completely filled and all leaf vertices are as far left as
possible.

2.6 Binomial trees

A binomial tree of rank k ≥ 0 is defined recursively as follows: a binomial tree
of rank k = 0 consists of a single vertex; and a binomial tree of rank k > 0
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consists of a root vertex with k binomial sub-trees of ranks 0, 1, . . . , k − 1.
A binomial tree of order k has exactly 2k vertices and height k. A binomial
forest is a collection of binomial trees. An example of a binomial tree is shown
in Figure 2.6.

v0

v3v2v1

v6v5v4

v7

Figure 2.6: An example of a binomial tree on vertex set {v0, v1, . . . , v7} with
root vertex v0 and leaf vertices v1, v4, v5, v7. In addition, the order of root
vertex v0 is 3, and it has children v1, v2 and v3 with orders 0, 1 and 2, respec-
tively.

In this thesis, we only consider loopless, connected and undirected graphs
unless explicitly stated otherwise.



Chapter 3

The Steiner problem in graphs

The (minimum) Steiner problem is a classical combinatorial optimisation
problem and the historical background of the problem traces back to Pierre
Fermat who proposed the Euclidean Steiner problem: find a point p in a tri-
angle such that the sum of distances from p to three vertices of the triangle is
minimum, this problem is also known as the Fermat problem and the point p
is called the Torricelli point or the Fermat-Torricelli point. The Steiner prob-
lem is a combinatorial variant of the Fermat problem. The Steiner problem
in graphs is also referred as the Steiner tree problem or the minimum Steiner
tree problem.

In this chapter, we will introduce the Steiner problem and the group
Steiner problem in graphs, and further discuss their computational complex-
ity. Let us begin our discussion with an introduction to computational com-
plexity theory and the concept of reducibility among computational problems.

3.1 Computational complexity

Computational complexity theory is a branch of theoretical computer science
which deals with classifying and relating the computational problems accord-
ing to their inherent difficulty. In this section, we recall the basic definitions in
complexity theory which are relevant for understanding theNP-completeness
proof presented in the later sections of this chapter. The study of complex-
ity theory deal with a wide range of aspects related to the computational
problems and our interest only lies in proving the NP-completeness result of
the Steiner and group Steiner problems. To keep things simple this section
provides only an overview of the complexity theory and does not cover all

15
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the concepts in a great detail. Moreover, we only define terms and notations
which are relevant for the purpose of this thesis and it closely resembles the
terminology used by Garey and Johnson [53]. For more-advanced topics in
complexity theory we refer the reader to books by Arora and Barack [4], and
Papadimitriou [101].

Let Σ = {0, 1} and let Σ∗ denote the set of all finite strings of symbols
from Σ. An instance I ∈ Σ∗ of a problem is a string. A set I ⊆ Σ∗ of strings
is recognisable in polynomial time if there exists a constant c ∈ N and an
algorithm A that stops for every string I ∈ Σ∗ after at most O(|I|c) steps
and returns accept if I ∈ I and reject if I ∈ Σ∗ \ I. For the purpose of
this thesis, we only consider instances recognisable in polynomial time.

A decision problem Π is described as a tuple (I, Sol) where I ⊆ Σ∗ is a
set of instances that is recognisable in polynomial time and Sol is a mapping
that associates with each instance I ∈ I to a set Sol(I) ⊆ Σ∗ of solutions
of I. An algorithm A is said to solve a decision problem Π = (I, Sol) if A
stops for all instances of I ∈ I and returns accept if Sol(I) 6= ∅ and reject
otherwise.

A decision problem Π belongs to class P if there exists an algorithm
which solves Π in polynomial time. This means that the class P consists of all
problems which can be solved in polynomial time. However, for many decision
problems no polynomial-time algorithm is known. Nevertheless, some of these
problems have a property which is not inherent to every decision problem: if
presented with an instance I ∈ I of Π and a potential solution s ∈ Σ∗ such
that |s| ≤ |I|c, c ∈ N then there exists a polynomial-time algorithm which
verifies whether s ∈ Sol(I). The decision problems with this property form
the class Non-deterministic polynomial time or NP . Put differently, non-
deterministic polynomial time essentially means it is easy to verify a given
solution but it need not be easy to find such a solution.

A decision problem Π = (I, Sol) is said to be reducible to another decision
problem Π∗ = (I∗, Sol∗) if there exists a function f : I → I∗ such that for
each I ∈ I, Sol(I) 6= ∅ ⇐⇒ Sol∗(f(I)) 6= ∅. If f is computable in polynomial
time then the reduction is polynomial. In this thesis, a reduction implicitly
means a polynomial-time reduction unless explicitly stated otherwise.

To prove that a given problem Π is NP-complete we follow the steps
advised by Garey and Johnson [53] and the steps are listed as follows:

1. prove that Π is in NP ,

2. select a known NP-complete problem Π′ and reduce Π′ to Π, and

3. prove that the reduction is a polynomial time transformation.



3.2. THE EXACT 3-COVER PROBLEM 17

To prove that the Steiner problem in graphs is NP-complete: First, we
prove that the problem is in NP . Second, we reduce the exact 3-cover prob-
lem to the Steiner problem. Finally, we argue that such a reduction is possible
in polynomial time. Before proceeding to the NP-completeness proof of the
Steiner problem let us define the exact 3-cover problem.

3.2 The exact 3-cover problem

The Exact 3-Cover Problem is a well known NP-complete problem and it
is mentioned among the basic NP-complete problems in Garey and John-
son [53]. The problem is also referred as the exact cover by 3-sets problem.

In the Exact 3-Cover Problem, we are given as input: (i) a set X =
{x1, x2, . . . , xq}; and (ii) a collection C = {C1, C2, . . . , Cp} of 3-element subsets
of X. The task is to find a set C ′ ⊆ C such that each element of X appears in
exactly one member of C ′. The decision version of the exact 3-cover problem
is stated as follows:

The Exact 3-Cover Problem (X3C)

Instance: A finite set X = {x1, x2, . . . , xq} and a collection C = {C1, C2, . . . ,
Cp} of subsets of X such that Ci ⊆ X and |Ci| = 3.

Question: Does C contain an exact cover for X, that is a subset C ′ ⊆ C such
that every element of X occurs in exactly one member of C ′?

3.3 The Steiner problem in graphs

In the Steiner Problem in graphs, we are given as input: (i) a graph G =
(V,E); and (ii) a set K ⊆ V of required vertices called terminals. The task is
to find a tree T in G connecting all the terminals in K with minimum number
of edges. The tree must contain all terminals; however it might also contain
non-terminal vertices called the Steiner vertices. An example of the Steiner
problem in graphs is shown in Figure 3.1. The decision version of the Steiner
problem in graphs is stated as follows:

The Steiner Problem in graphs (SP)

Instance: A graph G = (V,E) with a set of terminals K ⊆ V and a bound
B ∈ Z≥0.

Question: Does there exists a subgraph T connecting all vertices of K in G
such that W (T ) ≤ B?
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(a) (b)

Figure 3.1: An example of the Steiner problem in graphs: (a) A graph with
four terminal vertices; the terminal vertices are denoted by rectangles and
the non-terminal vertices are denoted by circles. (b) A Steiner tree for the
given Steiner problem. The highlighted vertices and edges represent a Steiner
tree for the given problem instance. The tree covers all the terminals and
it also contain three non-terminal vertices called the Steiner vertices. The
Steiner tree shown is the only possible solution for the given problem instance,
however, we should keep in mind that it is possible to have more than one
Steiner tree for a problem instance.

The decision variant of the Steiner problem in graphs is one of the twenty-
one original NP-complete problems stated by Karp [77, 78]. In 1977, Garey,
Graham and Johnson [52] gave the complexity results of the Steiner problem
for general planar point sets and showed that the problem is inherently at
least as difficult as any of the NP-complete problems. The NP-completeness
result we prove is an additional result for this thesis and it effectively serves
as an excuse for not giving a polynomial-time algorithm for the problem. The
proof presented is based on the work of Garey, Graham and Johnson [52] and
it answers the question whether there exists an algorithm which solves the
Steiner problem for every instance of the terminal set K in polynomial time
and the answer is NO.

Lemma 3.1. The Steiner problem in graphs is NP-complete.

Proof. Let us recall from Section 3.1 that to prove that a decision problem
Π is NP-complete, we should prove that: Π is in NP and there exists a
polynomial-time reduction from a known NP-complete problem Π′ to Π.
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Firstly, we prove that Steiner problem in graphs is in NP . Let Π =
(G,K,B) be a Steiner problem instance which reserves a yes answer. Given
a hypothetical solution T ⊆ G we can verify in linear time that: T is a tree
(connected graph with no cycles), T contain all terminals in K and the cost
of tree W (T ) ≤ B. Hence, the Steiner problem in graphs is in NP .

To prove that the Steiner problem in graphs is NP-hard. We reduce the
exact cover by 3-sets (X3C) problem to the Steiner problem (SP). Further-
more, we prove that such a reduction is possible in polynomial time (in fact
the transformation is a linear-time reduction). Given an instance of X3C
on a variable set X = {x1, x2, . . . , x3q} and a collection of 3-element subsets
C = {C1, C2, . . . , Cp} of X. Our aim is to construct a graph G = (V,E) with
a terminal set K and bound B such that G contains a Steiner tree T if and
only if the given X3C instance is satisfiable.

We construct a graph G = (V,E), terminal set K and bound B such that,

V = {v} ∪ C ∪X,
E = {{v, Ci}|Ci ∈ C, i = 1, 2, . . . , p} ∪

{{Ci, xj}|xj ∈ Ci, for each Ci ∈ C, i = 1, 2, . . . , p, j = 1, 2, . . . , 3q},
K = {v} ∪X,
|V | = p+ 3q + 1,

|E| = 4p,

B = 4q.

The graph G can be constructed in linear time, thus the reduction from
X3C to SP is a linear-time transformation. The graph construction is illus-
trated in Figure 3.2.

To prove that their exists a Steiner tree with no more than B = 4q edges
if and only if there exists an exact cover for X3C instance with q elements.
Let us assume that there exists an exact 3-cover C ′ such that |C ′| = q. As C ′
is an exact cover, it covers each variable xj ∈ X exactly once. By selecting
a clause Ci we implicitly choose the edge {v, Ci} and edges {Ci, xj} for all
xj ∈ Ci. Let T be the graph induced by selecting clauses in C ′. From the
construction it is implicit that T is connected. There are 3q edges between
C ′ and X, and q edges between v and C ′. Hence, the number of edges in T is
4q. Since C ′ is an exact cover, C ′ has exactly q clauses and the terminal set
has 3q + 1 vertices. Hence the total number of vertices in T is 4q + 1. Recall
from Proposition 2.6, a connected graph with n vertices and n− 1 edges is a
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tree and T spans over all the terminals in K. Hence, T is a Steiner tree with
cost W (T ) = 4q.

Conversely, let us assume that there exists a Steiner tree T with at most
B = 4q edges in G covering all the terminals K. Since T is a tree with at
most 4q edges, from Proposition 2.5 T has at most 4q + 1 vertices. From
the definition of the Steiner tree T must cover all the terminals in K and
|K| = 3q + 1. Consequently, there are at most q Steiner vertices in T covering
all the terminals in K. Hence, the number of clauses selected in C ′ is at most q.

Let us assume that there exists C ′′ ⊆ C such that C ′′ 6= C ′ where |C ′′| = z
and z < q, then clearly the number of terminals covered by the clauses C ′′ is
at most 3z + 1 < 3q + 1. As a result, there exists at least one vertex x ∈ X
which is not covered by T . However, this contradicts our assumption that
T is a Steiner tree and covers all the vertices in X ⊂ K. Hence, there are
exactly q clauses in C ′.

Let us assume that there exists at least one vertex xl ∈ X for some
l = 1, . . . , 3q and covered by two clauses Ci, Cj ∈ C ′ such that i 6= j then there
exists at least one vertex in X which is not covered by C ′. However, this con-
tradicts our assumption that T is a Steiner tree and covers all the vertices in
X ⊂ K. Hence C ′ is an exact 3-cover with q clauses.

v

c1 c2 cp

x1 x2 x3 x3q

Figure 3.2: An illustration of the graph construction for theNP-completeness
proof of the Steiner problem in graphs. The terminal vertices are denoted by
rectangles and non-terminal vertices are denoted by circles.
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3.4 The group Steiner problem in graphs

In the Group Steiner Problem, we are given as input: (i) a graph G = (V,E);
and (ii) a collection Q = {Q1, Q2, . . . , Qk} of subsets of V called groups. The
task is to find a tree T connecting at least one vertex from each group Qi ∈ Q
with minimum number of edges. The groups need not be mutually-disjoint
vertex sets. An example of the group Steiner problem in graphs is shown in
Figure 3.3.

The decision version of the group Steiner problem in graphs is stated as
follows:

The Group Steiner Problem in graphs (GSP)

Instance: A graph G = (V,E), a collection Q = {Q1, Q2, . . . , Qk} of groups
and bound B ∈ Z≥0.

Question: Does there exists a tree T in G that connects at least one vertex
from each group Qi ∈ Q such that W (T ) ≤ B?

Q1 Q2

Q3

(a)

Q1 Q2

Q3

(b)

Figure 3.3: An example of the group Steiner problem in graphs: (a) A graph
with three groups Q = {Q1, Q2, Q3}; the vertices within each dotted region
form a group. (b) The highlighted tree represent a group Steiner tree con-
necting at least one vertex from each group Q1, Q2 and Q3. The group Steiner
tree shown is the only possible solution for this problem instance, however we
should keep in mind that it is possible to have more than one group Steiner
tree for a given problem instance.
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To the best of the authors knowledge, the group Steiner problem in graphs
was introduced by Reich and Widmayer [104] in the context of wire-routing
phase in physical VLSI designs. It is one of the forty known variants of the
Steiner problem (Hauptmann and Karpiński [59]). Ihler, Reich and Wid-
mayer [68] in 1995 showed that the problem is NP-complete by reducing the
3-SAT problem to the group Steiner problem.

With Lemma 3.1 at hand, we can prove that the group Steiner problem
in graphs is NP-complete by considering the Steiner problem as a restricted
case of the group Steiner problem with each group as a single vertex.

Theorem 3.2. The group Steiner problem in graphs is NP-complete.

Proof. Every instance of the Steiner problem in graphs can be viewed as an
instance of the group Steiner problem in graphs by simply regarding it as,
each group has a single vertex (each group is a singleton). Consequently,
the Steiner problem is a restricted version of the group Steiner problem and
the NP-completeness of the group Steiner problem follows by a trivial trans-
formation from the Steiner Problem. From Lemma 3.1, the Steiner prob-
lem in graphs is NP-complete. Thus, the NP-completeness of the group
Steiner problem follows directly from the NP-completeness of the Steiner
problem.

Now that we have introduced enough terminology to define a Steiner prob-
lem, let us recall Chandragupta Maurya’s problem to build a road transport
network that connects the five provincial capitals of his empire with several
parts of Western Asia and these newly established roads should be as short as
possible and should be built on the basis of the existing roads (see Chapter 1).
Actually, this problem can be transformed to the problem of finding a Steiner
tree in network N = (V,E,w). In this network, each city is represented by
a vertex v ∈ V , each road link between any two cities form an edge e ∈ E
and the length of each road corresponds to the edge-weight w(e). In addition,
the provincial capitals and the major cities in Western Asia that need to be
connected form the terminal set K.



Chapter 4

Data-structures and basic
algorithms

The efficiency of an algorithm processing large-amount of data mainly de-
pends on the use of appropriate and intelligent data-structures. Some in-
stances of data manipulation involve drastic change in the size of the data-
structure during the execution of algorithms. However, the time and space
complexity of such large-amounts of data manipulation can be reduced by
employing efficient data-structures. A priority queue is an example of one
such data-structure which is extensively used in the field of computer science.

Priority queues are used in a wide range of applications including: job
scheduling algorithms, discrete simulation languages, numerical analysis al-
gorithms, sorting algorithms, graph algorithms, and many more (Brown [16];
Charters [19]; Floyd [41]; Gentleman [55]; Gonnet [57]; Jonassen and Dahl [74];
Williams [129]). However, the search for a better priority queue is motivated
by its use in two fundamental computer-science problems: (i) the minimum
spanning tree problem; and (ii) the shortest path problem. In our case it is
the latter.

The Steiner problem in graphs has a sub-problem of finding a shortest path
in graphs. More precisely, this is our motivation to study the shortest path
problem and the data-structures to improve the time complexity of algorithms
used for computing a shortest path. In particular, we focus on priority-
queue implementation using Fibonacci heap, which is essential for designing
an edge-linear time algorithm for the shortest path problem, furthermore, an
edge-linear time algorithm for the Steiner problem in graphs.

In this chapter, we will review the advances in priority-queue implementa-

23
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tion using different data-structures and discuss its use in Dijkstra’s algorithm
for finding a shortest path in graphs. In Section 4.1, we introduce priority
queues and Sections 4.2 to 4.6 is a survey of priority-queue implementations
using binary, binomial, Fibonacci and strict Fibonacci heaps. In addition,
Section 4.4 provides pseudo-code for implementing priority queue operations
using Fibonacci heap. In Section 4.5, we give a brief introduction to amor-
tised complexity analysis. In particular, physicist’s view of amortised analy-
sis introduced by Sleator and Tarjan [114]. In Section 4.7, we introduce the
shortest path problem in graphs. Finally, in Section 4.8, we discuss an algo-
rithm based on visit-and-label approach introduced by Dijkstra for finding a
shortest path in graphs.

4.1 Priority queues

A priority queue (or heap) is a data-structure for maintaining a set S of
elements such that each element in S is associated a value called a key (or
priority) (Cormen et al. [24]). The priority of an element e is denoted as
key(e). In practice, two types of priority queues are used: a minimum priority
queue (or min-heap) and a maximum priority queue (or max-heap). In a
minimum (maximum) priority queue, always the element with low (high)
priority is served before the element with high (low) priority. If a queue has
more than one element with same priority then elements are served according
to their order of occurrence in the queue. For the simplicity of our discussion,
we associate the value of an element to its priority, whereas in practice, the
priority and value of an element can be different. In what follows, the use of
term priority queue or heap generally mean a minimum-priority queue unless
explicitly stated otherwise.

A priority queue supports at least Insert, Delete, Extract-min and
Decrease-key operations. These operations are briefly described as follows:

Insert: add a new element.

Delete: remove the element.

Extract-min: remove and return the element with minimum priority.

Decrease-key: change the priority of the element to a new smaller value.

A priority queue can be implemented using different data-structures rang-
ing from a one-dimensional array to more complicated data-structures such
as binomial and Fibonacci heaps. In the later sections (Section 4.2 to 4.6),
we give an overview of different priority-queue implementations using bi-
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nary heap, binomial heap, Fibonacci heap and strict Fibonacci heap data-
structures, and compare their time complexity.

A simple and straight-forward implementation of a priority queue can
be done using an ordered array by storing elements in the decreasing order
of their priority. Using ordered arrays we can perform Insert, Delete and
Decrease-key priority-queue operations in O(n) time-steps and Extract-
min operation in O(1) time-steps. Even though the implementation is inher-
ently simple it is inefficient. So an efficient yet simple implementation of a
priority queue using binary heap was introduced by Williams [129].

4.2 Binary heaps

A heap-ordered tree is a tree subject to a constraint that the priority of the
parent vertex is always less than its children. To be precise, if a vertex v is
a child of vertex u in a heap-ordered tree then it must satisfy the condition
key(v) ≥ key(u) and this is referred as the heap condition by Knuth [81].

A binary heap is a heap-ordered complete binary tree satisfying the heap
condition. Consequently, the root of a binary heap is always the smallest
element. A n-element binary heap can be implemented using a n-element
one-dimensional array with no additional space requirements; an element at
index 1 ≤ i ≤ n has its left-child at index 2i and its right-child at index
2i+ 1. Consequently, the parent of an element at index i ≥ 2 is located
at index bi/2c. An example of a binary heap data-structure is shown in
Figure 4.1.

3

9 4

26 11 18 20

35 46 12

Figure 4.1: An example of a binary heap with 10 elements. The element with
minimum priority is the root of the binary heap and the priority of parent
vertex is greater than its children. In this example, element 3 is the root
vertex and its left and right children are 9 and 4, respectively.
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The binary heap data-structure was introduced by Williams [129] in 1964
to improve the complexity of sorting in the heap-sort algorithm and it was
later used by Floyd [41] in the tree-sort algorithm. Using binary heap data-
structure Insert, Extract-min, Delete and Decrease-key priority queue
operations can be performed in O(log n) time-steps, and Merge priority
queue operation in O(n) time-steps.

4.3 Binomial heaps

A binomial heap is a forest of heap-ordered binomial trees with unique ranks.
A binomial heap can have more than one binomial tree and a non-empty
binomial heap of n-elements has at least one and at most dlog2 ne binomial
trees. In addition, the min-heap pointer min(H) points to the minimum
element in the heap. An example of a binomial heap data-structure is shown
in Figure 4.2.

The binomial heap data-structure was introduced by Vuillemin [123, 124]
in 1977 to speed-up the merge operation in heaps. Using binomial heap
Delete and Extract-min operations can be performed in O(log n) time-
steps. Additionally, Insert and Merge operations can be performed in O(1)
and O(log n) amortised time-steps, respectively.

min(H)

6

291044

483117

50

3

7

18

Figure 4.2: An example of a binomial heap with three binomial trees. The
min-heap pointer min(H) points to the minimum element in the heap; in this
example 3 is the minimum element and the min-heap pointer is represented
by a dotted arrow. In addition, all elements (vertices) in the root-list are
connected by dotted lines.
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4.4 Fibonacci heaps

A Fibonacci heap is a collection of item-disjoint heap-ordered trees. The Fi-
bonacci heap data-structure was introduced by Fredman and Tarjan [47] in
1984 to improve the amortised time complexity of the heap operations which
is more realistic when dealing with a sequence of operations than the average
or worst-case analysis. Using Fibonacci heaps improved the time complexity
of Dijkstra’s algorithm to O(m+n log n) time-steps, furthermore, it improved
the best known bounds for the all-pairs shortest path problem, the assignment
problem and the minimum spanning tree problem (Cormen et al. [24]; John-
son [72]). A Fibonacci heap supports Extract-min and Delete operations
inO(log n) amortised time, Decrease-key operation inO(1) amortised time
and all the other heap operations in O(1) constant time.

min(H)

7

191012

283117

32

21

29

18

25 38

42

Figure 4.3: An example of a Fibonacci heap data-structure with three Fi-
bonacci trees and root-list {7, 21, 18}. The pointer min(H) points to mini-
mum element of the root-list and hence minimum element in the heap; in this
example 7 is the minimum element and the min-heap pointer is represented
by a dotted arrow. All elements in the root-list are connected by dotted lines.
In addition, the shaded elements represent the marked value True.

To achieve the claimed complexity Fredman and Tarjan [47] introduced
the following representation of the Fibonacci heap: each element e in heap H
contains a pointer parent(e) which points to its parent element or nil if e has
no parent, and a pointer child(e) which points to an arbitrary child of e or nil
if e has no children. The child-list of an element e is the set of children of e and
it is denoted by childlist(e). All the elements in childlist(e) are doubly linked
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in a circular-list. To be precise, each element e has two pointers left(e) and
right(e) which points to its left and right siblings, respectively, in a circular
list or points to itself if e has no siblings. The root-list of the heap is the set of
root elements and it is denoted by rootlist(H). All the elements in rootlist(H)
are connected in a circular list. In addition, a min-heap pointer min(H) points
to the element with minimum priority in the root-list and thus the minimum
element in the heap. Finally, e also contains a field rank(e) indicating its rank
(rank is the number of children of e) and marked(e) indicating whether the
element is marked. We shall discuss the use of marked field while describing
the Decrease-key operation. The size of H is the number of elements in
H and it is denoted by n(H). An example of a Fibonacci heap data-structure
is given in Figure 4.3 and the aforementioned representation of the Fibonacci
heap is shown in Figure 4.4.

min(H)

∅ 12 ∅ 10 ∅ ∅ 20

17 ∅22

30 ∅ 40 ∅

32 38 ∅

50 ∅

e :

Figure 4.4: A pointer representation of the Fibonacci heap. Each element has
four pointers indicating its left sibling, parent, child and right sibling. The
pointers are represented by arrows. The middle field indicate the value of the
element. The rank and marked fields are not shown in the illustration, and
∅ symbol indicate nil. For example, let e be the element with value 22 then
parent(e) points to its parent element 12, child(e) points to an arbitrary child
30, left(e) points to its left sibling 17 and right(e) points to its right sibling
17. The min-heap pointer min(H) points to minimum element of the heap
and it is represented by a dotted arrow. In this example, 10 is the minimum
element.
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We perform Insert, Extract-min and Decrease-key priority-queue
operations on the example given in Figure 4.3 and display the results in
Figure 4.5, Figure 4.6, and Figure 4.7, respectively. In this section, we follow
the notations and terminology used by Prömel and Steger [103].

Insert(H, x): Insert a new vertex x into the root-list of H and update
min(H) if key(x) is less than key(min(H)). An illustration of the Insert
operation in Fibonacci heap is shown in Figure 4.5. The pseudo-code of
Insert operation is available in Procedure 1.

Procedure 1: Insert(H, x)

1 rank(x)← 0
2 child(x)← nil
3 parent(x)← nil
4 marked(x)← False
// Add x to root list of H

5 rootlist(H)← rootlist(H) ∪ {x}
6 if key(x) < key(min(H)) then
7 update min(H)
8 end
9 n(H)← n(H) + 1

min(H)

7

191012

283117

32

21

29

18

25 38

42

13

Figure 4.5: An illustration of Insert operation in Fibonacci heap. Fibonacci
heap after inserting a new element 13.
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Extract-min(H): Remove and return the vertex with minimum priority
and reorganise the heap such that no two root vertices have the same rank.
The process of reorganising the heap is known as consolidation and it is
done by recursively combining the Fibonacci trees with the same rank. More
precisely, we combine the trees with the same rank by making root vertex of
the tree with high priority as the child of root vertex of tree with low priority.
The pseudo-code of Consolidate and Extract-min operations is available
in Procedure 2 and Procedure 3, respectively. An example of Extract-min
operation in Fibonacci heap is illustrated in Figure 4.6.

Procedure 2: Consolidate(H)

1 for i← 1 to blogφ n(H)c do
2 A(i)← nil
3 end
4 do
5 x← an arbitrary vertex from rootlist(H)
6 rootlist(H)← rootlist(H) \ {x}
7 while A(rank(x)) 6= nil do
8 y ← A(rank(x))
9 A(rank(x))← nil

10 if key(x) > key(y) then
11 exchange x↔ y
12 end

// make y child of x
13 childlist(x)← childlist(x) ∪ {y}
14 rank(x)← rank(x) + 1

15 end
16 A(rank(x))← x

17 while rootlist(H) 6= ∅;
18 min(H)← nil
19 for i← 1 to blogφ n(H)c do
20 if A(i) 6= nil then
21 rootlist(H)← rootlist(H) ∪ {A(i)}
22 if key(A(i)) < key(min(H)) then
23 update min(H)
24 end

25 end

26 end
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Procedure 3: Extract-min(H)

1 z ← min(H)
2 if z 6= nil then
3 for x ∈ childlist(z) do
4 parent(x)← nil
5 marked(x)← False
6 rootlist(H)← rootlist(H) ∪ {x}
7 end
8 rootlist(H)← rootlist(H) \ {z}
9 n(H)← n(H)− 1

10 if rootlist(H) = ∅ then
11 min(H)← nil
12 else
13 Consolidate(H)
14 end

15 end
16 return z

min(H)

10

191217

283113

32

21

29

18

25 38

42

Figure 4.6: An illustration of Extract-min operation in Fibonacci heap.
Fibonacci heap after extracting the minimum vertex 7.

Decrease-key(H, x, k): Remove the edge between vertex x and its par-
ent vertex y = parent(x), and insert x with its new priority k in to the root-list.
If y has not previously lost a child, to be precise, if marked(y) = False then
set marked(y) to True. On the other hand, if y has already lost a child, that
is if marked(y) = True then remove the edge between y and parent(y). Fur-
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thermore, repeat the procedure for parent(y) until a vertex is reached which
either belongs to the root-list or its marked value is False. Each operation
of separating a vertex from its parent is called a cut-operation and there is
no upper bound for the number of cut-operations. Hence, these operations
are also called cascading-cuts. The pseudo-code of Cut and Decrease-
key operations is available in Procedure 4 and Procedure 5, respectively.
An example of Decrease-key operation in Fibonacci heap is illustrated in
Figure 4.7.

Procedure 4: Cut(H, x)

1 y ← parent(x)
2 parent(x)← nil
3 marked(x)← False
4 rank(y)← rank(y)− 1
5 childlist(y)← childlist(y) \ {x}
6 rootlist(H)← rootlist(H) ∪ {x}
7 if key(x) < key(min(H)) then
8 update min(H)
9 end

10 if parent(y) 6= nil then
11 if marked(y) = True then
12 Cut(H, y)
13 else
14 marked(y)← True
15 end

16 end

Procedure 5: Decrease-key(H, x, k)

1 if k < key(x) then
2 error(“Invalid key”)
3 end
4 key(x)← k
5 if parent(x) 6= nil and key(x) < key(parent(x)) then
6 Cut(H, x)
7 end

Before proceeding to analyse the time complexity of the priority-queue
operations in Fibonacci heap, let us recall some basic properties of Fibonacci
numbers which are essential for analysing the amortised time complexity of
the Fibonacci heap operations.
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min(H)

10 19

1217

28

31

13

8 21

29

18

25 38

42

Figure 4.7: An example of Decrease-key operation. Fibonacci heap after
decreasing the priority of an element with old priority 32 to new priority 8.

Proposition 4.1. Let Fk be the kth Fibonacci number then Fk ≤ φk−1 for
all k ∈ Z+ where φ = (1 +

√
5)/2 is the golden ratio.

Proof. Let F0, F1, F2, . . . be the Fibonacci sequence. By the rule F0 = 0,
F1 = 1 and every further term is the sum of the preceding two. Hence
Fk = Fk−1 + Fk−2 for all k ≥ 2.

For k = 1, F1 = 0 ≤ φ0 = 1 and for k = 2, F2 = 1 ≤ φ2−1 = φ1, this es-
tablishes the base case. Let us assume that the formula holds for all integers
less than k then Fk−1 ≤ φk−2 and Fk−2 ≤ φk−3. By adding these inequalities
we get,

Fk = Fk−1 + Fk−2 ≤ φk−2 + φk−3 = φk−3(φ+ 1). (4.1)

The golden ratio satisfies,

1 + φ = φ2. (4.2)

By substituting (4.2) in (4.1) we get Fk ≤ φk−1.

Remark. Similarly, we can also prove that Fk ≥ φk−2 and furthermore
φk−2 ≤ Fk ≤ φk−1.

Lemma 4.2. Let u be any vertex in a Fibonacci heap such that rank(u) = k
and vi be the ith child of u in the order they are linked to u from oldest to
newest then the rank of vi is greater than or equal to i−2 for all i = 1, . . . , k.

Proof. Let vertex vi be the ith child of vertex u then before linking vi to u,
u had at least i − 1 children. Hence rank(u) ≥ i− 1. If vi is linking to u
this means that vi and u have the same rank before linking. So rank(u) =
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rank(vi) ≥ i − 1. However, after linking vi to u, the rank of vi could have
decreased by at most one without causing vi to be cut as a child of u. Hence
rank(vi) ≥ i− 2.

Lemma 4.3. In a Fibonacci heap a subtree rooted at a vertex with rank k
has at least Fk+2 descendants and Fk+2 ≥ φk where Fk is the kth Fibonacci
number and φ = (1 +

√
5)/2.

Proof. Let Sk denote the minimum number of descendants of a vertex with
rank k. Clearly, S0 = 1, S1 = 2 and from Lemma 4.2 we have that Sk ≥∑k−2

i=0 Si + 2 for all k ≥ 2. Since the Fibonacci numbers satisfy the relation

Fk+2 =
∑k

i=0 Fi + 2 for all k ≥ 2 we have Sk ≥ Fk+2 for all k ≥ 0 by induction
on k. Furthermore, from Proposition 4.1 we have that Fk+2 ≥ φk. Hence there
are at least φk descendants rooted at a vertex with rank k.

Remark. Lemma 4.3 is the source of the name Fibonacci heap.

Corollary 4.4. Let H be a Fibonacci heap with at most n elements then
rank of each vertex in u ∈ H is at most logφ n where φ = (1 +

√
5)/2.

Proof. From the given data we can infer that any subtree rooted at u can con-
tain at most n vertices. In addition, from Lemma 4.3 we obtain φrank(u) ≤ n,
by taking log on both sides we get rank(u) ≤ logφ n.

4.5 Amortised analysis

Amortisation or averaging over time is a powerful technique used for the com-
plexity analysis of data-structures. The theory of algorithms has traditionally
focused on worst-case analysis and this focus has led to many efficient algo-
rithms. Even though the worst-case analysis is a good complexity measure,
there are a number of problems for which it does not provide empirically accu-
rate results. On the other hand, amortised analysis reports more robust and
practical runtimes. Most importantly we can obtain tight upper and lower
bounds on a variety of algorithms. There are two well-known approaches
used for amortised analysis: (i) the banker’s view, which was implicitly used
by Brown and Tarjan [17] for analysing the complexity of 2-3 trees and it
was developed more fully by Huddleston and Mehlhorn [64, 65] for analysing
the complexity of generalised B-trees; and (ii) the physicist’s view, which was
introduced by Sleator and Tarjan [112] for analysing the complexity of the
paging rules in self-organising lists. We use the latter approach to analyse
the amortised time complexity of the Fibonacci heap.
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In physicist’s view, Sleator and Tarjan [112] define a potential function
Φ that maps any configuration of the data-structure to a rational number
called the potential. The amortised time ai of the ith operation is given by
ti + Φi − Φi−1, where ti denotes the actual time, Φi denotes the potential
after ith operation and Φi−1 denotes the potential after i − 1th operation.
Φ0 denotes the potential before the first operation. Using this notation any
sequence of m operations satisfies the following equality,

m∑
i=1

ti =
m∑
i−1

ai − Φi + Φi−1 = Φ0 − Φm +
m∑
i=1

ai.

Another approach for amortised complexity analysis is the banker’s view
which is beyond the scope of this thesis. For a detailed explanation of amor-
tised analysis we refer the reader to a survey of amortised computational
complexity by Tarjan [114] and an introductory book of algorithms by Cor-
men et al. [24, Chapter 17].

Lemma 4.5 (Fredman and Tarjan [47]). In a Fibonacci heap starting with
an empty heap any arbitrary sequence of k operations of Insert, Decrease-
key and Extract-min can be performed in O(k + l log n) time-steps, where
l is the number of Extract-min operations and n is the maximum number
of elements contained in the heap at any time.

Proof. Let ri denote the number of vertices in the root-list and mi denote
the number of marked vertices after i operations. Let Ti denote the time
spent during first i operations and C be a fixed sufficiently large integer. The
potential function is defined as,

Φi = C(ri +mi). (4.3)

The amortised runtime of the ith operation is given by,

ai = (Φi + Ti)− (Φi−1 + Ti−1). (4.4)

It is sufficient to show that ai is constant whenever ith operation is an
Insert or a Decrease-key operation, and it is bounded by O(log n) for
an Extract-min operation. To prove this we consider the following three
cases:

1. If the ith operation is Insert then the number of root vertices is
ri = ri−1 + 1 and the number of marked vertices is mi = mi−1. The
time spent during first i operations is Ti ≤ Ti−1 + C. By substituting
these inequalities in (4.4) we get ai ≤ 2C.
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2. If the ith operation is Extract-Min then the number of root vertices
is ri ≤ log n and the number of marked vertices is mi ≤ mi−1. From
Corollary 4.4 the vertex with the minimum key has at most log n chil-
dren. In addition, we observe that each linking of two vertices in the
root list reduces the number of vertices in the root list by one. Hence,
Ti ≤ Ti−1 + C(ri−1 + log n). By substituting these inequalities in (4.4)
we get ai ≤ 2C log n.

3. If the ith operation is Decrease-Key then let us assume that x be the
number of calls made for Procedure Cut. Hence, the number of root
vertices is ri = ri−1 + x, the number of marked vertices is mi ≤ mi−1−
(x−1)+1 and the time spent during first i operations is Ti ≤ Ti−1 + Cx.
By substituting these inequalities in (4.4) we get ai ≤ 4C.

4.6 Strict Fibonacci heaps

A pointer based implementation of the priority queue with time bounds
matching those of a Fibonacci heap in the worst-case was introduced by Bro-
dal, Logogiannis and Tarjan [14] in 2012, known as the strict Fibonacci heap.
Using strict Fibonacci heap Insert, Consolidate and Decrease-key op-
erations can be done in worst-case O(1) time furthermore, Extract-min
and Delete operations in worst-case O(log n) time, where n is the size of
the heap.

However, for the purpose of this thesis we restrict our discussion to Fi-
bonacci heap, which is sufficient to achieve the claimed time complexity of
O(m+ n log n) for computing a shortest path in graphs using Dijkstra’s al-
gorithm.

Table 4.1 lists the time complexity of the priority-queue operations using
ordered array, binary, binomial, Fibonacci and strict Fibonacci heap data-
structures.

4.7 The shortest path problem

The shortest path problem is one of the fundamental problems in computer
science and it arises as a sub-problem while solving many optimisation prob-
lems such as the all-pairs shortest path problem, the spanning tree problem,
the Steiner problem and many more. It is important to note that the short-



4.7. THE SHORTEST PATH PROBLEM 37

Operation ordered
array

binary
heap

binomial
heap

Fibonacci
heap

strict
Fibonacci

Insert O(n) O(log n) O(1)∗ O(1) O(1)

Delete O(n) O(log n) O(log n) O(log n)∗ O(log n)

Extract-min O(1) O(log n) O(log n) O(log n)∗ O(log n)

Decrease-key O(n) O(log n) O(log n) O(1)∗ O(1)

Merge − O(n) O(log n)∗ O(1) O(1)

Table 4.1: The time complexity of the priority queue operations using ordered
array, binary, binomial, Fibonacci and strict Fibonacci heap data-structures.
The amortised complexity is denoted by O(·)∗ and the worst-case complexity
is denoted by O(·).

est path problem is also referred as the single-pair shortest path problem to
distinguish from the single-source shortest path problem (Knuth [80]). The
shortest path problem plays an important role in studying the Steiner and
group Steiner problems in graphs, and we shall see this in Chapter 5.

The shortest path problem. Given a network N = (V,E,w) and two
vertices u, v ∈ V , the shortest path problem is to find a path between u and
v in N such that the length of path is minimised.

The single-source shortest path problem. Given a networkN = (V,E,w)
and a source vertex s ∈ V , the single-source shortest path problem is to find
paths from s to every vertex v ∈ V \ {s} such that the length of each path is
minimised.

Our historical survey of the algorithms for solving the Shortest path prob-
lem in graphs is based on the survey by Schrijver [109]. The matrix method
for graphs with unit edge weight was studied by Landhal and Runge [87].
In the matrix method, a directed graph is represented using a matrix and
the distance between the vertices is calculated by iterative matrix product
and transitive closure property of the graph. The matrix method was later
studied by Landahl [86]; Luce and Perry [91]; and Luce [90]. An algorithm
based on the matrix method for solving the shortest path problem in graphs
with unit length was presented by Shimbel [110] in 1954 in the context of
finding the all-pairs shortest path with O(n4) time-steps. Later, Ford [46] in
1956 presented an algorithm with O(n2m) time complexity and it was im-
proved to O(nm) by Bellman [7] in 1958. Dantzig in 1958 gave a O(n2 log n)
algorithm for graphs with nonnegative weights associated with the edges. Di-
jkstra [31] in 1959 gave a concise description of the Dijkstra’s method yielding
a O(n2) time implementation. However, using more efficient data-structures
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such as the binomial [73] and Fibonacci [47] heaps, Dijkstra’s method can be
implemented with running time O(m log n) and O(m+ n log n), respectively.
Karlsson and Poblete [76] in 1982 presented a O(m log logC) time algorithm
for the shortest path problem, where C is the maximum edge weight in the
graph. Gabow [51] in 1985 improved this to O(m logC). In 1990, Ahuja et
al. [1] presented a O(m+n

√
logC) time algorithm. Thorup [116] presented an

algorithm with O(m) time-steps for graphs with nonnegative integer weights
associated with the edges in 1999. In 2004, Thorup [117] presented an algo-
rithm with O(m+n log log n) complexity using a Fibonacci heap style integer
priority queue.

4.8 Dijkstra’s Algorithm

In this section, we present an algorithm based on the visit-and-label approach
introduced by Dijkstra to solve the shortest path problem for undirected
graphs with nonnegative integer weights associated with the edges. The orig-
inal variant of Dijkstra’s algorithm finds a shortest path between two vertices
in a graph. However, a more-common variant of this algorithm can find short-
est paths from a single-source vertex to all other vertices in the graph. The
pseudo-code of the more-common variant of Dijkstra’s algorithm is available
in Algorithm 1.

LetN = (V,E,w) be a connected network with nonnegative integer weights
associated with the edges and s ∈ V be the source vertex. The algorithm par-
titions V into two subsets: (i) a subset Q ⊆ V of queued vertices (to be visited
later); and (ii) a subset V \Q of visited vertices. For all x ∈ V , let d(x) de-
notes the length of a shortest s-x path P computed by the algorithm and
p(x) denotes the vertex through which x is connected to s along P . At each
iteration of the while loop (Lines 11–21 in Algorithm 1) a vertex u ∈ Q which
satisfies d(u) = min{d(z) : for all z ∈ Q} is removed from Q and added to
V \ Q. Furthermore, for each vertex v ∈ adj(u) such that v ∈ Q \ {u}, d(v)
and p(v) are updated if d(v) > d(u) + w({u, v}) by relaxing the edges incident
to u.

Lemma 4.6. Dijkstra’s algorithm is correct and computes the shortest path
in O(m+ n log n) time-steps.

Proof. To prove the correctness of Dijkstra’s algorithm we show that the fol-
lowing statements hold at the end of each iteration of the while loop (Lines 11–
21 in Algorithm 1):
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1. For all x ∈ Q the length of a shortest s-x path in the network N ′ induced
by the vertex set (V \ Q) ∪ {x} is equal to d(x) and there exists such
a shortest s-x path in N ′ ending with the edge {p(x), x} such that
p(x) ∈ V \Q, and

2. For all x ∈ V \Q the length of a shortest s-x path is equal to d(x) and
there exists an s-x path which ends with the edge {p(x), x} such that
p(x) ∈ V \Q if u 6= s and p(x) = nil otherwise.

As base case, at the end of the first iteration note that Q = V \ {s},
V \Q = {s} and u = s. The distance d(s) = 0 and p(s) = nil, and for all
v ∈ adj(s), d(v) = w({s, v}) and the shortest s − v path ends with the edge
{s, v} such that p(v) = s. Hence, the statements 1 and 2 hold at the end
of the first iteration. Thus to verify the correctness of the algorithm, it is
sufficient to show that if the statements 1 and 2 hold at the beginning of an
iteration of the while loop then they also hold at the end with respect to the
visited set.

By statement 1 of the assumption, there exists an s-u path P in network
N ′ induced by the vertex set (V \Q) ∪ {u} ending with the edge {p(u), u}
such that W (P ) = d(u). We argue that d(u) is equal to minimum. For the
sake of contradiction choose an arbitrary s-u path P ′ that is not totally con-
tained in N ′ such that W (P ′) < W (P ). This is possible only if P ′ contains at
least one intermediate vertex j /∈ V \Q. From the choice of u it still holds that
W (P ) = d(u) ≤ d(j) ≤ W (P ′), however this contradicts our assumption that
W (P ′) < W (P ). Furthermore, for all x ∈ V \Q, d(x) is equal to minimum
still holds. Hence, statement 2 holds for (V \Q) ∪ {u}. From the structure
of the algorithm it is clear that: for all v ∈ adj(u) such that v ∈ Q \ {u} we
update d(v) and p(v) strictly if d(v) > d(u) + w({u, v}) (see Lines 14–20 in
Algorithm 1). Hence, statement 1 holds for V \Q ∪ {u}.

Let us analyse the time complexity of Dijkstra’s algorithm. Clearly, the
initialisation phase takes O(n) time-steps and throughout the visit-and-label
phase we execute at most n− 2 iterations of Extract-min operation and
at most m iterations of Decrease-key operation. The complexity of the
algorithm mainly depends on extracting the minimum distance vertex and
updating the distances. Using Fibonacci heap, we can perform Extract-
min and Decrease-key operations in O(log n) and O(1) amortised time,
respectively (see Lemma 4.5). Furthermore, labelling of all the neighbours can
certainly be done in 2m time-steps as each edge is considered at most twice.
Hence, Dijkstra’s algorithm has a time complexity of O(m+ n log n).
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Algorithm 1: Dijkstra

Input: A network N = (V,E,w), w : E → Z≥0 and a source vertex s.
Output: d, minimum distance from s to v ∈ V \ {s}

p, previous vertex in the path from s to v ∈ V \ {s}.
// Initialisation

1 d(s)← 0
2 p(s)← nil
3 visit(s)← True
4 Insert(Q, s)
5 for all v ∈ V \ {s} do
6 d(v)←∞
7 p(v)← nil
8 visit(v)← False
9 Insert(Q, v)

10 end
// Visit and label

11 while n(Q) > 0 do
12 u← Extract-min(Q)
13 visit(u)← True
14 for all v adjacent to u do
15 if d(u) + w({u, v}) < d(v) and visit(v) = False then
16 d(v)← d(u) + w({u, v})
17 p(v)← u
18 Decrease-key(Q, v, d(v))

19 end

20 end

21 end
22 return d, p



Chapter 5

Algorithms for the Steiner
problem in graphs

In this chapter, we give a survey of the existing work and summarise the
algorithms presented to date for the Steiner problem and the group Steiner
problem. We discuss two parameterised algorithms for solving the Steiner
problem and a transformation to solve the group Steiner problem as the
Steiner problem. We begin this chapter with a review of approximation and
exact algorithms for the Steiner problem in Section 5.1 and Section 5.2, re-
spectively. In Section 5.3, we discuss an algorithm based on dynamic pro-
gramming presented by Dreyfus and Wagner [34]. In Section 5.4, we discuss
a procedure for constructing a Steiner tree using the bookkeeping information
stored in the Dreyfus–Wagner algorithm. In Section 5.5, we discuss an im-
provement of the Dreyfus–Wagner algorithm presented by Erickson, Monma
and Veinott [38]. It is a parameterised algorithm which runs in edge-linear
time and the exponential part can be restricted to the number of terminals.
Finally, we discuss a linear-time reduction presented by Voß [122] for solving
the group Steiner problem as the Steiner problem in graphs in Section 5.6.

Let us recall that the Steiner problem in graphs is NP-complete. In
practice there exists no efficient algorithm to find the optimal solution for
most large-scale Steiner problems. On the other hand, for some applications
it is sufficient even if the obtained solution is not optimal and the concept of
approximation algorithms is introduced for this purpose.

41
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5.1 Approximation algorithms

An optimisation problem Π is either a minimisation problem or a maximisa-
tion problem. Each valid input instance I of Π comes with a non-empty set of
feasible solutions and each feasible solution is assigned a nonnegative rational
number called its objective function value. A feasible solution which achieves
the optimal objective function value for I is called the optimal solution of I
and it is denoted as OPT (I). In this thesis, we only consider the instances
with nonnegative integer objective function value.

An approximation algorithm is used to obtain a sub-optimal solution in
polynomial time and it is usually associated with NP-hard problems. A
sub-optimal solution means that the solution is not too far from the optimal
solution or it is within a guaranteed factor of the optimal solution. For
a detailed discussion of concepts and terminology related to approximation
algorithms, we refer the reader to a book by Vazirani [120]. In what follows, n
denotes the number of vertices, m denotes the number of edges and k denotes
the number of terminals in the input graph instance.

A simple 2-approximation algorithm for the Steiner problem based on
minimum spanning tree heuristic was presented by Gilbert and Pollak [56]
in 1968. For more than twenty-five years no better approximation algorithm
for the problem was known. In 1993, Zelikovsky [130] presented a greedy
algorithm based on 3-Steiner trees with an approximation ratio of 1.834. The
approach was extended by Berman and Ramaiyer [8] in 1994 using k-Steiner
trees and resulted in an improved approximation ratio of 1.694. Karpinski
and Zelikovsky [79] in 1997 obtained an approximation ratio of 1.644 using a
novel technique of choosing the Steiner points in dependence on the possible
deviation from the optimal solution that minimises the weighted sum of the
length. Hougardy and Prömel [62] used a similar approach resulting in an
approximation algorithm that is at most a factor of 1.598 away from the
optimal solution. Robins and Zeliskovsky [105] in 2005 presented a greedy
algorithm with approximation ratio of 1.550. Bykra et al. [18] improved the
approximation factor to ln(4)+ε < 1.39 by developing an LP-based algorithm.
Furthermore, Chleb́ık and Chleb́ıková [21] gave inapproximability results and
showed that the problem is NP-hard to approximate within a factor 96/95.

To the best of the authors knowledge, the group Steiner problem in graphs
was formally introduced by Riech and Widmeyer [104] in 1989. They modelled
an interesting application with regard to the layout of integrated circuits into
the group Steiner problem and further formulated two heuristics for the prob-
lem with an approximation ratio of k− 1. Dror, Haouari and Chaouachi [36]
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in 2000 formulated an agricultural application and tested several heuristics;
among them a genetic algorithm performed the best in terms of the solution
quality. Garg, Konjevod and Ravi [54] in 1998 gave a poly-logarithmic ap-
proximation algorithm and showed that the group Steiner problem is approx-
imable within O(log3 n log k). In 2009 Demaine, Hajiaghayi and Klein [27, 28]
showed that the problem is approximable within O(log2 n) if the graph is a
tree. Bateman et al. [6] have given an algorithm with sub-linear performance
guarantee with an approximation ratio of (1 + lnn/2)

√
k, this ratio comes

by approximating the group Steiner tree by a 2-star and then approximating
the 2-star within a logarithmic factor. Halperin and Krauthgamer [58] gave
inapproximability results and showed that the group Steiner problem is not
approximable within Ω(log2−ε n) unless NP admits quasi-polynomial time
Las Vegas algorithm.

The scope of this thesis is to present exact algorithms for the Steiner and
group Steiner problems. We mainly concentrate on scalable algorithms, in
particular, parameterised algorithms for the problem. Likewise, we do not
discuss approximation algorithms in greater detail. In the next section, we
give a brief review of the exact algorithms presented for solving the Steiner
and group Steiner problems.

5.2 Exact algorithms

An exact algorithm for the optimisation problem always finds an optimal solu-
tion. Meanwhile, there exists no efficient algorithm to find an optimal solution
for a NP-complete problem, unless P = NP . Giving the NP-completeness
proof for the Steiner and group Steiner problems is sufficient to say that there
exists no polynomial-time algorithm to solve these problems. All known exact
algorithms for the Steiner and group Steiner problems have exponential-time
complexity.

An algorithm based on dynamic programming was presented by Dreyfus
and Wagner [34] in 1971 with time complexity O(3kn+ 2kn2 +n3). However,
the time complexity of the Dreyfus–Wagner algorithm can be improved to
O(3kn + 2kn2 + n(n log n + m)) using Dijkstra’s algorithm with Fibonacci
heap for computing shortest paths. Erickson, Monma and Veinott [38] im-
proved the time complexity of the algorithm by computing the distances more
cleverly on demand to O(3kn+ 2k(n log n+m)) time-steps. We will discuss
these two algorithms in more detail in the later sections of this chapter.
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As a kind of exact algorithm Downey and Fellows [33] in 1990 investigated
a parameterised algorithm for the Steiner problem and showed that the prob-
lem is fixed parameter tractable (FPT), in the sense that it can be solved
in time O(f(k)g(n)) where f is an exponential function, g is a polynomial
function and typically k is much smaller than n. A problem allowing such a
fixed parameter tractable algorithm is called fixed parameter tractable prob-
lem (Cygan et al. [26]). A fixed parameter tractable algorithm for the Steiner
problem is to find a solution in polynomial time with respect to the size m of
the host graph (or order n of the host graph) and in exponential time with
respect to the number of terminals k. Then, the algorithm for the Steiner
problem is in time f(k) times the polynomial of m (or n) and it is denoted
as O∗(f(k)). Many researchers and computer scientists have tried to reduce
the exponential factor in algorithms for the Steiner problem. Mölle, Richter
and Rossmanith [96] in 2006 improved the exponent to (2 + δ)k · poly(n) for
arbitrary but fixed δ > 0, Fuchs, Kern and Wang et al. [49] in 2007 improved
to O∗(2.684k), futhermore to O∗(2.38k) [48]. In 2007, Björklund et al. [10]
improved the time complexity to O(2kn2 +nm) using subset convolution and
Möbius inversion for graphs with bounded integer edge weights. However, all
the algorithms listed above require exponential space.

Fomin, Grandoni and Kratsch [43] in 2008 presented the first polynomial-
space algorithm for the Steiner problem with O(6knO(log k)) time complexity
for edge weighted variant, combining this method with Dreyfus and Wagner
for k < log n Fomin et al [44] obtained a O∗(2O(k log k) time polynomial-space
algorithm. Nerderlof [97] in 2009 improved the complexity to O∗(2k) for edge
weighted variant with bounded edge weights using Möbius inversion. Vygen
[125] in 2011 presented a polynomial-space algorithm with time complexity in
the order ofO(nk2k+log2 k log2 n) time-steps. In 2015, Fomin et al. [45] presented
the first single-exponential time polynomial-space FPT algorithm with time
complexity O(7.97kn4 logW ) using O(n3 log k log nW ) space for graphs with
nonnegative edge weights in range 0 to W .

A transformation for solving the group Steiner problem as the Steiner
problem in graphs was presented by Voß [122] in 1990, using this transforma-
tion most algorithms for the Steiner problem can be used to solve the group
Steiner problem. The transformation was restated and a practical implemen-
tation was presented by Duin, Volgenant and Voß [37] in 2004.

In the next sections, we present two parameterised algorithms for solving
the Steiner problem in graphs: (i) a dynamic-programming algorithm intro-
duced by Dreyfus and Wagner [34]; and (ii) an improvement of the Dreyfus–
Wagner algorithm presented by Erickson, Monma and Veinott [38]. Addi-
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tionally, we discuss a procedure to extract a Steiner tree from the additional
bookkeeping information stored while computing the cost of a Steiner tree in
the Dreyfus–Wagner algorithm.

5.3 Dreyfus–Wagner algorithm

Let us recall the Steiner Problem (SP), given a connected network N =
(V,E,w) and a subset K of vertices V called terminals. The task is to find a
minimum-weight tree T in N that connects all the terminals in K.

For a subset X ⊆ K and a vertex v ∈ V , let fv(X) denote the length of
a Steiner tree spanning vertices in X ∪ {v}, and let gv(X) denote the length
of a Steiner tree spanning vertices in X ∪ {v} where v has degree at least 2.
The length of the tree T is denoted by W (T ) =

∑
e∈E(T )w(e) and length of

a shortest path between vertices u, v is denoted by d(u, v). The pseudo-code
of the Dreyfus–Wagner algorithm is available in Algorithm 2.

The Dreyfus–Wagner algorithm exploits the optimal-decomposition prop-
erty. Given a Steiner tree spanning X ∪ {v} in which the degree of v is at
least two then we can split the tree at v to obtain two subtrees: one spanning
X ′ ∪ {v}; and the other spanning X \ X ′ ∪ {v} for some non-empty subset
X ′ ⊂ X. Thus we obtain the following recurrence to compute gv(X),

gv(X) = min
∅6=X′⊂X

{fv(X ′) + fv(X\X ′)}.

Given a Steiner tree connecting vertices in X ∪ {v} if v has degree at
least two then a Steiner tree has length gv(X); otherwise the tree path from
vertex v to some vertex u ∈ X or u ∈ V \X such that the degree of u is at
least three, whichever comes first. Thus we obtain the following recurrence
to compute fv(X),

fv(X) = min{min
u∈X
{d(v, u) + fu(X \ {u})}, min

u∈V \X
{d(v, u) + gu(X)}}.

The initial conditions are gv(∅) = 0, fv(∅) = 0 and fv({u}) = d(v, u) for
all u, v ∈ V . The problem can be solved recursively in k − 1 steps where
k = |K| is the number of terminals. Let us prove the validity of the optimal-
decomposition property.
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Lemma 5.1 (Optimal decomposition [34]). Let X ⊆ K, |X| > 1 and v ∈ V .
Then

gv(X) = min
∅6=X′⊂X

{fv(X ′) + fv(X\X ′)} (5.1)

and

fv(X) = min{min
u∈X
{d(v, u) + fu(X \ {u})},

min
u∈V \X

{d(v, u) + gu(X)}}. (5.2)

Proof. To prove the correctness of (5.1), let us assume that T be a Steiner
tree connecting vertices in X ∪ {v} with length W (T ) such that degT (v) ≥ 2.
Clearly X can be decomposed into two subsets X ′ and X \X ′ for some
∅ 6= X ′ ⊂ X such that X ′ and X \X ′ are connected through v. The decompo-
sition of X to X ′ and X \X ′ is illustrated in Figure 5.1. Let TX′ be a Steiner
tree connecting X ′ ∪ {v} and TX\X′ be a Steiner tree connecting X \X ′ ∪ {v}
then the weight of T can be decomposed as W (T ) = W (TX′) +W (TX\X′).

For the sake of contradiction, let us assume that there exists a Steiner tree
T ′X′ 6= TX′ connecting all the vertices in X ′ ∪ {v} such that W (T ′X′) < W (TX′)
then TX′ can be replaced by T ′X′ in T to get T ′ that connects vertices in
X ∪ {v}. Indeed,

W (T ′) = W (T ′X′) +W (TX\X′) < W (TX′) +W (TX\X′) = W (T ).

However, this contradicts our hypothesis that T is a Steiner tree connecting
the vertices in X ∪ {v}. By minimising over all proper subsets ∅ 6= X ′ ⊂ X
we get the recursion (5.1).

Let us prove the correctness of recursion (5.2). If |X ∪ {v}| = 2 then
fv(X) is the length of a shortest path between v and u ∈ X. Let us assume
that T be a Steiner tree for X ∪ {v} with degT (v) ≥ 2 then fv(X) = gv(X).
This can be obtained by replacing u = v in (5.1).

Let v be a leaf vertex in T , that is degT (v) = 1 and P be a shortest path in
T connecting v to u ∈ V (T ) and length of path W (P ) = d(v, u). Let TX\{v}
be a Steiner tree connecting all vertices in X \ {v}. Clearly the weight of
T can be decomposed as W (T ) = d(v, u) + W (TX\{v}). We distinguish the
decomposition of X ∪ {v} into two different cases: Case (a) vertex u ∈ X;
and Case (b) vertex u ∈ V \ X. These cases are enumerated in Figure 5.2.
By minimising over these two cases we get the recursion (5.2).

Case (a). Let v be a leaf vertex and P be a shortest path from v to
u ∈ X in T and degT (u) ≥ 2 then T is the union of a Steiner tree for X and
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a shortest path from v to u in T . Hence, fv(X) = d(v, u) + fu(X \ {u}).
As a contradiction, let us assume that there exists a path P ′ 6= P in T such
that W (P ′) < W (P ), then P can be replaced with P ′ in T to get Steiner tree
T ′ connecting nodes in X ∪ {v} such that W (T ′) < W (T ). However, this
contradicts the hypothesis that T is a Steiner tree connecting the nodes in
X ∪ {v}.

Case (b). Let v be a leaf vertex and P be a shortest path in T from v to
u ∈ V \X and degT (u) ≥ 2 then T is the union of a Steiner tree for X and a
shortest path from v to u. Hence, fv(X) = d(v, u) + gu(X).

For the sake of contradiction, let us assume that there exists a Steiner tree
T ′X\{v} connecting all vertices in X \ {v} such that T ′X\{v} < TX\{v}. Then,
TX\{v} can be replaced by T ′X\{v} in T to obtain Steiner tree T ′ connecting

X ∪ {v} such that W (T ′) < W (T ). Indeed,

W (T ′) = d(v, u) +W (T ′X\{v}) < d(v, u) +W (TX\{v}) = W (T ).

However, this contradicts our assumption that T is a Steiner tree.

v

X ′
X \X ′

X

Figure 5.1: An illustration of the optimal-decomposition property for re-
cursion (5.1); terminal vertices are denoted by rectangles and non-terminal
vertices are denoted by circles. The set X is decomposed into two proper
subsets X ′ and X \X ′ which are enclosed inside two-separate dotted regions.
The subsets X and X \X ′ are connected through a vertex v ∈ V such that
degree of vertex v is degT (v) ≥ 2.
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v u

X

(a)

v u

X

(b)

Figure 5.2: An illustration of the optimal-decomposition property for re-
cursion (5.2), terminal vertices are denoted by rectangles and non-terminal
vertices are denoted by circles. In Case (a), a leaf vertex v is connected to X
through a vertex u ∈ V \X such that degree of u is degT (u) ≥ 2. In Case (b),
a leaf vertex v is connected to X through a vertex u ∈ X such that degree of
vertex u is degT (u) ≥ 2.

With Lemma 5.1 in place the length of a Steiner tree for terminal set K
can be computed as fv(K \ {v}) for some v ∈ K.

Theorem 5.2 (Dreyfus–Wagner [34]). The length of a Steiner tree can be
computed in O(3kn+ 2kn2 + n2 log n+ nm) steps.

Proof. The correctness of the algorithm immediately follows the proof of
Lemma 5.1. To verify the complexity of Algorithm 2, computing shortest path
can be done in O(n log n+m) using Dijkstra’s algorithm for n times which
makes the complexity of initialisation O(n2 log n+ nm) (see Lemma 4.6).

The complexity of recursion (5.1) in Lemma 5.1 is bounded by number of
possibilities of choosing v, X and X ′. Every terminal t ∈ K belongs to exactly
one of the subsets X ′, X \X ′ or K \X. Hence the number of possibilities
is bounded by O(3kn). The complexity of recursion (5.2) in Lemma 5.1 is
bounded by number of possibilities of choosing v and X. Hence the number
of tuples for which recursion (5.2) is carried out is bounded by O(2kn) making
the overall complexity of the algorithm O(3kn+ 2kn2 + n2 log n+ nm).

The Dreyfus–Wagner algorithm only returns the weight of a Steiner tree.
However, the algorithm can be modified to construct a Steiner tree by keeping
track of vertex-subset pair which satisfies the optimal-decomposition property
and adding a Traceback procedure in the end. We will discuss this in the
next section.
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Algorithm 2: Dreyfus–Wagner

Input: A network N = (V,E,w) and a terminal set K.
Output: The length of a Steiner tree.
// Initialization

1 for v ∈ V do
2 (d, p)← Dijkstra(N, v)
3 end
4 for v ∈ V do
5 for u ∈ K do
6 fv({u})← d(v, u)
7 bv({u})← {(u, {u})}
8 end

9 end
10 for m = 2 to |K| − 1 do
11 for X ⊆ K with |X| = m do

// Recursion (5.1) from Lemma 5.1

12 for v ∈ V do
13 for X ′ ⊂ X and X ′ 6= ∅ do
14 if fv(X

′) + fv(X \X ′) < gv(X) then
15 gv(X)← fv(X

′) + fv(X \X ′)
16 bv(X)← {(v,X ′), (v,X \X ′)}
17 end

18 end

19 end
// Recursion (5.2) from Lemma 5.1

20 for v ∈ V do
21 for u ∈ X do
22 if d(v, u) + fu(X \ {u}) < fv(X) then
23 fv(X)← d(v, u) + fu(X \ {u})
24 bv(X)← {(u,X \ {u})}
25 end

26 end
27 for u ∈ V \X do
28 if d(v, u) + gu(X) < fv(X) then
29 fv(X)← d(v, u) + gu(X)
30 bv(X)← {(u,X)}
31 end

32 end

33 end

34 end

35 end
36 return fv(K \ {v}), for some v ∈ K
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5.4 Extracting a Steiner tree

In this section, we discuss a procedure to extract a Steiner tree using the
additional bookkeeping information stored while solving the recursions (5.1)
and (5.2). Let bv(X) denote a set of vertex-subset pair satisfying the optimal-
decomposition property for a Steiner tree connecting vertices in X ∪{v} (see
Lines 16, 24, 30 in Algorithm 2). The Steiner tree T for the terminal set
K is automatically constructed in the course of solving recursions (5.1) and
(5.2) iteratively by standard method without any extra computation provided
that care is taken not to change bv(X) from one iteration to the next unless
this strictly reduces the appropriate cost. The pseudo-code of a procedure
to construct a Steiner tree from the bookkeeping information is available
in Procedure 6. Using this procedure we can construct a Steiner tree as
Traceback(v,K \ {v}) for some v ∈ K.

Procedure 6: Traceback(v,X)

1 if bv(X) = {(u,X)} then
2 return {v, u} ∪Traceback(u,X)
3 else
4 return

⋃
(u,X′)∈bv(X) Traceback(u,X ′)

5 end

5.5 The edge-linear algorithm

As a type of exact algorithm Erickson, Monma and Veinott [38] presented a
parameterised algorithm which runs in edge-linear time for solving the Steiner
problem in graphs. An edge-linear time algorithm for the Steiner problem has
an advantage of running in linear time with respect to the size of input graph
even though the problem is NP-complete and the exponential factor of the
algorithm is restricted to number of terminals. An algorithm of similar nature
was presented by Hougardy, Silvanus and Vugen [63] in 2014. Both algorithms
use dynamic programming and find a Steiner tree in O(3kn+2k(n log n+m))
time-steps.

The pseudo-code of the Erickson–Monma–Veinott algorithm is listed in
Algorithm 3. In this thesis, the term edge-linear algorithm will only be used to
refer the Erickson–Monma–Veinott algorithm for solving the Steiner problem
in graphs.
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Erickson, Monma and Veinott [38] presented simplifications on top of the
Dreyfus–Wagner algorithm to reduce the number of computations. There
are three simplifications of the calculation associated with each pair (v,X).
Firstly, it is sufficient to split set X only when vertex v ∈ V \X. Secondly,
while splitting set X into subsets X ′ and X \X ′ if there is no terminal vertex
in X \X ′ then without loss of generality we can restrict the computation only
to X ′ that contain any given node in X and finally, compute the shortest path
distance between vertices only on demand when required. In this way there
is no need to find the minimum distance of all pair of vertices in the graph.
Using these modifications, the Dreyfus–Wagner recursion reduces to,

gv(X) = min
∅6=X′⊂X

{fv(X ′) + fv(X\X ′)} (5.3)

fv(X) = min
u∈V \X

{d(v, u) + gu(X)}. (5.4)

The key idea of the algorithm is to batch the computation of fv(X) for all
vertices v ∈ V \X for a fixed X while computing the single source shortest
path. This can be done by constructing a network N ′ = (V ′, E ′, w′) such
that,

V ′ = V ∪ {s}

E ′ = E ∪
⋃
v∈V

{s, v}

w′(e) =


w(e), if e ∈ E,
fu(X \ {u}), if e = {s, u} and u ∈ X,
gu(X), if e = {s, u} and u ∈ V \X.

The aforementioned network construction is illustrated in Figure 5.3.
Now, if we invoke Dijkstra’s algorithm on network N ′ with s as the source
vertex then the cost of a shortest path from s to v ∈ V is exactly,

fv(X) = dN ′(s, v) = min{min
u∈X
{d(u, v)+fu(X\{u})}, min

u∈V \X
{d(v, u)+gu(X)}}.

Hence, one invocation of Dijkstra’s algorithm evaluates the cost fv(X) of
a Steiner tree connecting vertices X ∪ {v} for all v ∈ V .

The complexity of recursion (5.3) is bounded by number of possibilities
of choosing v, X and X ′. Every terminal t ∈ K belongs to exactly one
of the subsets X ′, X \X ′ or K \X. Hence, the number of possibilities is
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bounded by O(3kn). The complexity of recursion in (5.4) is bounded by the
number of possibilities of choosing X. Hence, the number of tuples for which
recursion (5.4) is carried out is bounded by O(2k) and the distances between
vertices are computed on demand. From Lemma 4.6, a shortest path can be
computed in O(n log n + m) time-steps which makes the overall complexity
of the algorithm O(3kn+ 2k(n log n+m) time-steps.

s

v1

v2

v3

v4

v6
v5

w1

w2

w3

w4w5 w6

fv1(
X \ {

v1})

fv2(X
\ {v2})

fv3(X \ {v3})

gv4 (X)

gv5 (X)

g
v
6 (X

)

X

V \X

V

Figure 5.3: An illustration of network N ′ = (V ′, E ′, w′) construction us-
ing N = (V,E,w) with terminal set K = {v1, v2, v3, v5} and subset X =
{v1, v2, v3} for batching the computations of fv(X) for all v ∈ V in the
Erickson–Monma-Veinott algorithm for solving the Steiner problem. The
terminal vertices are denoted by rectangles and non-terminal vertices are de-
noted by circles. The vertex set V is partitioned into two subsets X and
V \ X and it is separated using two dotted regions. We add an additional
vertex s /∈ V and artificial edges {s, u} for all u ∈ V with an edge weight
gu(X) if u ∈ V \X, fu(X \ {u}) otherwise. The artificial edges are denoted
by dotted lines.
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Algorithm 3: Erickson–Monma–Veinott

Input: A network N = (V,E,w) and a terminal set K.
Output: The length of a Steiner tree.

1 for u ∈ K do
2 (d, p)← Dijkstra(N, u)
3 for v ∈ V do
4 fv({u})← d(v), bv({u})← {(u, {u})}
5 end

6 end
7 for m = 2 to |K| − 1 do
8 for X ⊆ K with |X| = m do

// Recursion (5.3)

9 for v ∈ V do
10 for X ′ ⊂ X and X ′ 6= ∅ do
11 if fv(X

′) + fv(X \X ′) < gv(X) then
12 gv(X)← fv(X

′) + fv(X \X ′)
13 bv(X)← {(v,X ′), (v,X \X ′)}
14 end

15 end

16 end
// Recursion (5.4)

17 V ′ ← {s} ∪ V , E ′ ←
⋃
v∈V

{s, v} ∪ E

18 for e ∈ E ′ do
19 if e ∈ E then
20 w′(e)← w(e)
21 else if e = {s, u} and u ∈ X then
22 w′(e)← fu(X \ {u})
23 else if e = {s, u} and u ∈ V \X then
24 w′(e)← gu(X)
25 end

26 end
27 N ′ ← (V ′, E ′, w′)
28 (d, p)← Dijkstra(N ′, s)
29 for v ∈ V \X do
30 fv(X)← d(v), u← p(v)
31 if u 6= s then
32 bv(X)← {(u,X)}
33 end

34 end

35 end

36 end
37 return fv(K \ {v}) for some v ∈ K
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5.6 Solving the group Steiner problem as

the Steiner problem

A transformation for solving the group Steiner problem as the Steiner prob-
lem was introduced by Voß [122] in 1990 and it is also mentioned in a book by
Hwang, Richards and Winter [66]. Even though the transformation is simple
it was ignored for a long time. The transformation was restated and a practi-
cal implementation was presented by Duin, Volgenant and Voß [37] in 2004.
Using this transformation most algorithms used to solve the Steiner problem
can also be used to solve the group Steiner problem in graphs. However, in
this thesis we mainly focus on scalable algorithms for the group Steiner prob-
lem, as a result, we use the Erickson–Monma–Veinott discussed in Section 5.5
for solving the Steiner problem and thus for the group Steiner problem too.
The transformation presented in this section is the work of Voß [122]. Addi-
tionally, we present the proof of the reduction in Lemma 5.4.

Let us recall the Group Steiner Problem (GSP), given a connected network
N = (V,E,w) and a collection Q = {Q1, . . . , Qk} of subsets of V called
groups. The task is to find a minimum-weight tree connecting at least one
vertex from each group Qi ∈ Q.

Let C = W (N) =
∑

e∈E w(e) denote the weight of the network N . The
GSP instance can be transformed into SP instance in linear-time by con-
structing a network N ′ = (V ′, E ′, w′) and terminal set K such that,

K = {q1, . . . , qk}
V ′ = V ∪K
E ′ = E ∪ {{qi, v}|v ∈ Qi for all Qi ∈ Q}

w′(e) =


w(e), if e ∈ E,
2C, if e ∈ E ′ \ E,
∞, otherwise.

The transformation from the group Steiner problem to the Steiner problem
is illustrated in Figure 5.4.

Using this transformation, we can employ any known algorithm to solve
the Steiner problem in N ′. We shall prove that by finding a Steiner tree T ′

in N ′ we obtain a group Steiner tree T in N by removing the terminals K
and edges connecting K in T ′.
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q1

q2

q3

w1
w2 w5

w7 w8

w3

w4

w6

2C

2C

2C

2C

2C

2C

2C

2C

Q1

Q2

Q3

Figure 5.4: An illustration of graph construction for solving the group Steiner
problem as the Steiner problem. The terminal vertices are denoted by rect-
angles and the non-terminal vertices are denoted by circles. The vertices
inside a dotted region form a group. In this example, we have three groups
Q = {Q1, Q2, Q3}. A terminal vertex qi is added for each group Qi ∈ Q. An
artificial edge is connected from each vertex in a group v ∈ Qi to the terminal
vertex qi with edge weight 2C where C = W (N) and the artificial edges are
denoted by dotted lines.

Lemma 5.3. A Steiner tree T ′ in network N ′ with k terminals has exactly
k leaf vertices and all leaf vertices in T ′ are terminals.

Proof. Let T ′ be a Steiner tree in N ′ such that T ′ connects all the terminals in
K and k = |K|. Let u be a leaf node in T ′ such that u /∈ K then by removing
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u and the unique edge incident to u, we get T ′′ such that W (T ′′) < W (T ′).
However, this contradicts our hypothesis that T ′ is minimum. Hence, all the
leaf vertices are terminals.

Let u be a terminal vertex in T ′ such that degT (u) ≥ 2 and v, w /∈ K be
any two vertices adjacent to u. Since N is connected, from Proposition 2.2
there exists a path P in N with length W (P ) ≤ C where C = W (N), which
is clearly less than 2C (see Proposition 2.2). So the edge between vertices u
and w can be replaced by path P in T ′ to get T ′′ such that W (T ′′) < W (T ′).
However, this contradicts the minimality of T ′. Hence, there exists no termi-
nal vertex with degree greater than one in T ′. Furthermore, a Steiner tree in
N ′ has exactly k leaf vertices and all the leaf vertices are terminals.

Lemma 5.4. Let T ′ be a group Steiner tree in network N ′ with terminals K
then the graph obtained by removing terminals K and edges connecting the
terminals in T ′ is a group Steiner tree in network N .

Proof. Let T ′ be a Steiner tree in N ′ connecting all the terminals in K and
k = |K| then we prove that the group Steiner tree T for N can be obtained
from T ′ by removing terminal vertices qi ∈ K and edges connecting qi for all
i = 1, . . . , k. The transformation from T ′ to T can be done in linear time.

From Lemma 5.3 every terminal vertex qi ∈ K is a leaf vertex in T ′. Fur-
thermore, from the construction of N ′ each terminal vertex qi is connected
only through vertices v ∈ Qi. So, there exists at least one vertex from each
group Qi for all i = 1, . . . , k in V (T ′).

Let us assume that T ′ has exactly x vertices such that x ≥ k then from
Proposition 2.5, T ′ has exactly x− 1 edges. From Lemma 5.3 every terminal
vertex qi ∈ K is a leaf. The resultant graph obtained by removing a leaf
vertex qi and the unique edge incident to qi remains connected. Clearly, in
the transformation from T ′ to T we remove exactly k leaf vertices and k edges.
Hence T is a connected graph with x− k vertices and x− k− 1 edges. From
Proposition 2.6 T is a tree.

For the sake of contradiction, let us assume that there exists a group
Steiner tree Ts in N such that W (Ts) < W (T ), then T can be replaced by
Ts in T ′ to get T ′s such that W (T ′s) < W (T ′). However, this contradicts the
minimality of T ′. Hence, T is the group Steiner tree in N connecting at least
one vertex from each group Qi ∈ Q.



Chapter 6

Parallel implementation of
the edge-linear algorithm

In the previous chapter, we discussed the Erickson–Monma–Veinott algorithm
for solving the Steiner problem in graphs. In practice, the algorithm should be
implemented in software to verify its practical scalability on modern-computer
architectures. To examine the performance of an algorithm implementation,
it is often sufficient to measure the runtime, memory bandwidth and memory
usage. However, it is also important to take into consideration the architec-
ture details and the peak-achievable bandwidth of the hardware. We verify
the scalability of our implementation of the Erickson–Monma–Veinott algo-
rithm in terms of its runtime, memory bandwidth and peak-memory usage.
Recall that, we used the term the edge-linear algorithm to refer the Erickson–
Monma–Veinott algorithm. In what follows, the use of term runtime refers
to actual wall-clock time of the experiments.

Knowing that the Steiner problem is NP-complete and unavailability of
an efficient exact-algorithm implementation most solutions for the Steiner
problem adopt to approximation algorithms. For example, Bhalotia et al. [9];
Ding et al. [32]; He et al. [60]; Kacholia et al. [75]; Lappas, Liu and Terzi [88];
Rozenshtein et al. [106] have used Steiner tree approximation algorithms for
solving the data-mining problems. In this chapter, we present an implemen-
tation of the edge-linear algorithm for the Steiner problem which can scale
easily provided that the number of terminals is small. We also explore possi-
ble design choices to parallelise the edge-linear algorithm to achieve speed-up
in computations. The efficiency of our implementation of the edge-linear algo-
rithm relies on the efficiency of Dijkstra’s algorithm because it uses Dijkstra’s
algorithm as a subroutine to compute shortest paths (see Algorithm 3). For
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this reason, we present a scalable implementation of Dijkstra’s algorithm. Ad-
ditionally, we present an implementation of the binary and Fibonacci heaps.

Our software is written in C programming language (C99) using OpenMP
API [100] (-fopenmp) for parallelisation. We compile our source code us-
ing gcc compiler with optimisation level -O5 and -march=native options to
enable architecture-specific optimisations. In this work, we focus on engineer-
ing the Erickson–Monma–Veinott algorithm for Intel micro-processors with
64-bit Haswell microarchitecture. The term word refers to a sequence of 64-
bits and the term cache line refers to eight-consecutive words or a group of
512-bits. The use of term throughput refers to the memory bandwidth which
is the data-transfer rate between the main memory and the processor. The
data-type index t is a 64-bit signed integer. The experimental version of our
current implementation is available as open source [115].

6.1 Implementation challenges

We address the following engineering challenges to design a scalable imple-
mentation of the edge-linear algorithm for solving the Steiner problem, and
by reduction, the group Steiner problem:

1. Memory consumption. The edge-linear algorithm has exponential space
complexity with respect to the number of terminals k and the working
memory should be in the order of O(2kn+n+m), where n is the number
of vertices and m is the number of edges in the graph.

2. Memory interface. In Intel documentation [69, 70] it is reported that, a
Haswell processor fetches a complete cache line (8 words) from the main
memory every time a new memory-read request has been made. Hence,
the memory accesses are efficient only if as many as possible words in
the cache line are utilised for the computations.

3. Graph traversal. Each instance of the Dijkstra procedure traverses all
the edges in a graph input which essentially results in an arbitrary
pattern of memory accesses to the main memmory (see Section 4.8). As
a consequence the data access patterns tend to have less cache locality
if the input graphs are large.

4. Parallel execution. A single execution core is generally not sufficient to
saturate the complete memory bandwidth, especially if multiple chan-
nels to the main memory are available (see Section 7.3).
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We address these implementation challenges as follows. First, let us recall
the Erickson–Monma–Veinott algorithm for the Steiner problem. The algo-
rithm makes use of the optimal-decomposition property to compute a Steiner
tree. The core of such a design is the 2k executions of Dijkstra’s algorithm
for computing shortest paths (see Section 5.5). To reduce the memory con-
sumption, we use natural-bit representation of subsets which is a classical
technique in algorithm engineering (Knuth [82, Section 3B]). In the context
of graph representation and memory interface, it is possible to take advan-
tage of optimisation techniques such as: memory prefetching and optimising
the cache line level by utilising as many as possible words in the cache line.
Modern microprocessors perform memory prefetching to hide the latency of
memory accesses, in this case a single cache miss would bring in multiple
cachelines that would subsequently be accessed which result in a cache hit
(Intel [69, 70]; Lumsdaine et al. [92]). To make effective use of these opti-
misation techniques, we follow the array of arrays representation for graphs
from Mehta and Shani [93, Section 2.2]. In this representation, the adjacency
data of each vertex is stored in an array and therefore in contiguous memory
locations, which reduces the cache pollution and increases the cache locality
(Park, Penner and Prasanna [102]).

In modern microprocessors the arithmetic instructions are pipelined, mean-
ing multiple instructions of same type can be executed simultaneously by
being in different stages of the pipeline provided that there is no data de-
pendency. If not enough independent instructions are available for execution
then the pipeline stalls. Ignoring the latency of memory accesses, to saturate
the arithmetic bandwidth a software design should ensure that each core can
execute a sufficient number of independent instructions.

Intel Haswell CPUs have substantial memory access latency ranging from
less than ten clock cycles for L1 cache hit to hundreds of clock cycles for
main memory accesses (Intel [89]). An important aspect for achieving high
performance is to reduce the number of main-memory accesses. In the case
of our implementation of the Erickson–Monma–Veinott algorithm, avoiding
main-memory accesses is not possible because of the large problem instances.
To hide the latency of memory accesses and to keep the pipeline busy each
core should execute a sufficient number of memory-read and memory-write
requests. In our current implementation, to better saturate the memory
bandwidth and to benefit from multiple-execution cores we parallelise the
computations over the subsets of the terminal set K.
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6.2 Implementation of priority queues

In this section, we present an implementation of binary and Fibonacci heaps.
Our implementation of binary heap is fairly simple. We implement a n-
element binary heap using a n-element one-dimensional array; a binary heap
element at index 1 ≤ i ≤ n has its left child at index 2i and right child at
index 2i+ 1, consequently the parent of an element at index i ≥ 2 is located
at index bi/2c.

On the other hand, implementing a Fibonacci heap is challenging when
one tries to achieve high memory bandwidth performance. In our imple-
mentation, a Fibonacci-heap element is represented using an explicit pointer
structure and the definition is available in Listing 6.1. Each element of the
Fibonacci heap contains four pointers: a pointer to its parent element, a
pointer to its left sibling, a pointer to its right sibling and a pointer to an
arbitrary child. In addition, it contains a key, vertex number (value), rank of
the element and a field indicating whether the element is marked.

1 typedef struct fheap_node {

2 struct fheap_node *parent;

3 struct fheap_node *left;

4 struct fheap_node *right;

5 struct fheap_node *child;

6 index_t rank;

7 index_t marked;

8 index_t key;

9 index_t vertex_no;

10 } fheap_node_t;

Listing 6.1: A structure definition of a Fibonacci heap element. Each element
has four pointers: a parent pointer which points to its parent element, a left

pointer which points to its left sibling, a right pointer which points to its
right sibling and a child pointer which points to an arbitrary child. In
addition, the rank field stores the rank of the element, the key field stores
the key (priority),and the vertex no field stores the value of element. The
marked field is set if the element is marked, more precisely to check if there
was a previous Cut operation performed on the element.

In our implementation, the Fibonacci heap data-structure contains an
array of pointers to all root-nodes and an array of pointers to all the nodes in
the heap. In addition, it stores the maximum (upper limit) number of trees,
the maximum (upper limit) number of elements and the current number of
elements in the heap. The definition of the Fibonacci heap data-structure is
available in Listing 6.2.
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1 typedef struct fheap {

2 fheap_node_t **trees;

3 fheap_node_t **nodes;

4 index_t max_nodes;

5 index_t max_trees;

6 index_t n;

7 } fheap_t;

Listing 6.2: A structure definition of a Fibonacci heap data-structure. The
structure contains an array of pointers named trees, which point to all root
elements in the heap and an array of pointers named nodes, which point to
all elements in the heap. In addition, it contains a field max nodes to store
the maximum (upper limit) number of elements in heap, a field max trees to
store the maximum (upper limit) number of trees and a field n to store the
current number of elements in heap.

The efficiency of Dijkstra’s algorithm relies on the asymptotic complexity
of the priority-queue operations (see Section 4.8). The theoretical difference
between the binary and Fibonacci heap is that, Fibonacci heap supports
Decrease-key and Insert priority-queue operations in amortised constant
time compared to O(log n) time in binary heap. The improved asymptotic
complexity of the Decrease-key operation is important for the theoretical
performance. However, from an implementation perspective the decrease in
time complexity of the Insert operation is mostly inconsequential as it does
not affect the runtime of Dijkstra’s algorithm significantly, unless n is too
large (n > m). On the other hand, we can potentially benefit from the im-
proved time complexity of the Decrease-key operation (Cormen et al. [24,
Chapter 19]). Hence, an optimal implementation of the Decrease-key op-
eration is of at most importance. We employ the algorithms discussed in
Section 4.4 to implement the priority-queue operations of the Fibonacci heap.
A implementation of Decrease-key and Merge priority-queue operations
is available in Listing 6.3 and Listing 6.4, respectively.

6.3 Implementation of Dijkstra’s algorithm

In this section, we present an implementation of visit-and-label algorithm
designed by Dijkstra for solving the shortest path problem in graphs. Using
Fibonacci heap the asymptotic complexity of Dijkstra’s algorithm reduces to
O(m + n log n) time-steps. The proof of Dijkstra’s algorithm is presented in
Lemma 4.6 and the pseudo-code is available in Algorithm 1. An implemen-
tation of Dijkstra’s algorithm is available in Listing 6.5.
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1 void decrease_key(fheap_t *heap, index_t vertex_no, index_t new_key)

2 {

3 fheap_node_t *cut, *parent_node, *new_roots;

4 fheap_node_t *right_node, *left_node;

5 index_t prev_rank;

6 cut = heap->nodes[vertex_no];

7 parent_node = cut->parent;

8 cut->key = new_key;

9

10 if(!parent_node) return;

11

12 left_node = cut->left;

13 right_node = cut->right;

14 left_node->right = right_node;

15 right_node->left = left_node;

16 cut->left = cut;

17 cut->right = cut;

18 new_roots = cut;

19 while(parent_node && parent_node->marked) {

20 parent_node->rank--;

21 if(parent_node->rank) {

22 if(parent_node->child == cut)

23 parent_node->child = right_node;

24 }

25 else {

26 parent_node->child = NULL;

27 }

28 cut = parent_node;

29 parent_node = cut->parent;

30 left_node = cut->left;

31 right_node = cut->right;

32 left_node->right = right_node;

33 right_node->left = left_node;

34 left_node = new_roots->left;

35 new_roots->left = cut;

36 left_node->right = cut;

37 cut->left = left_node;

38 cut->right = new_roots;

39 new_roots = cut;

40 }

41 if(!parent_node) {

42 prev_rank = cut->rank + 1;

43 heap->trees[prev_rank] = NULL;

44 heap->value -= (1 << prev_rank);

45 }

46 else {

47 parent_node->rank--;

48 if(parent_node->rank) {

49 if(parent_node->child == cut)

50 parent_node->child = right_node;

51 }

52 else {

53 parent_node->child = NULL;

54 }

55 parent_node->marked = 1;

56 }

57 heap_merge(heap, new_roots);

58 }

Listing 6.3: An implementation of Decrease-key operation in Fibonacci
heap.
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1 void heap_merge(fheap_t *heap, fheap_node_t *tree_list)

2 {

3 fheap_node_t *first_node, *next_node, *left_child, *right_child;

4 fheap_node_t *ptr, *new_root, *temp, *temp2,

5 index_t rank;

6 ptr = first_node = tree_list;

7 do {

8 next_node = ptr->right;

9 ptr->left = ptr;

10 ptr->right = ptr;

11 ptr->parent = NULL;

12 new_root = ptr;

13 rank = ptr->rank;

14 do {

15 if((temp = heap->trees[rank])) {

16 heap->trees[rank] = NULL;

17 heap->value -= (1 << rank);

18 if(temp->key < new_root->key) {

19 temp2 = new_root;

20 new_root = temp;

21 temp = temp2;

22 }

23 if(rank++ > 0) {

24 right_child = new_root->child;

25 left_child = right_child->left;

26 temp->left = left_child;

27 temp->right = right_child;

28 left_child->right = temp;

29 right_child->left = temp;

30 }

31 new_root->child = temp;

32 new_root->rank = rank;

33 temp->parent = new_root;

34 temp->marked = 0;

35 }

36 else {

37 heap->trees[rank] = new_root;

38 heap->value += (1 << rank);

39 new_root->marked = 1;

40 }

41 } while(temp);

42 ptr = next_node;

43 } while(ptr != first_node);

44 }

Listing 6.4: An implementation of Merge priority queue operation in Fi-
bonacci heap.

Given a network N = (V,E,w) and a source vertex s ∈ V . For all v ∈ V ,
let d(v) denote the length of a shortest path from s to v computed by the
algorithm. Dijkstra’s algorithm essentially partitions the vertex set V into
queued Q and visited V \ Q partitions. In each iteration of the while loop
(Lines 15–29 in Listing 6.5), a queued vertex u ∈ Q with minimum distance
d(u) is selected and marked as visited. Furthermore, all the edges incident to
u are relaxed by setting the distance d(v) = min{d(v), d(u) + w({u, v)} for
each vertex v adjacent to u such that v ∈ Q(see Section 4.8).
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Our implementation accepts the input graph in adjacency-list format and
computes the distance of shortest paths from a single-source vertex to all
other vertices int he graph. Our implementation of Dijkstra’s algorithm is
sequential, meaning it runs on a single execution core. However, we shall see
that multiple independent instances of the Dijkstra procedure can be executed
on a multi-core CPU to saturate the memory interface.

1 void dijkstra(index_t s, index_t n, index_t *pos,

2 index_t *adj, index_t *d, index_t *visit)

3 {

4 heap_t *heap = heap_alloc(n);

5 // initialisation

6 for(index_t v = 0; v < n; v++) {

7 d[v] = MAX_DISTANCE;

8 visit[v] = 0;

9 }

10

11 d[s] = 0;

12 for(index_t v = 0; v < n; v++)

13 heap_insert(heap, v, d[v]);

14 // visit and label

15 while(heap->n > 0) {

16 index_t u = heap_delete_min(heap);

17 visit[u] = 1;

18 index_t pos_u = pos[u];

19 index_t *adj_u = adj + pos_u;

20 index_t n_u = adj_u[0];

21 for(index_t i = 1; i <= 2*n_u; i += 2) {

22 index_t v = adj_u[i];

23 index_t d_v = d[u] + adj_u[i+1];

24 if(!visit[v] && d[v] > d_v) {

25 d[v] = d_v;

26 heap_decrease_key(heap, v, d_v);

27 }

28 }

29 }

30 heap_free(heap);

31 }

Listing 6.5: An implementation of Dijkstra’s algorithm.

6.4 Implementation of the edge-linear

algorithm

In this section, we present our implementation of the Erickson–Monma–
Veinott algorithm for solving the Steiner problem in graphs. Recall that,
we referred the Erickson–Monma–Veinott algorithm as the edge-linear al-
gorithm. The algorithm is described in Section 5.5 and its pseudo-code is
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available in Algorithm 3. The source-code of our implementation is available
in Listing 6.6.

Subset generation. We use classical natural-bit representation [82, Sec-
tion 3B] to denote a subset X of the terminal set K = {q1, q2, . . . , qk}.
More precisely, we use k bits to represent X in which we set i − 1th bit
to 1 if the terminal vertex qi ∈ X, 0 otherwise. This defines a bijection
h : 2K → {0, 1, . . . , 2k − 1} where 2K is the powerset of K. Indeed, X is
represented with an integer value in range 0, . . . , 2k − 1. The implementa-
tion of the edge-linear algorithm requires generating all p-subsets of K for
each 1 < p ≤ k. We use lexicographic bit-permutation generator using bit-
twiddling hacks to generate these subsets from Anderson [3] and Warren [126].
Our implementation uses 64-bit indexing and therefore the maximum sup-
ported terminal-set size is 64. However, we should keep in mind that the
algorithm requires exponential memory resources with respect to k and its
space complexity is O(2kn+ n+m).

Memory layout. Let us recall from Section 5.3 that given a subset X of the
terminal set K and a vertex v. Let gv(X) denotes the cost of a Steiner tree
connecting the vertices in X ∪ {v} such that degree of vertex v is at least 2.
Let fv(X) denote the cost of a Steiner tree connecting the vertices in X∪{v}.
To store the values of gv(X) and fv(X) we use a one-dimensional array of
size 2k · n, where n is the number of vertices and k is number of terminals
in the input graph. More precisely, for each subset X ⊆ K and vertex v,
we store the cost of a Steiner tree connecting X ∪ {v} at index h(X) · n + v
with subset major index, where h : 2K → {0, 1, . . . , 2k − 1}. We organise the
computations efficiently by computing gv(X) prior to computing fv(X) using
the same memory space. Hence, there is no additional memory required for
computing gv(X). For tracking the Steiner tree we use a one-dimensional
array of size 2k+1 · n. For each subset X ⊆ K and vertex v, we store the
vertex u and subset X ′ ⊆ X satisfying the optimal-decomposition property
at index h(X) · 2n+ 2v and h(X) · 2n+ 2v+ 1, respectively (see Section 5.4).

Parallelisation over subsets. Our implementation of the edge-linear algo-
rithm for solving the Steiner problem relies on parallelisation of a single block
over the subsets of the terminal set K using OpenMP API via omp parallel

for construct with default scheduling. The block parallelise the computa-
tions of gv(X) and fv(X) over all p-subsets X ⊆ K for each 1 < p ≤ k. We
compute the values of gv(X) and fv(X) from bottom-up starting from sub-
sets with size |X| = 2 to |X| = k by iteratively increasing the subset size.
Furthermore, the values of gv(X) and fv(X) with subset size p = |X| depend
only on fv(X

′) such that ∅ 6= X ′ ⊂ X, indeed |X ′| < p. As a result, we can
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1 void emv_kernel(index_t n, index_t k, index_t *kk, index_t *f_v, index_t *pos,

2 index_t *adj, index_t *d, index_t *visit, index_t nt)

3 {

4 for(index_t q = 0; q < k; q++) {

5 dijkstra(kk[q], n+1, pos, adj, d, visit);

6 index_t *f_q = f_v + FV_INDEX(0, n, k, 1<<q);

7 #pragma omp parallel for

8 for(index_t v = 0; v < n; v++)

9 f_q[v] = d_th[v];

10 }

11

12 for(index_t p = 2; p < k; p++) {

13 index_t kCp = choose(k, p);

14 index_t *X_a = (index_t *) MALLOC(kCm * sizeof(index_t));

15 index_t i = 0; index_t z = 0;

16 // bit twiddling hacks: generating bit-permutations

17 for(index_t X = (1<<p)-1; X < (1<<k);

18 z = X|(X-1), X = (z+1)|(((~z & -~z)-1) >> (__builtin_ctz(X) + 1))) {

19 X_a[i++] = X;

20 }

21 index_t block_size = kCp/nt;

22 #pragma omp parallel for

23 for(index_t th = 0; th < nt; th++) {

24 index_t start = th*block_size;

25 index_t stop = (th == nt-1) ? kCp-1 : (start+block_size-1);

26 index_t *d_th = d + (n+nt)*th;

27 index_t *visit_th = visit + (n+nt)*th;

28 for(index_t i = start; i <= stop; i++) {

29 index_t X = X_a[i];

30 index_t *f_X = f_v + FV_INDEX(0, n, k, X);

31 index_t Xd = 0;

32 // bit twiddling hacks: generating proper subsets of X

33 for(Xd = X & (Xd - X); Xd != X; Xd = X & (Xd - X)) {

34 index_t X_Xd = (X & ~Xd); // X - X’

35 index_t *f_Xd = f_v + FV_INDEX(0, n, k, Xd);

36 index_t *f_X_Xd = f_v + FV_INDEX(0, n, k, X_Xd);

37 for(index_t v = 0; v < n; v++)

38 f_X[v] = MIN(f_X[v], f_Xd[v] + f_X_Xd[v])

39 }

40 // graph reconstruction

41 index_t s = n + th; index_t ps = pos[s];

42 index_t *adj_s = adj + (ps+1);

43 for(index_t u = 0; u < n; u++)

44 adj_s[2*u+1] = f_X[u];‘

45 for(index_t q = 0; q < k; q++) {

46 if(!(X & (1<<q))) continue;

47 index_t u = kk[q]; index_t X_u = (X & ~(1<<q));

48 index_t i_X_u = FV_INDEX(u, n, k, X_u);

49 adj_s[2*u+1] = f_v[i_X_u];

50 }

51 dijkstra(s, n+nt, pos, adj, d_th, visit_th);

52 for(index_t v = 0; v < n; v++)

53 f_X[v] = d_th[v];

54 }

55 }

56 FREE(X_a);

57 }

58 }

Listing 6.6: A parallel implementation of the edge-linear algorithm for solving
the Steiner problem in graphs.
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parallelise the computations of gv(X) and fv(X) for all p-subsets of K for
each 1 < p ≤ k.

Load balancing using default scheduling for all p-subsets of K for each
1 < p ≤ k will result in poor parallel speed-up since the subsets are not
uniformly distributed in the range 0 to 2k − 1. In our current implemen-
tation, we address this issue by pre-computing all the p-subsets of K for
each 1 < p ≤ k and apply default scheduling on these pre-computed subsets
thereby distributing the load equally (see Lines 13–20 in Listing 6.6). More
precisely, for each iteration with 1 < p ≤ k we generate

(
k
p

)
subsets and dis-

tribute it across c-cores with
(
k
p

)
/c subsets on each core. However, we can

avoid the pre-computations by using ranking and unranking functions [84]
thereby generating the subsets more efficiently on-demand.

Let us recall from Section 5.5 that the edge-linear algorithm breaks down
to finding 2k shortest paths and hence 2k executions of Dijkstra’s algorithm.
Essentially, this forms the core of the algorithm where essentially most com-
putations are required. For each subset X ⊆ K we invoke one Dijkstra
procedure call to compute shortest paths from a single-source vertex to all
other vertices in the graph. As a consequence of parallelisation over subsets,
each core invokes an independent Dijkstra procedure call thereby computing
shortest paths independently in parallel. Even though the memory accesses
are arbitrary, we better saturate the memory bandwidth by making enough
memory requests thereby keeping the pipeline busy.

In the next chapter, we will perform extensive experiments to check the
scalability of our implementation of the edge-linear algorithm with respect to
its runtime, memory-bandwidth and peak-memory usage.
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Chapter 7

Experimental results

In this chapter, we present the experimental results of our implementation
of the Erickson–Monma–Veinott algorithm for solving the Steiner problem
in graphs. In addition, we report the scaling of Dijkstra’s algorithm and an
experimental comparison of the performance of binary and Fibonacci heaps
with respect to Dijkstra’s algorithm. To thoroughly examine the performance
of our implementation, we need to take into account the architecture details
and peak-achievable bandwidth of the hardware. For this reason, we report
the configurations and baseline benchmarks of the hardware used for testing.
Recall that, we referred the Erickson–Monma–Veinott algorithm as the edge-
linear algorithm.

With scaling to large graphs as our primary objective, we design our
experiments to study the runtime, memory bandwidth and peak-memory
usage of our implementation of the edge-linear algorithm with respect to
its edge scaling, parallelisation speed-up and terminal scaling. Our last set of
experiments studies the overhead of tracking a Steiner tree.

7.1 Hardware configurations

In this section, we report the configurations of the hardware used for our
experiments.

Mid-memory configuration. Dell PowerEdge C4130 2 x 2.5 GHz Intel
Xeon E5-2680v3 CPU (Haswell microarchitecture, 24 cores, 12 cores/CPU,
no hyper-threading, 30 MiB L3 cache), 128 GiB of main memory (8 x 16
GiB DDR4-2133 Samsung M393A2G40DB0-CPB, ECC enabled). CentOS

69
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7.3 operating system with Linux kernel version 3.10.0-514.10.2.el7.x86 64 and
gcc version 4.8.5.

Large-memory configuration. Dell PowerEdge C4130 2 x 2.5 GHz Intel
Xeon E5-2680v3 CPU (Haswell microarchitecture, 24 cores, 12 cores/CPU,
no hyper-threading, 30 MiB L3 cache), 256 GiB of main memory (16 x 16
GiB DDR4-2133 Samsung M393A2G40DB0-CPB, ECC enabled). CentOS
7.3 operating system with Linux kernel version 3.10.0-514.10.2.el7.x86 64 and
gcc version 4.8.5.

Huge-memory configuration. Dell R930 4 x 2.8 GHz Intel Xeon E7-
8891v3 CPU (Haswell microarchitecture, 40 cores, 10 cores/CPU, no hyper-
threading, 45 MiB L3 cache), 1536 GiB of main memory (96 x 16 GiB DDR4-
2133 Samsung M393A2G40DB0-CPB, ECC enabled). CentOS 6.8 operating
system with Linux kernel version 2.6.32-642.6.1.el6.x86 64 and gcc version
4.9.3.

7.2 Measuring resource usage

The memory architecture of modern Intel microprocessors is hierarchical and
pipelined (Intel [69, 70]). Each core has access to a number of dedicated
registers and dedicated L1, L2 caches. However, all cores share access to the
L3 cache and main memory (RAM). When a new memory-read request is
issued, the processor checks if the requested data is available in the regis-
ters, L1, L2 and L3 caches in this order; if not, it is fetched from the main
memory and passed along the hierarchy to the registers. While measuring
the memory bandwidth we should only consider the memory-read requests
issued to the main memory along the pipeline. One way of achieving this is
by ignoring the subsequent memory accesses to the same memory address.
We will demonstrate this approach in the later parts of this section.

In Intel documentation (Intel [70, Appendix B]; Levinthal [89]), it is re-
ported that Intel Xeon microprocessors have a dedicated performance moni-
toring unit (PMU) which can be used to track the resource usage. The micro-
processor has an uncore PMU which consists of eight programmable counters
and one fixed counter. The uncore programmable counters can be config-
ured to investigate the performance of L3 cache and main memory accesses.
Additionally, each execution core has a per-core PMU which consists of four
programmable counters and three fixed counters. The programmable per-core
counters can be configured to investigate the performance of L1 and L2 caches,
stalls inside the processor core and the latency of memory accesses. To enable
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the counter measurements, the per-core and uncore PMUs support a number
of performance events which can be used to initiate the measurements. For
example, the uncore PMU counters can be used to measure the memory-read
and memory-write bandwidth of memory accesses to the main memory us-
ing UNC IMC NORMAL READS.– and UNC IMC WRITES.FULL.– class
of events, respectively. In one hand, a more finegrained resource-utilisation
statistics of the CPU can be obtained using the PMU counters. On the other
hand, a lot of engineering effort is required to obtain the resource usage data.
Additionally, Intel provides performance analysis and optimisation software
such as Intel VTune and Intel Extreme Tuning utility which internally make
use of the PMU counters to report the performance statistics. In a way, use
of these optimisation software reduce the engineering effort required to ob-
tain the resource usage statistics. However, these software are only available
with a subscription cost. For these reasons using performance counters and
Intel optimisation software for measuring the resource usage is kept for future
work.

For the purpose of this thesis, we employ an alternative approach for mea-
suring the resource usage. The running time of the experiments is measured
via OpenMP wall-clock time interface (omp get wtime) and the memory us-
age is tracked by using wrapper functions for C standard library memory
allocation interface (malloc and free). In the subsequent paragraphs, we
discuss an approach for measuring the memory bandwidth of our implemen-
tation of the Erickson–Monma–Veinott algorithm and it proceeds as follows:
First, we begin with a simple example to demonstrate the process of measur-
ing the memory bandwidth. Second, we continue our discussion for measuring
the memory bandwidth of the Dijkstra subroutine. Finally, we discuss an ap-
proach used to measure the memory bandwidth of our implementation of the
edge-linear algorithm.

Let us begin our discussion with a simple example to measure the memory
bandwidth of sequential memory accesses. In this example, we measure the
memory bandwidth of the hardware for reading 64-bit words from consecutive
memory addresses and the source-code is available in Listing 7.1. Lines 2–6
measure the memory bandwidth of a single core. We invoke a single thread in
one of the cores which reads an array of 64-bit words sequentially. Lines 9–22
measure the memory bandwidth of all cores. We invoke exactly one thread per
core and the memory accesses are equally distributed among all the threads.
More precisely, each thread performs sequential memory accesses to the array
elements within the bounds specified by start and stop variables (Lines 13–
16). The memory bandwidth is the ratio of size of the array in bytes to the
wall-clock time.
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1 // read consecutive words - serial

2 push_time();

3 for(index_t i = 0; i < array_size; i++)

4 sum += array[i];

5 time = pop_time();

6 serial_bandwidth = inGiB(array_size*sizeof(index_t))/(time/1000.0);

7

8 // read consecutive words - parallel

9 push_time();

10 #pragma omp parallel for

11 for(index_t t = 0; t < num_threads; t++) {

12 index_t tsum = 0;

13 index_t start = (array_size/num_threads)*t;

14 index_t stop = (array_size/num_threads)*(t+1)-1;

15 for(index_t i = start; i <= stop; i++)

16 tsum += array[i];

17 sums[t] = tsum;

18 }

19 for(index_t t = 0; t < nt; t++)

20 sum += tsum[t];

21 time = pop_time();

22 parallel_bandwidth = inGiB(array_size*sizeof(index_t))/(time/1000.0);

Listing 7.1: An example source-code for measuring the memory bandwidth
of read consecutive words experiment.

We will now proceed to measuring the memory bandwidth of our imple-
mentation of Dijkstra’s algorithm described in Section 6.3. Let us recall from
Section 5.5 that the edge-linear algorithm executes 2k instances of Dijkstra
subroutine for computing shortest paths. Each instance of the Dijkstra proce-
dure traverses all edges in the input graph. Hence, for a graph instance with
n vertices and m edges, the procedure reads 2n + 4m words (memory used
to store the graph). The initialisation phase of Dijkstra’s algorithm access
2n words and the visit-and-label phase access 2m words for updating the dis-
tances. Additionally, our implementation of Dijkstra’s algorithm uses binary
or Fibonacci heap to keep track of the minimum distance vertex and the ex-
act number of priority-queue operations executed varies for each invocation of
the Dijkstra subroutine. Furthermore, the number of heap elements accessed
in Decrease-key and Extract-min operations varies for each invocation.

To keep track of the exact number of heap elements accessed we use coun-
ters and these counter values will eventually be used to compute the total
memory accessed by the heap. We illustrate this using a simple example for
counting the number of heap elements accessed while performing Decrease-
key operation in binary heap. The source-code is available in Listing 7.2. In
each iteration of the while loop (Lines 3–12 in Listing 7.2), we perform one key
comparison in Line 8 with a new heap element. As a consequence, one heap
element is accessed in each iteration of the while loop and the probability of
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subsequent memory accesses (in Lines 9 and 10) to the same heap element
resulting in a cache-hit is high. Hence, we ignore the memory accesses in
Lines 8 and 9 for computing the memory bandwidth. Let xh be the total
number of heap elements accessed then the total memory accessed by heap
operations is computed as xh · sizeof(heap element t) bytes. We employ
a similar approach to keep track of the number of heap elements accessed in
the priority-queue operations of binary and Fibonacci heaps.

In our current implementation, we use a structure variable to keep track
of the number of heap elements accessed. In contrast, the performance of our
implementation of binary and Fibonacci heaps could substantially benefit
from tracking the number of heap elements accessed locally (using a local
variable) and updating the structure variable subsequently at the end of the
subroutine. However, we plan to address this implementation limitation in
the future versions of this software.

1 void decrease_key(bheap_t *h, index_t item, index_t new_key) {

2 index_t i = h->p[item];

3 while(i >= 2) {

4 index_t j = i / 2;

5 bheap_node_t y = h->a[j];

6 h->key_comps++; // key comparisons

7 h->mem++; // heap-elements accessed

8 if(key >= y.key) break;

9 h->a[i] = y;

10 h->p[y.value] = i;

11 i = j;

12 }

13 h->a[i].value = value;

14 h->a[i].key = key;

15 h->p[value] = i;

16 }

Listing 7.2: An implementation of Decrease-key operation in binary heap.

Finally, let us discuss an approach used for measuring the memory band-
width of an implementation of the Erickson–Monma–Veinott algorithm de-
scribed in Section 6.4. For a subset X of the terminal set K and a vertex
v, let fv(X) denote the length of a Steiner tree connecting all the vertices
in X ∪ {v}. To compute a Steiner tree for a given problem instance with n
vertices and k terminals the inner-most loop executes 3k · n comparisons of
min{fv(X), fv(X

′) + fv(X \X ′)} for all X ⊆ K and ∅ 6= X ′ ⊂ X (Line 38 in
Listing 6.6). For each comparison, the values of fv(X), fv(X

′) and fv(X \X ′)
will be fetched from the memory. Hence, the total memory accessed by the
inner-most loop of the edge-linear algorithm is 3k+1 ·n words. For computing
the memory bandwidth of the edge-linear algorithm, we consider the mem-
ory transactions of the inner-most loop and the memory transactions of 2k

executions of the Dijkstra subroutine.
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To summarise, the reported memory bandwidth of the edge-linear algo-
rithm is the memory-read data transfer rate of the experiments and it is
the ratio of the total number of bytes read from the main memory to the
wall-clock time of the experiment. The total number of bytes read in our im-
plementation of the edge-linear algorithm is computed as (3k+1 · n+ 2k(4n+
6m)) · sizeof(index t) + xh · sizeof(heap element t) bytes, where xh is
the total number of heap elements accessed.

7.3 Baseline performance

In this section, we benchmark the hardware and report their baseline per-
formance. The hardware configurations are reported in Section 7.1. The
benchmarking software is the contribution of Petteri Kaski.

Benchmarking is one of the approaches used for assessing the performance
characteristics of the computer hardware (Henessey and Patterson [61]). Saave-
dra [107]; Vieira and Madeira [121] have used the benchmarking approach to
identify potential performance penalties in the hardware. Benchmarking typ-
ically involves measuring the arithmetic and memory bandwidth of the hard-
ware. Measuring these baseline benchmark values is essential to engineer and
optimise an algorithm to achieve peak bandwidth performance.

In our experiments, the memory bandwidth of the hardware is measured
by operating on a four-gigabyte array of 64-bit words. We design four exper-
iments which simulate the possible memory-access scenarios and the exper-
iments are designed as follows: First, in read consecutive words experiment
we perform sequential memory access, more precisely we read 64-bit words
from linear memory addresses. Second, in read random words experiment
we read individual 64-bit words from random memory addresses. Third, in
read random cache lines experiment we read complete cache line from ran-
dom memory addresses. Finally, in write consecutive words experiment we
perform sequential writing, precisely we write 64-bit words to linear memory
addresses. The baseline performance of the hardware is reported in Table 7.1
and the experiments bear the delay of generating random addresses.

Each experiment is executed five times and the average memory band-
width of five iterations is reported. To avoid cold start, the hardware is
warmed-up by executing one iteration of the experiment before we start mea-
suring the memory bandwidth. Furthermore, the experiments are repeated
for a single core and all cores of the test hardware. To parallelise across mul-
tiple execution cores, we use OpenMP API [100] via the omp parallel for

construct with default scheduling. The random-memory addresses are gen-
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erated using a pseudo-random generator from Björklund et al. [11] and it is
the exclusive-or of the two states of two 64-bit linear-feedback shift registers
(LFSRs). One LFSR state is shifted towards the more significant bits and
another LFSR state is shifted towards less significant bits. The states of both
LFSRs can be fast-forwarded with square-and-multiply exponentiation in the
polynomial quotient ring defined by a tap polynomial.

Benchmark Single core All cores

Mid-memory configuration

Read consecutive words 8.35 GiB/s 36.22 GiB/s

Read random words 0.53 GiB/s 2.50 GiB/s

Read random cache lines 1.54 GiB/s 7.73 GiB/s

Write consecutive words 6.37 GiB/s 24.33 GiB/s

Large-memory configuration

Read consecutive words 8.43 GiB/s 39.93 GiB/s

Read random words 0.56 GiB/s 2.45 GiB/s

Read random cache lines 1.52 GiB/s 7.91 GiB/s

Write consecutive words 6.23 GiB/s 26.86 GiB/s

Huge-memory configuration

Read consecutive words 3.99 GiB/s 36.64 GiB/s

Read random words 0.19 GiB/s 4.63 GiB/s

Read random cache lines 0.58 GiB/s 16.83 GiB/s

Write consecutive words 3.24 GiB/s 22.16 GiB/s

Table 7.1: The baseline performance of the test hardware. A word is 64-bits
and a cache line is eight consecutive words or a group of 512-bits.

7.4 Input graphs

To test the correctness of our implementation, we use the instances of the
Steiner problem from Koch, Martin and Voß [83]. As our implementation
mainly focuses on scaling with small values of k, we ignore all test instances
with k > 20.

For scalability testing we generate synthetic graphs using a random graph
generator from Björklund et al. [11]. For nonnegative integer values d, n
with dn even, the generator uses the configuration model from Bollobás [12,
Section 2.4] to create a d-regular, n-vertex random graph with nonnegative
integer weights associated with the edges and the edge weights are assigned
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randomly in the range 1 to 232. The generator does not reject the configura-
tions with loops (1-cycles) or couplings (2-cycles). The generated graphs are
in DIMACS STP format [83].

To achieve consistency in results we generate identical graphs across all
machines. More precisely, given the number of vertices n, degree d of each
vertex, number of terminals k and a seed value, the generator produces same
graph instance even with different C libraries and different test environments.

7.5 Edge-scaling of Dijkstra’s algorithm

Our first set of experiments study the scaling of our implementation of Dijk-
stra’s algorithm described in Section 6.3. We measure the runtime, memory
bandwidth and peak-memory usage of the algorithm as a function of the num-
ber of edges m. In addition, we report the performance evaluation of binary
and Fibonacci heaps in Dijkstra’s algorithm. We use our implementation of
binary and Fibonacci heaps described in Section 6.2. The experiments are
performed on a single core of the mid-memory configuration and the results
are displayed in Figure 7.3.

We observe that the runtime and memory usage of the algorithm increase
linearly as we increase m and the runtime has little variance between the
independent graph inputs. One of the important observations is the decrease
in memory bandwidth with increase in number of edges m. The decrease in
memory bandwidth could be the result of cache misses with increase in m. For
input graphs with small number of edges, the graph completely fits inside the
L3 cache of the mid-memory configuration. As we increase the graph size, the
L3 cache will not be sufficient to store the entire graph and a part of the graph
is stored in the main memory. Recall from Section 6.1 that each execution
of Dijkstra procedure traverses all the edges in the graph, which results in
an arbitrary pattern of memory accesses to the main memory and the data
access patterns will essentially have less cache locality. As a consequence of
this, we pay the penalty for cache misses.

Let us recall from Chapter 4 that, we discussed the advances in priority-
queue implementations and the performance of Dijkstra’s algorithm relies
on the asymptotic complexity of the priority-queue operations. Indeed, Dijk-
stra’s algorithm using Fibonacci heap has better theoretical performance than
the binary heap (see Section 4.8). However, from our experimental results it
is observed that the performance of our implementations of the binary heap
is better than Fibonacci heap with respect to finding a shortest path using
Dijkstra’s algorithm. We investigate this in more detail in the next section.
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Figure 7.3: Performance evaluation of binary and Fibonacci heaps in edge
scaling of Dijkstra’s algorithm. We display the runtime (top), memory band-
width (center) and memory usage (bottom) of Dijkstra’s algorithm for five
independent d-regular random graphs for each n = 217, 218, . . . , 223, d = 20
fixed and a random source vertex. The experiments are performed separately
for binary and Fibonacci heaps on a single core of the mid-memory configu-
ration. Note that the horizontal axis is logarithmic and the vertical axis of
the runtime (top) and memory usage (bottom) plots is also logarithmic.
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7.6 Binary heaps versus Fibonacci heaps

The Fibonacci heap supports Decrease-key and Insert priority-queue op-
erations in amortised constant time compared to O(log n) time in the binary
heap. From an implementation perspective, the decrease in asymptotic com-
plexity of the Insert operation is essentially inconsequential as it does not
affect the runtime of Dijkstra’s algorithm significantly. However, we can po-
tentially benefit from the improved time complexity of the Decrease-key
operation if it is used in an application where the Decrease-key opera-
tions are frequent (Cormen et al. [24, Chapter 19]). In terms of Dijkstra’s
algorithm this means that the underlying graph should be dense. We design
our second set of experiments to study the effect of graph density on the
performance of our implementation of binary and Fibonacci heaps in Dijk-
stra’s algorithm, and report the runtime of the experiments in Figures 7.4
and 7.5. Our implementation of the binary and Fibonacci heaps is described
in Section 6.2.
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Figure 7.4: Performance evaluation of the binary and Fibonacci heaps
with respect to the graph density. We display the runtime of Dijk-
stra’s algorithm for five independent d-regular random graphs for each
d = 2 · 10, 22 · 10, . . . , 212 · 10 with n = 65536 fixed and a random source ver-
tex. The experiments are executed on a single core of the mid-memory con-
figuration. All axes have logarithmic scale. The zoom-out section is displayed
for better visibility and the runtime of binary heap is slowly overtaking the
runtime of Fibonacci heap for dense graphs.

From theoretical perspective, we expect Fibonacci heap to perform better
for dense graphs because of frequent Decrease-key operations. However,
in practice even though there is a significant improvement in the performance
with increase in the graph density, it does not outperform the binary heap.
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One possible explanation could be due to the large constant factors in the
Fibonacci heap operations. Our implementation of Fibonacci heap uses an
explicit and memory-consuming pointer structure. Each elementary opera-
tion in Fibonacci heap involve the storage manipulation of four pointers per
element and it is an additional overhead compared to the binary heap which
only stores the priority and value of each element. Even though we observe a
significant improvement in the memory bandwidth using Fibonacci heap, we
pay the penalty of large constant factors in the Fibonacci heap operations.
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Figure 7.5: Performance comparison of the binary and Fibonacci heaps in
Dijkstra’s algorithm. We display the runtime of Dijkstra’s algorithm for five
independent d-regular random graphs for each n = 217, 218, . . . , 223, d = 20
fixed (top) and for each n = 212, 213, . . . , 218 with d = 640 fixed (bottom) and
a random source vertex. The experiments are performed on a single core of
the mid-memory configuration. All axes have logarithmic scale.



80 CHAPTER 7. EXPERIMENTAL RESULTS

7.7 Scaling of the edge-linear algorithm

In this section, we discuss the experimental results of our implementation
of the Erickson–Monma–Veinott algorithm for the Steiner problem in graphs
described in Section 6.4. Recall that, we refer the Erickson–Monma–Veinott
algorithm as the edge-linear time algorithm. For all the experiments per-
formed in this section, we employ our implementation of the binary heap
instead of the Fibonacci heap, since the former is more efficient based on the
experiments in Section 7.6.

Edge-linear scaling. Our third set of experiments study the scaling of the
edge-linear algorithm for the Steiner problem in graphs. More specifically, we
study the runtime, memory bandwidth and peak-memory usage of the algo-
rithm as we increase the number of edges m. The results of the experiments
are displayed in Figure 7.6. The experiments are performed on a single core
of the mid-memory configuration. We observe that the runtime and memory
usage of the algorithm increase linearly as we increase m and the runtime has
little variance between the independent graph inputs. On the other hand,
we observe a decrease in the memory bandwidth with increase in m. Recall
that the edge-linear algorithm executes 2k iterations of the Dijkstra subrou-
tine for computing shortest paths. A potential explanation for the decrease
in memory bandwidth of the edge-linear algorithm could be a consequence
of the decrease in memory bandwidth of our implementation of Dijkstra’s
algorithm with increase in m (see Section 7.5).

Parallelisation speed-up. The next set of experiments study the perfor-
mance improvements in the edge-linear algorithm with parallelisation. Specif-
ically, we compare the change in runtime, memory bandwidth and peak-
memory usage of the algorithm as a function of the number of edges m. In
addition, we report the runtime and memory bandwidth comparisons in Ta-
ble 7.2 and Table 7.3, respectively. The experiments are performed on the
mid-memory configuration and the results are displayed in Figure 7.7. From
the experimental results, we observe linear increase in the runtime and mem-
ory usage, and decrease in the memory bandwidth as we increase m in both
serial and parallel variants of the software implementation. From our prelimi-
nary analysis, we observe that the performance of the implementation appears
to be constrained by the memory bandwidth of the underlying hardware and
the speed-up in runtime directly corresponds to the bandwidth ratio. (See
Tables 7.2 and 7.3.)

Scaling up to a billion edges. Our experiments in this section study the
scaling of the edge-linear algorithm up to a billion edges with respect to its
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runtime, memory bandwidth and peak-memory usage as a function of the
number of edges m. The experiments are performed on the huge-memory
configuration and the results of the experiments are displayed in Figure 7.8.
We observe linear scaling of the runtime and memory usage with little variance
among the independent graph inputs. The decrease in memory bandwidth
could be the result of cache misses with the increase in graph size. It is
important to remember that the algorithm requires memory resources that
grow exponentially in the number of terminals. For a graph with a billion
edges and ten terminals, the algorithm requires approximately a terabyte of
working memory.

Exponential scaling in the number of terminals. Our final set of ex-
periments in this section study the scalability of the edge-linear algorithm
as a function of the number of terminals k. We study the runtime, memory
bandwidth and peak-memory usage of the algorithm as we increase k. The
experiments are performed on the mid-memory configuration. The results of
the experiments are displayed in Figure 7.9. The runtime and memory usage
of the algorithm increases exponentially with increase in k. An important ob-
servation is the significant increase in the memory bandwidth. The increase
in throughput could be a consequence of cache locality of the graph. We use
graphs with small number of edges and the graph completely fits inside the
L3 cache of the mid-memory configuration which potentially improves the
cache locality.

n Serial Parallel Speed-up

217 79.43 s 10.63 s 7.48

218 175.75 s 25.01 s 7.03

219 456.80 s 59.69 s 7.65

220 1139.75 s 133.78 s 8.52

221 2609.16 s 287.63 s 9.07

222 7496.59 s 600.91 s 12.48

223 18979.55 s 1240.08 s 15.31

Table 7.2: Runtime comparison of serial and parallel implementations of the
edge-linear algorithm. We report the average runtime of the algorithm on a
single core and all cores of the mid-memory configuration for five independent
d-regular random graphs for each n = 217, 218, . . . , 223, d = 20 fixed and
k = 10 fixed. The speed-up is the ratio of the serial and parallel runtime. All
reported times are in seconds.
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n Serial Parallel Bandwidth ratio

217 3.55 GiB/s 26.45 GiB/s 7.46

218 3.29 GiB/s 20.51 GiB/s 6.24

219 2.54 GiB/s 19.45 GiB/s 7.65

220 2.07 GiB/s 17.61 GiB/s 8.53

221 1.83 GiB/s 16.60 GiB/s 9.07

222 1.30 GiB/s 16.11 GiB/s 12.43

223 1.06 GiB/s 15.86 GiB/s 14.99

Table 7.3: Memory-bandwidth comparison of serial and parallel implementa-
tions of the edge-linear algorithm. We report the average memory bandwidth
of the algorithm on a single core and all cores of the mid-memory configuration
for five independent d-regular random graphs for each n = 217, 218, . . . , 223,
d = 20 fixed and k = 10 fixed. The bandwidth ratio is the ratio of the memory
bandwidth of the parallel and serial implementations.

7.8 Optimal cost versus optimal solution

In our previous experiments, we only studied the performance of the edge-
linear algorithm for computing the cost of a Steiner tree. In this section, we
design a set of experiments to study the overhead of tracking a Steiner tree.
To be precise, we compare the runtime, memory bandwidth and peak-memory
usage of the optimal-cost and optimal-solution variants of the software im-
plementation as we increase the number of edges m. Tracking a Steiner tree
does not involve additional memory-read operations. However, it essentially
requires additional memory-write operations to store the bookkeeping infor-
mation (Lines 4, 13, 32 in Algorithm 3).

We display the experimental comparison of the optimal-cost and optimal-
solution variants of the software implementation of the edge-linear time algo-
rithm in Figure 7.10. The experiments are performed on the large-memory
configuration and we use binary heap. The runtime and memory usage grows
linearly with increase in m and the runtime has little variance between inde-
pendent graph inputs in both variants of the software. The difference in run-
time between the optimal-cost and optimal-solution implementations is small.
However, tracking the optimal-solution requires significantly more memory
resources and it is approximately three times the peak-memory usage of the
optimal-cost variant.
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Figure 7.6: Scalability of the edge-linear time algorithm as we increase the
number of edges m. We display the runtime (top), memory bandwidth (cen-
ter) and peak-memory usage (bottom) of the edge-linear algorithm for five
independent d-regular random graphs for each n = 217, 218, · · · , 223, d = 20
fixed and k = 10 fixed. The experiments are performed on a single core of
the mid-memory configuration. Note that the horizontal axis is logarithmic
and the vertical axis of runtime plot (top) and memory-usage plot (bottom)
is also logarithmic. We use binary heap as the priority queue.
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Figure 7.7: Performance comparison of serial and parallel implementations
of the edge-linear time algorithm as a function of the number of edges m
on the mid-memory configuration. We display the runtime (top), memory
bandwidth (center) and peak-memory usage (bottom) of five independent d-
regular random graphs for each n = 217, 218, . . . , 223, d = 20 fixed and k = 10
fixed. The horizontal axis is logarithmic and the vertical axis of the runtime
plot (top) and memory-usage plot (bottom) is also logarithmic. We use binary
heap instead of Fibonacci heap.
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Figure 7.8: Scalability of our parallel implementation of the edge-linear time
algorithm up to a billion edges. We display the runtime (top), memory band-
width (center) and peak-memory usage (bottom) of the algorithm for five
independent d-regular random graphs for each n = 217, 218, · · · , 227, d = 20
fixed and k = 10 fixed. The experiments are performed on the huge-memory
configuration using the binary heap. Note that the horizontal axis is loga-
rithmic, and the vertical axis of runtime plot (top) and memory usage plot
(bottom) is also logarithmic.
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Figure 7.9: Exponential scaling in the number of terminals for our par-
allel implementation of the edge-linear algorithm. We display the run-
time (top), memory bandwidth (middle) and peak-memory usage (bottom)
of the algorithm for five independent d-regular random graphs for each
k = 10, 11, . . . , 20, n = 1024 fixed and d = 20 fixed. The experiments are
performed on the mid-memory configuration. The vertical axis of the runtime
plot (top) and memory usage plot (bottom) is logarithmic. We use binary
heap as the priority queue.
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Figure 7.10: Performance comparison of optimal cost versus optimal solution
implementations of the edge-linear time algorithm. Both implementations are
parallel variants and they make use of all the available execution cores in the
test hardware. We display the runtime (top), memory bandwidth (center) and
peak-memory usage (bottom) of five independent d-regular random graphs
with n = 217, 218, . . . , 223, d = 20 fixed and k = 10 fixed. The experiments
are performed on the large-memory configuration using the binary heap. The
horizontal axis is logarithmic and the vertical axis of the runtime plot (top)
and memory usage plot (bottom) is also logarithmic.



88 CHAPTER 7. EXPERIMENTAL RESULTS

7.9 Performance improvements

The memory usage of the algorithm can be reduced with further implementa-
tion engineering. Our implementation of the edge-linear algorithm uses 64-bit
indexing for subset representation which can be reduced to 32 bits. In our
implementation of Dijkstra’s algorithm, we insert all elements in to the heap
during the initialisation phase and update the distances using Decrease-
key operation in the visit-and-label phase (see Section 6.3); however an al-
ternative implementation can start with an empty heap and new elements
can be inserted as they are discovered. Even though the alternative variant
has the same worst-case bounds, it reduces the memory usage by maintaining
a smaller priority queue and practically speeds up the priority-queue opera-
tions. A combination of speed-up techniques have been proposed to improve
the space-time trade-off of Dijkstra’s algorithm (Kumar and Schwabe [85];
Meyer and Zeh [95]). However, employing these speed-up techniques is left
for future work.

An additional property of our implementation is that, it can compute a
Steiner tree for a new terminal set with one additional terminal along with
the original terminal set using the bookkeeping information without any extra
computations. However, the number of computations required to compute a
Steiner tree explicit to the given terminal set K can be reduced by half. More
precisely, we can compute the cost of a Steiner tree for the subset K \{v} for
some v ∈ K and extend the set as K \ {v} ∪ {v} for computing the cost of a
Steiner tree for K. By doing this, the runtime of experiments for computing
a Steiner tree exclusive to the given problem instance can be reduced by half.
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Conclusion

A large number of real-world problems and phenomena can be modelled us-
ing graphs; in recent years, the graphs modelled from the real-world problems
have grown in size. For example, consider the problem of finding a group of
participants to organise an event in Facebook network [5] with approximately
700 million active users and 70 billion friendship links. The success of the
event will be higher if we invite a set of well-acquainted friends along with
other participants. Sozio and Gionis [113] have demonstrated that such a
problem can be modelled as the Steiner problem in graphs. The problem of
finding a group of individuals in a social network who can function as a team
to accomplish a particular task has been modelled as the group Steiner prob-
lem by Lappas, Liu and Terzi [88]. In addition, a large number of communica-
tion and infrastructure network planning, social and graph mining problems
can be reduced to the problem of finding the Steiner and group Steiner trees.
Our implementation of the edge-linear algorithm for the Steiner problem has
potential applications for finding a Steiner tree in large graph instances.

The Steiner problem is one of the twenty-one original NP-complete prob-
lems discussed by Karp [77]. From the algorithm design perspective, the
Steiner problem exhibits both formidable hardness and ease of scalability,
meaning that even though the problem is NP-complete it admits algorithms
that run in polynomial time in the size of the input graph and the exponen-
tial complexity can be restricted to the number of terminals. Many parame-
terised algorithms have been developed to solve the Steiner problem in graphs
including Cygan et al. [26]; Downey and Fellows [33]; Erickson, Monma and
Veinott [38]; Flum and Grohe [42], Fomin et al. [44]; Fomin et al. [45]. To
design efficient algorithms for the Steiner problem, a sophisticated mathemat-
ical theory has been developed around the problem building on a combination

89
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of techniques including combinatorics, graph theory and algebra. We have
presented a review of state-of-the-art exact and approximation algorithms for
solving the Steiner and group Steiner problems in Chapter 5.

In this thesis, we discussed two parameterised algorithms for solving the
Steiner problem, and by reduction, the group Steiner problem: (i) a dynamic-
programming algorithm presented by Dreyfus and Wagner [34]; and (ii) an im-
provement of the Dreyfus–Wagner algorithm presented by Erickson, Monma
and Veinott [38] that runs in linear time in the size of the input graph and the
exponential complexity is restricted to the number of terminals. We referred
the Erickson–Monma–Veinott algorithm for solving the Steiner problem as
the edge-linear algorithm. The dynamic-programming idea of Dreyfus and
Wagner has been used extensively by many researchers and computer sci-
entists including Björklund et al. [10]; Erickson, Monma and Veinott [38];
Fuchs et al. [48]; Fuchs et al. [49]; Hougardy, Silvanus and Vygen [63] to de-
sign many Steiner tree algorithms with fast theoretical worst-case behaviour.
Additionally, we discussed a linear-time reduction presented by Voß [122] for
transforming the group Steiner problem to the Steiner problem. Using this
transformation, most algorithms for solving the Steiner problem can be used
to solve the group Steiner problem.

As a primary objective of this thesis, we presented a scalable implemen-
tation of the edge-linear algorithm for solving the Steiner problem in graphs,
and successfully parallelised the implementation to achieve speed-up in com-
putations. An additional feature of our implementation is that it can com-
pute a Steiner tree for a terminal set with an additional vertex along with the
original terminal set using the bookkeeping information without any extra
computations. To thoroughly examine the performance of the algorithm im-
plementation, we presented the baseline benchmarks of the hardware. From
our benchmarking results it is observed that a single core is not sufficient
to saturate the memory interface and the peak-achievable throughput is less
than the peak throughput specified by the hardware vendor. To fully saturate
the memory interface, there should be sufficient number of memory-read and
memory-write requests executed in each execution core (see Section 7.3).

In the previous chapter, we studied the behaviour of our implementation
of the edge-linear algorithm with respect to its runtime, memory bandwidth
and peak-memory usage. Our experimental results have demonstrated that
the implementation can scale up to a billion edges, provided that the number
of terminals is small. As the graph size increases, it can easily outgrow the
computation and memory capacities of a single core. To achieve speed-up
in computations we parallelised the edge-linear algorithm across all cores of
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a multi-core CPU. In the edge-linear algorithm, the cost of a Steiner tree
connecting a p-subset of the terminal set depends only on the subsets with
size less than p. Hence, we parallelised the computations of finding the cost
of the Steiner trees for all the p-subsets of the terminals set (see Section 6.4).
For a graph instance with one-hundred million edges and ten terminals, our
parallel implementation of the edge-linear algorithm is fifteen times faster
than its serial counterpart on a Haswell compute node with two processors
and twelve cores in each processor (see Table 7.3). Additionally, we observed
that the memory bandwidth of our parallel implementation is at least twice
the bandwidth of read random cache lines experiment for large graphs up to
hundred million edges (see Tables 7.1 and 7.3). For graphs with small number
of edges our implementation can scale up to twenty terminal vertices.

The edge-linear algorithm uses Dijkstra’s algorithm as a subroutine for
computing a shortest path. Our implementation of Dijkstra subroutine uses
priority-queue implementations such as binary and Fibonacci heaps to keep
track of the minimum distance vertex. Consequently, the performance of
the Dijkstra subroutine relies on the efficiency of the priority-queue opera-
tions. We presented an experimental comparison of the performance of our
implementation of binary and Fibonacci heaps in Chapter 7. Contrary to
theoretical expectations, the binary heap performs better than the Fibonacci
heap across our range of experiments for finding a shortest path using Di-
jkstra’s algorithm. Nevertheless, Fibonacci heap can compete with binary
heap provided that the underlying graph is large and dense; but it does not
outperform the binary heap (see Section 7.6). From an algorithm engineering
perspective, it is sensible to use the binary heap considering the implemen-
tation effort required and no practical speedup achieved. Additionally, we
achieved significantly high memory bandwidth in edge scaling of Dijkstra’s
algorithm for dense graphs. The improved memory bandwidth for dense
graphs is a consequence of memory prefetching and improved cache locality
of the array of arrays representation of graphs. Our experimental results are
in correspondence with the results reported of Lumsdaine et al. [92]. They
studied the performance of the array of arrays representation of the graphs
with respect to Dijkstra’s algorithm.

In conclusion, this work has presented a scalable implementation of the
edge-linear algorithm for solving the Steiner and group Steiner problems in
graphs. Our implementation has been shown to be easily parallelisable al-
lowing the algorithm to achieve moderate memory bandwidth. The experi-
mental results show that the edge-linear algorithm can scale up to a billion
edges. From our preliminary analysis, we observed that the performance of
our implementation is limited by the memory bandwidth of the hardware (see
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Tables 7.2 and 7.3), and we only utilise forty percent of the peak-achievable
bandwidth for large graph instances. This shows that there most likely still is
some room for improvement with respect to achieving higher memory band-
width. A possible approach for improving the memory bandwidth include
designing memory-hierarchy-sensitive graph layouts described by Furaih and
Ranka [50], and Wei et al. [127] in the context of improving the performance
of Dijkstra’s algorithm. Additionally, many alternative approaches have been
suggested to improve the performance of Dijkstra’s algorithm using parallel
priority queues such as relaxed heaps [35] and parallel heaps [15]. However,
employing these approaches is left for future work.

Using graphical processing units (GPUs) for other uses than their original
purpose is becoming more common. Algorithm implementations can often
benefit from being implemented on GPUs especially if the implementations
are sufficiently parallelisable. Modern GPUs provides hundreds of gigabytes
of arithmetic and memory bandwidth. For example, GPU accelerators such
as NVIDIA K80 with two Tesla GK210 GPUs [98] and NVIDIA P100 with
one Pascal GP100 GPU [99] possess 480 GiB/s and 732 GiB/s of theoretical
memory bandwidth, respectively. These modern GPUs could be a potential
platform for implementing the edge-linear algorithm. However, GPU mi-
croarchitectures are optimised for coalescent and vectorised execution. This
means that to achieve peak memory and arithmetic bandwidth, the algorithm
design should support coalescent execution and coalesced memory accesses
at least in warp level. On the contrary, the edge-linear algorithm exhibits
divergent memory accesses, which makes it highly unlikely to achieve peak-
memory bandwidth. Nevertheless, even by utilising only one fourth of the
peak-achievable bandwidth of the GPUs we can achieve a significant speed-
up in computations.
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