5,827 research outputs found

    AFLOW-SYM: Platform for the complete, automatic and self-consistent symmetry analysis of crystals

    Get PDF
    Determination of the symmetry profile of structures is a persistent challenge in materials science. Results often vary amongst standard packages, hindering autonomous materials development by requiring continuous user attention and educated guesses. Here, we present a robust procedure for evaluating the complete suite of symmetry properties, featuring various representations for the point-, factor-, space groups, site symmetries, and Wyckoff positions. The protocol determines a system-specific mapping tolerance that yields symmetry operations entirely commensurate with fundamental crystallographic principles. The self consistent tolerance characterizes the effective spatial resolution of the reported atomic positions. The approach is compared with the most used programs and is successfully validated against the space group information provided for over 54,000 entries in the Inorganic Crystal Structure Database. Subsequently, a complete symmetry analysis is applied to all 1.7++ million entries of the AFLOW data repository. The AFLOW-SYM package has been implemented in, and made available for, public use through the automated, ab-initio\textit{ab-initio} framework AFLOW.Comment: 24 pages, 6 figure

    CPGA: a two-dimensional, order-based genetic algorithm for cell placement

    Get PDF
    Not provided

    Myths and Truths Concerning Estimation of Power Spectra

    Full text link
    It is widely believed that maximum likelihood estimators must be used to provide optimal estimates of power spectra. Since such estimators require require of order N_d^3 operations they are computationally prohibitive for N_d greater than a few tens of thousands. Because of this, a large and inhomogeneous literature exists on approximate methods of power spectrum estimation. These range from manifestly sub-optimal, but computationally fast methods, to near optimal but computationally expensive methods. Furthermore, much of this literature concentrates on the power spectrum estimates rather than the equally important problem of deriving an accurate covariance matrix. In this paper, I consider the problem of estimating the power spectrum of cosmic microwave background (CMB) anisotropies from large data sets. Various analytic results on power spectrum estimators are derived, or collated from the literature, and tested against numerical simulations. An unbiased hybrid estimator is proposed that combines a maximum likelihood estimator at low multipoles and pseudo-C_\ell estimates at high multipoles. The hybrid estimator is computationally fast, nearly optimal over the full range of multipoles, and returns an accurate and nearly diagonal covariance matrix for realistic experimental configurations (provided certain conditions on the noise properties of the experiment are satisfied). It is argued that, in practice, computationally expensive methods that approximate the N_d^3 maximum likelihood solution are unlikely to improve on the hybrid estimator, and may actually perform worse. The results presented here can be generalised to CMB polarization and to power spectrum estimation using other types of data, such as galaxy clustering and weak gravitational lensing.Comment: 27 pages, 15 figures, MNRAS in press. Resubmission matches accepted versio

    Inequalities on stellar rotational splittings derived from assumptions on the rotation profile

    Full text link
    Context: A number of pulsating stars with rotational splittings have been observed thanks to the CoRoT and Kepler missions. This is particularly true of evolved (sub-giant and giant) stars, and has led various groups to investigate their rotation profiles via different methods. Aims: We would like to set up some criteria which will help us to know whether a decreasing rotation profile, or one which satisfies Rayleigh's stability criterion, is compatible with a set of observed rotational splittings for a given reference model. Methods: We derive inequalities on the rotational splittings using a reformulated version of the equation which relates the splittings to the rotation profile and kernels. Results: These inequalities are tested out on some simple examples. The first examples show how they are able to reveal when a rotation profile is increasing somewhere or inconsistent with Rayleigh's criterion in a main sequence star, depending on the profile and the â„“\ell values of the splittings. The next example illustrates how a slight mismatch between an observed evolved star and a reference model can lead to erroneous conclusions about the rotation profile. We also show how frequency differences between the star and the model, which should normally reveal this mismatch, can be masked by frequency corrections for near-surface effects.Comment: 15 pages, 19 figures, accepted for publication in A&

    Doctor of Philosophy

    Get PDF
    dissertationWe are seeing an extensive proliferation of wireless devices including various types and forms of sensor nodes that are increasingly becoming ingrained in our daily lives. There has been a significant growth in wireless devices capabilities as well. This proliferation and rapid growth of wireless devices and their capabilities has led to the development of many distributed sensing and computing applications. In this dissertation, we propose and evaluate novel, efficient approaches for localization and computation offloading that harness distributed sensing and computing in wireless networks. In a significant part of this dissertation, we exploit distributed sensing to create efficient localization applications. First, using the sensing power of a set of Radio frequency (RF) sensors, we propose energy efficient approaches for target tracking application. Second, leveraging the sensing power of a distributed set of existing wireless devices, e.g., smartphones, internet-of-things devices, laptops, and modems, etc., we propose a novel approach to locate spectrum offenders. Third, we build efficient sampling approaches to select mobile sensing devices required for spectrum offenders localization. We also enhance our sampling approaches to take into account selfish behaviors of mobile devices. Finally, we investigate an attack on location privacy where the location of people moving inside a private area can be inferred using the radio characteristics of wireless links that are leaked by legitimate transmitters deployed inside the private area, and develop the first solution to mitigate this attack. While we focus on harnessing distributed sensing for localization in a big part of this dissertation, in the remaining part of this dissertation, we harness the computing power of nearby wireless devices for a computation offloading application. Specially, we propose a multidimensional auction for allocating the tasks of a job among nearby mobile devices based on their computational capabilities and also the cost of computation at these devices with the goal of reducing the overall job completion time and being beneficial to all the parties involved

    Systematic event generator tuning for the LHC

    Full text link
    In this article we describe Professor, a new program for tuning model parameters of Monte Carlo event generators to experimental data by parameterising the per-bin generator response to parameter variations and numerically optimising the parameterised behaviour. Simulated experimental analysis data is obtained using the Rivet analysis toolkit. This paper presents the Professor procedure and implementation, illustrated with the application of the method to tunes of the Pythia 6 event generator to data from the LEP/SLD and Tevatron experiments. These tunes are substantial improvements on existing standard choices, and are recommended as base tunes for LHC experiments, to be themselves systematically improved upon when early LHC data is available.Comment: 28 pages. Submitted to European Physical Journal C. Program sources and extra information are available from http://projects.hepforge.org/professor

    On Solving Selected Nonlinear Integer Programming Problems in Data Mining, Computational Biology, and Sustainability

    Get PDF
    This thesis consists of three essays concerning the use of optimization techniques to solve four problems in the fields of data mining, computational biology, and sustainable energy devices. To the best of our knowledge, the particular problems we discuss have not been previously addressed using optimization, which is a specific contribution of this dissertation. In particular, we analyze each of the problems to capture their underlying essence, subsequently demonstrating that each problem can be modeled as a nonlinear (mixed) integer program. We then discuss the design and implementation of solution techniques to locate optimal solutions to the aforementioned problems. Running throughout this dissertation is the theme of using mixed-integer programming techniques in conjunction with context-dependent algorithms to identify optimal and previously undiscovered underlying structure
    • …
    corecore