893 research outputs found

    Restricted Strip Covering and the Sensor Cover Problem

    Full text link
    Given a set of objects with durations (jobs) that cover a base region, can we schedule the jobs to maximize the duration the original region remains covered? We call this problem the sensor cover problem. This problem arises in the context of covering a region with sensors. For example, suppose you wish to monitor activity along a fence by sensors placed at various fixed locations. Each sensor has a range and limited battery life. The problem is to schedule when to turn on the sensors so that the fence is fully monitored for as long as possible. This one dimensional problem involves intervals on the real line. Associating a duration to each yields a set of rectangles in space and time, each specified by a pair of fixed horizontal endpoints and a height. The objective is to assign a position to each rectangle to maximize the height at which the spanning interval is fully covered. We call this one dimensional problem restricted strip covering. If we replace the covering constraint by a packing constraint, the problem is identical to dynamic storage allocation, a scheduling problem that is a restricted case of the strip packing problem. We show that the restricted strip covering problem is NP-hard and present an O(log log n)-approximation algorithm. We present better approximations or exact algorithms for some special cases. For the uniform-duration case of restricted strip covering we give a polynomial-time, exact algorithm but prove that the uniform-duration case for higher-dimensional regions is NP-hard. Finally, we consider regions that are arbitrary sets, and we present an O(log n)-approximation algorithm.Comment: 14 pages, 6 figure

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Production planning in 3D printing factories

    Full text link
    [EN] Production planning in 3D printing factories brings new challenges among which the scheduling of parts to be produced stands out. A main issue is to increase the efficiency of the plant and 3D printers productivity. Planning, scheduling, and nesting in 3D printing are recurrent problems in the search for new techniques to promote the development of this technology. In this work, we address the problem for the suppliers that have to schedule their daily production. This problem is part of the LONJA3D model, a managed 3D printing market where the parts ordered by the customers are reorganized into new batches so that suppliers can optimize their production capacity. In this paper, we propose a method derived from the design of combinatorial auctions to solve the nesting problem in 3D printing. First, we propose the use of a heuristic to create potential manufacturing batches. Then, we compute the expected return for each batch. The selected batch should generate the highest income. Several experiments have been tested to validate the process. This method is a first approach to the planning problem in 3D printing and further research is proposed to improve the procedure.This research has been partially financed by the project: “Lonja de Impresión 3D para la Industria 4.0 y la Empresa Digital (LONJA3D)” funded by the Regional Government of Castile and Leon and the European Regional Development Fund (ERDF, FEDER) with grant VA049P17.De Antón, J.; Senovilla, J.; González, J.; Acebes, F.; Pajares, J. (2020). Production planning in 3D printing factories. International Journal of Production Management and Engineering. 8(2):75-86. https://doi.org/10.4995/ijpme.2020.12944OJS758682Canellidis, V., Giannatsis, J., & Dedoussis, V. (2013). Efficient parts nesting schemes for improving stereolithography utilization. CAD Computer Aided Design, 45(5), 875-886. https://doi.org/10.1016/j.cad.2012.12.002Chergui, A., Hadj-Hamou, K., & Vignat, F. (2018). Production scheduling and nesting in additive manufacturing. Computers and Industrial Engineering, 126(May), 292-301. https://doi.org/10.1016/j.cie.2018.09.048Cui, Y. (2007). An exact algorithm for generating homogenous T-shape cutting patterns. Computers & Operations Research, 34(4), 1107-1120. https://doi.org/https://doi.org/10.1016/j.cor.2005.05.025Dvorak, F., Micali, M., & Mathieu, M. (2018). Planning and scheduling in additive manufacturing. Inteligencia Artificial, 21(62), 40-52. https://doi.org/10.4114/intartif.vol21iss62pp40-52Gogate, A. S., & Pande, S. S. (2008). Intelligent layout planning for rapid prototyping. International Journal of Production Research, 46(20), 5607-5631. https://doi.org/10.1080/00207540701277002Gupta, M. C., & Boyd, L. H. (2008). Theory of constraints: A theory for operations management. International Journal of Operations and Production Management, 28(10), 991-1012. https://doi.org/10.1108/01443570810903122Jakobs, S. (1996). On genetic algorithms for the packing of polygons. European Journal of Operational Research, 88(1), 165-181. https://doi.org/10.1016/0377-2217(94)00166-9Kucukkoc, I. (2019). MILP models to minimise makespan in additive manufacturing machine scheduling problems. Computers and Operations Research, 105, 58-67. https://doi.org/10.1016/j.cor.2019.01.006Kucukkoc, I., Li, Q., & Zhang, D. Z. (2016). Increasing the utilisation of additive manufacturing and 3D printing machines considering order delivery times. In 19th International Working Seminar on Production Economics (pp. 195-201). Innsbruck, Austria.Li, Q., Kucukkoc, I., & Zhang, D. Z. (2017). Production planning in additive manufacturing and 3D printing. Computers and Operations Research, 83, 1339-1351. https://doi.org/10.1016/j.cor.2017.01.013López-Paredes, A., Pajares, J., Martín, N., del Olmo, R., & Castillo, S. (2018). Application of combinatorial auctions to create a 3Dprinting market. Advancing in Engineering Network, Castro and Gimenez Eds. Lecture Notes in Management and Industrial Engineering (In Press), 12-13.Mehrpouya, M., Dehghanghadikolaei, A., Fotovvati, B., Vosooghnia, A., Emamian, S. S., & Gisario, A. (2019). The Potential of Additive Manufacturing in the Smart Factory Industrial 4.0: A Review. Applied Sciences, 9(18), 3865. https://doi.org/10.3390/app9183865Piili, H., Happonen, A., Väistö, T., Venkataramanan, V., Partanen, J., & Salminen, A. (2015). Cost Estimation of Laser Additive Manufacturing of Stainless Steel. Physics Procedia, 78(August), 388-396. https://doi.org/10.1016/j.phpro.2015.11.053Shaffer, S., Yang, K., Vargas, J., Di Prima, M. A., & Voit, W. (2014). On reducing anisotropy in 3D printed polymers via ionizing radiation. Polymer, 55(23), 5969-5979. https://doi.org/10.1016/j.polymer.2014.07.054Singhal, S. K., Pandey, A. P., Pandey, P. M., & Nagpal, A. K. (2005). Optimum Part Deposition Orientation in Stereolithography. Computer-Aided Design and Applications, 2(1-4), 319-328. https://doi.org/10.1080/16864360.2005.10738380Sung‐Hoon, A. (2002). Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping Journal, 8(4), 248-257. https://doi.org/10.1108/13552540210441166Thomas, D. S., & Gilbert, S. W. (2015). Costs and cost effectiveness of additive manufacturing: A literature review and discussion. Additive Manufacturing: Costs, Cost Effectiveness and Industry Economics, 1-96. https://doi.org/10.6028/NIST.SP.1176Toro, E., Garces, A., & Ruiz, H. (2008). Two dimensional packing problem using a hybrid constructive algorithm of variable neighborhood search and simulated annealing. Revista Facultad de Ingeniería Universidad de Antioquia, 119-131.Toro, E., & Granada-Echeverri, M. (2007). Problema de empaquetamiento rectangular bidimensional tipo guillotina resuelto por algoritmos genéticos. Scientia Et Technica.Wang, Y., Zheng, P., Xu, X., Yang, H., & Zou, J. (2019). Production planning for cloud-based additive manufacturing-A computer vision-based approach. Robotics and Computer-Integrated Manufacturing, 58(March), 145-157. https://doi.org/10.1016/j.rcim.2019.03.003Wodziak, J. R., Fadel, G. M., & Kirschman, C. (1994). A Genetic Algorithm for Optimizing Multiple Part Placement to Reduce Build Time. Proceedings of the Fifth International Conference on Rapid Prototyping., (May), 201,210.Zhang, Y., Gupta, R. K., & Bernard, A. (2016). Two-dimensional placement optimization for multi-parts production in additive manufacturing. Robotics and Computer-Integrated Manufacturing, 38, 102-117. https://doi.org/10.1016/j.rcim.2015.11.003Zhao, Z., Zhang, L., & Cui, J. (2018). A 3D printing task packing algorithm based on rectangle packing in cloud manufacturing. Lecture Notes in Electrical Engineering, 460, 21-31. https://doi.org/10.1007/978-981-10-6499-9_3Zhou, L., Zhang, L., Laili, Y., Zhao, C., & Xiao, Y. (2018). Multi-task scheduling of distributed 3D printing services in cloud manufacturing. International Journal of Advanced Manufacturing Technology, 96(9-12), 3003-3017. https://doi.org/10.1007/s00170-017-1543-zZhou, L., Zhang, L., & Xu, Y. (2016). Research on the relationships of customized service attributes in cloud manufacturing. ASME 2016 11th International Manufacturing Science and Engineering Conference, MSEC 2016, 2, 1-8. https://doi.org/10.1115/MSEC2016-853
    corecore