5,367 research outputs found

    A GPU-accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem

    Get PDF
    Branch-and-Bound (B&B) algorithms are time intensive tree-based exploration methods for solving to optimality combinatorial optimization problems. In this paper, we investigate the use of GPU computing as a major complementary way to speed up those methods. The focus is put on the bounding mechanism of B&B algorithms, which is the most time consuming part of their exploration process. We propose a parallel B&B algorithm based on a GPU-accelerated bounding model. The proposed approach concentrate on optimizing data access management to further improve the performance of the bounding mechanism which uses large and intermediate data sets that do not completely fit in GPU memory. Extensive experiments of the contribution have been carried out on well known FSP benchmarks using an Nvidia Tesla C2050 GPU card. We compared the obtained performances to a single and a multithreaded CPU-based execution. Accelerations up to x100 are achieved for large problem instances

    Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm

    Get PDF
    International audienceIn this paper, we address the design and implementation of GPU-accelerated Branch-and-Bound algorithms (B&B) for solving Flow-shop scheduling optimization problems (FSP). Such applications are CPU-time consuming and highly irregular. On the other hand, GPUs are massively multi-threaded accelerators using the SIMD model at execution. A major issue which arises when executing on GPU a B&B applied to FSP is thread or branch divergence. Such divergence is caused by the lower bound function of FSP which contains many irregular loops and conditional instructions. Our challenge is therefore to revisit the design and implementation of B&B applied to FSP dealing with thread divergence. Extensive experiments of the proposed approach have been carried out on well-known FSP benchmarks using an Nvidia Tesla C2050 GPU card. Compared to a CPU-based execution, accelerations up to ×77.46 are achieved for large problem instances

    Promote-IT: An efficient Real-Time Tertiary-Storage Scheduler

    Get PDF
    Promote-IT is an efficient heuristic scheduler that provides QoS guarantees for accessing data from tertiary storage. It can deal with a wide variety of requests and jukebox hardware. It provides short response and confirmation times, and makes good use of the jukebox resources. It separates the scheduling and dispatching functionality and effectively uses this separation to dispatch tasks earlier than scheduled, provided that the resource constraints are respected and no task misses its deadline. To prove the efficiency of Promote-IT we implemented alternative schedulers based on different scheduling models and scheduling paradigms. The evaluation shows that Promote-IT performs better than the other heuristic schedulers. Additionally, Promote-IT provides response-times near the optimum in cases where the optimal scheduler can be computed

    An Adaptative Multi-GPU based Branch-and-Bound. A Case Study: the Flow-Shop Scheduling Problem

    Get PDF
    Solving exactly Combinatorial Optimization Problems (COPs) using a Branch-and-Bound (B&B) algorithm requires a huge amount of computational resources. Therefore, we recently investigated designing B&B algorithms on top of graphics processing units (GPUs) using a parallel bounding model. The proposed model assumes parallelizing the evaluation of the lower bounds on pools of sub-problems. The results demonstrated that the size of the evaluated pool has a significant impact on the performance of B&B and that it depends strongly on the problem instance being solved. In this paper, we design an adaptative parallel B&B algorithm for solving permutation-based combinatorial optimization problems such as FSP (Flow-shop Scheduling Problem) on GPU accelerators. To do so, we propose a dynamic heuristic for parameter auto-tuning at runtime. Another challenge of this work is to exploit larger degrees of parallelism by using the combined computational power of multiple GPU devices. The approach has been applied to the permutation flow-shop problem. Extensive experiments have been carried out on well-known FSP benchmarks using an Nvidia Tesla S1070 Computing System equipped with two Tesla T10 GPUs. Compared to a CPU-based execution, accelerations up to 105 are achieved for large problem instances.Comment: 14th IEEE International Conference on High Performance Computing and Communications, HPCC 2012 (2012

    Parallel Branch-and-Bound in Multi-core Multi-CPU Multi-GPU Heterogeneous Environments

    Get PDF
    International audienceWe investigate the design of parallel B&B in large scale heterogeneous compute environments where processing units can be composed of a mixture of multiple shared memory cores, multiple distributed CPUs and multiple GPUs devices. We describe two approaches addressing the critical issue of how to map B&B workload with the different levels of parallelism exposed by the target compute platform. We also contribute a throughout large scale experimental study which allows us to derive a comprehensive and fair analysis of the proposed approaches under different system configurations using up to 16 GPUs and up to 512 CPU-cores. Our results shed more light on the main challenges one has to face when tackling B&B algorithms while describing efficient techniques to address them. In particular, we are able to obtain linear speed-ups at moderate scales where adaptive load balancing among the heterogeneous compute resources is shown to have a significant impact on performance. At the largest scales, intra-node parallelism and hybrid decentralized load balancing is shown to have a crucial importance in order to alleviate locking issues among shared memory threads and to scale the distributed resources while optimizing communication costs and minimizing idle time

    Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    Get PDF
    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed

    Many-core Branch-and-Bound for GPU accelerators and MIC coprocessors

    Get PDF
    International audienceCoprocessors are increasingly becoming key building blocks of High Performance Computing platforms. These many-core energy-efficient devices boost the performance of traditional processors. On the other hand, Branch-and-Bound (B&B) algorithms are tree-based exact methods for solving to optimality combinatorial optimization problems (COPs). Solving large COPs results in the generation of a very large pool of subproblems and the evaluation of their associated lower bounds. Generating and evaluating those subproblems on coprocessors raises several issues including processor-coprocessor data transfer optimization, vectorization, thread divergence, and so on. In this paper, we investigate the offload-based parallel design and implementation of B&B algorithms for coprocessors addressing these issues. Two major many-core architectures are considered and compared: Nvidia GPU and Intel MIC. The proposed approaches have been experimented using the Flow-Shop scheduling problem and two hardware configurations equivalent in terms of energy consumption: Nvidia Tesla K40 and Intel Xeon Phi 5110P. The reported results show that the GPU-accelerated approach outperforms the MIC offload-based one even in its vectorized version. Moreover, vectorization improves the efficiency of the MIC offload-based approach with a factor of two
    • …
    corecore