
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322386207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16

Control and Scheduling Software for
Flexible Manufacturing Cells

António Ferrolho1, Manuel Crisóstomo2
1Electrical Engineering Department

Superior School of Technology of the Polytechnic Institute of Viseu
Campus Politécnico de Repeses, 3504-510 Viseu

PORTUGAL
E-mail: antferrolho@elect.estv.ipv.pt

2Institute of Systems and Robotics
University of Coimbra

Polo II, 3030-290 Coimbra
PORTUGAL

E-mail: mcris@isr.uc.pt

1. Introduction

One of the most recent developments in the area of industrial automation is the concept of
the Flexible Manufacturing Cells (FMC). These are highly computerized systems composed
by several types of equipment, usually connected through a Local Area Network (LAN)
under some hierarchical Computer Integrated Manufacturing (CIM) structure (Kusiak,
1986) and (Waldner, 1992). FMC are capable of producing a broad variety of products and
changing their characteristics quickly and frequently. This flexibility provides for more
efficient use of resources, but makes the control of these systems more difficult. Developing
an FMC is not an easy task. Usually, an FMC uses equipment (robots, CNC machines, ASRS,
etc.) from different manufacturers, having their own programming languages and
environments. CNC machines and industrial robots are still machines which are difficult to
program, because it is necessary to be knowledgeable in several programming languages
and environments. Each manufacturer has a particular programming language and
environment (generally local). Robust and flexible control software is a necessity for
developing an FMC.
We are going to present several software applications developed for industrial robots and
CNC machines. The objective of this software is to allow these equipments to be integrated, in
an easy and efficient way, in modern Flexible Manufacturing Systems (FMS) and FMC. For the
industrial robots we are going to present the “winRS232ROBOTcontrol” and
“winEthernetROBOTcontrol” software. For the CNC machines we are going to present the
“winMILLcontrol”, for mills, and “winTURNcontrol”, for lathes. With this software, industrial
robots and CNC machines can be integrated in modern FMC, in an easy and efficient way.
Genetic algorithms (GA) can provide good solutions for scheduling problems. In this
chapter we also are going to present a GA to solve scheduling problems in FMC, which

Source: Industrial Robotics: Programming, Simulation and Applicationl, ISBN 3-86611-286-6, pp. 702, ARS/plV, Germany, December 2006, Edited by: Low Kin Huat

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

316 Industrial Robotics - Programming, Simulation and Applications

are known to be NP-hard. First, we present a new concept of genetic operators for
scheduling problems. Then, we present a developed software tool, called “HybFlexGA”
(Hybrid and Flexible Genetic Algorithm), to examine the performance of various
crossover and mutation operators by computing simulations of scheduling problems.
Finally, the best genetic operators obtained from our computational tests are applied in
the “HybFlexGA”. The computational results obtained with 40, 50 and 100 jobs show the
good performance and the efficiency of the developed “HybFlexGA” to solving
scheduling problems in FMC.
An FMC was developed, with industrial characteristics, with the objective of showing the
potentialities of the developed software. The use of the “winRS232ROBOTcontrol”,
“winEthernetROBOTcontrol”, “winMILLcontrol” and “winTURNcontrol” software allows
the coordination, integration and control of FMC. With the “HybFlexGA” software we can
solve scheduling problems in FMC.
With the work described in this chapter we can:

− Control and monitoring all of the functionalities of the robots and CNC machines
remotely. This remote control and monitoring is very important to integrate robots
and CNC machines in modern FMS and FMC.

− Develop a distributed software architecture based on personal computers using
Ethernet networks.

− Develop applications that allow remote exploration of robots and CNC machines
using always the same programming languages (e.g. C++).

− Use a personal computer as programming environment, taking advantage of the
huge amount of programming and analysis tools available on these platforms.

− Develop Graphical User Interfaces (GUI) for robots and CNC machines, in a simple
and efficient way.

− Write FMS and FMC control software easier, cheaper, and more flexible. As a
result, the software expertise resides at the companies and software changes can be
made by the company’s engineers. Furthermore, the developed software is easy to
modify.

− Control and integrate several equipments from different manufactures in FMS and
FMC (e.g. conveyors, motors, sensors, and so on).

− Data sharing. For example: share programmes, share databases and so on, among
the client(s) and server(s).

− Solve scheduling problems in FMC with GA.

Suggestions for further research and development work will also be presented.

2. The State of the Art in FMS and FMC Control

An FMS or FMC consists of two major components: hardware and controlling software.
The hardware, which includes computer controlled machines (or CNC machines), robots,
storage and material handling systems, etc., has been around for decades and problems
associated with the hardware have been well studied and are reasonably well understood
(Sanjay et al., 1995). But, to write FMS and FMC control software is not a trivial task
(Sanjay et al., 1995), (Johi et al., 1991), (Joshi et al., 1995) and (http#1). Nowadays, the
software is typically custom written, very expensive, difficult to modify, and often the
main source of inflexibility in FMC. Most FMS and FMC are sold to manufacturing

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 317

companies as turnkey systems by integration vendors. As a result, the software expertise
does not reside at the companies and logic/software changes can only be made by the
FMS and FMC vendor.
Several references on the use of formal models for automatic generation of software and
compilers can be found in the computer literature. The use of formal models for control of
flexible manufacturing cells has been discussed by (Sanjay et al., 1995). Other authors
(Maimon & Fisher, 1988) have developed rapid software prototyping systems that provide
only for the structural specifications of cell control software, still demanding enormous
development of hand crafted code to realize effective systems. A detailed description of the
implementation of a material handling system as a software/hardware component is given
in (Hadj-Alonane et al., 1988).

Research at The Pennsylvania State University’s Computer Integrated Manufacturing

Laboratory (CIMLAB) has been focused on simulation based shop-floor control for more

than a decade and a hierarchical control framework called “RapidCIM” has been

developed. The “RapidCIM” architecture was initially designed for discrete

manufacturing control, and has been implemented using a real-time simulation control

framework. This architecture and its associated tools are capable of automatically

generating much of the necessary software (up to 80 or 90% of a typical application) for

automating discrete manufacturing systems. This substantially reduces the cost of

developing and integrating of such systems, and allows a detailed simulation to be used

for both analyses and control. Information about “RapidCIM” can be found in (Joshi et al.,

1995), (http#1) and (http#2).

3. Industrial Robots Software

Nowadays, the robot controllers working in companies have the following important
limitations:

− Some robot controllers only can use RS232 connections and others can support
Ethernet networks.

− The robot manipulators have closed controllers and are essentially position-
controlled devices that can receive a trajectory and run it continuously.

− Many robot controllers do not allow remote control from an external computer.

− Robot programming environments are not powerful to develop tasks requiring
complex control techniques (e.g. integration and control of robots in FMC).

− Robot manipulators from different manufacturers have their own programming
language and environments, making the task of integration and cooperation
difficult.

To reduce several of these limitations we developed the “winRS232ROBOTcontrol” and the
“winEthernetROBOTcontrol”. With these developed software we can:

− Develop a distributed software architecture based on personal computers using
Ethernet networks.

− Develop applications that allow remote exploration of robots manipulators using
always the same programming languages (e.g. C++).

− Use a personal computer as programming environment, taking advantage of the
huge amount of programming and analysis tools available on these platforms.

− Develop Graphical User Interface (GUI), in a simple and efficient way.

www.intechopen.com

318 Industrial Robotics - Programming, Simulation and Applications

3.1 winRS232ROBOTcontrol

The “winRS232ROBOTcontrol” was developed to be used in robots manipulators where the
communication with the controller is only possible through the RS232 serial port. With the
“winRS232ROBOTcontrol” it is possible to develop robot programmes in C++, executed at the
PC level, not at the robot’s controller level. Nevertheless, the “winRS232ROBOTcontrol” also
allows the development of programmes to be executed at a robot’s controller level.
Furthermore, it is also possible to have programmes running in the PC and in the robot’s
controller (mix solution), individually or simultaneously. The “winRS232ROBOTcontrol” was
developed for industrial robot manipulators, and was implemented for the special case of
Scorbot ER VII robot. Nevertheless, “winRS232ROBOTcontrol” was designed to work with all
robots that support RS232. But, of course, whenever we use a different robot, it is necessary to
make some upgrades in the RobotControlAPI library, according to the used robot.
The developed API, for the “winRS232ROBOTcontrol” application, is based on a thread
process running simultaneously with the main programme. A thread process was created in
order to poll the serial port. An event is generated each time data is presented in the serial
port. In order to send data to the robot’s controller, the message is placed in the serial port
queue. Asynchronous processing will be used to send the message. For example, in order to
open the robot’s gripper, a data message is placed in the thread queue and further sent to
the robot’s controller trough the RS232 channel. After the delivery of the data, a waiting
cycle is activated. This cycle is waiting for the robot’s controller. It ends when the robot’s
controller sends back a prompt (‘>’), a timeout error occurs or a cancellation message is sent.
Fig. 1 shows the messages cycle of the thread process. The main programme communicates
with the parallel process through the messages placed in the waiting queue, being this
queue managed by the operating system. A message is immediately processed as soon as it
arrives at the parallel process. In the case when there are no messages in the queue, the
parallel process enters in a loop, waiting for data from the robot’s controller. An event is
generated when data arrive. The parallel process is activated in the beginning of the
communication with the controller. When the communication with the robot’s controller is
finished, the resources allocated to the parallel process are returned to the operating system.

switch (ReceivedMessage){
 case MSG_WAIT:
 WaitingMessageProcessing();
 break
 case Message1:
 MessageProcessing1();
 break;
 case Message2:
 MessageProcessing2();
 break;
 ...
 case MessageN:
 MessageProcessingN();
 break;
 default:
if(MessageQueueEmpty){
 ColocaNaFila(MSG_WAIT);
 }
}

Message processing

loop

MessageN

...

Message2

Message1

Fig. 1. Messages cycle of the parallel process.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 319

The RobotControlAPI library was developed with access to the controller’s functions in
mind, as shown in Fig. 2. This API allows us to communicate with the robot’s controller.
The available functions are divided into two groups. The first contains public methods
and the second contains methods representing events. Table 1 shows some of these
functions.
We also have developed an Ethernet server for the computer that controls the robot. Thus, it
is possible to control the robot remotely, in a distributed client/server environment, as
shown in Fig. 2.

RS232

Controller

Robot

RobotControlAPI
Open(),Run(),SpeedA(),

Close(),OnMotorsOff(),

…

Ethernet

Client n Client 2 Client 1

...

Ethernet Server

winRS232ROBOTcontrol

Fig. 2. RobotControlAPI library and Ethernet server.

 Function Description

SpeedA() Changes group A speed

Home() Homing the robot

MotorsOff() Switches off the robot’s motors

MotorsOn() Switches on the robot’s motors

Close() Closes the gripper

P
u

b
li

c

M
e

th
o

d
s

Open() Opens the gripper

OnEndHoming() This event activates after homing

OnClose()
This event activates after the execution of the Close()
function

OnOpen()
This event activates after the execution of the Open()
function

OnMotorsOff() This event activates after the motors are switched off

E
v

e
n

ts

OnMotorsOn() This event activates after the motors are switched on

Table 1. Some available functions.

www.intechopen.com

320 Industrial Robotics - Programming, Simulation and Applications

3.2 winEthernetROBOTcontrol

The “winEthernetROBOTcontrol” was developed to be used in robots manipulators where the
communication with the controller is possible through an Ethernet network. The
“winEthernetROBOTcontrol” is a Dynamic Link Library (DLL) and allows development of
simple and fast applications for robots. The developed software uses the original capabilities
of the robot’s controllers, in a distributed client/server environment. Fig. 3 shows the PC1 and
PC4 communicating with the robots through “winEthernetROBOTcontrol”.

...

Ethernet

winEthernetROBOTcontrol

PC1 PC4

Robot BRobot A

ControllerController

Client n Client 2 Client 1

...

Ethernet

Server

Ethernet

Server

Fig. 3. winEthernetROBOTcontrol.

 Description

Robot() Add New Alias

S4ProgamLoad() Load a programme in the robot controller

S4Run() Switches ON the robot’s motors

S4Standby() Switches OFF the robot’s motors

S4Start() Start programme execution

S4Stop() Stop programme execution

S4ProgramNumVarRead() Reads a numerical variable in the robot controller

S4ProgramNumVarWrite() Writes a numerical variable in the robot controller

S4ProgramStringVarWrite() Writes a string in the robot controller

P
ro

ce
d

u
re

s

S4ProgramStringVarRead() Reads a string in the robot controller

Add_Variable() Add a new variable

Remove_Variable() Remove one variable

ControlID() Gives the ID controller

F
u

n
ct

io
n

s

InerfaceState() Gives the interface state.

StatusChanged()
This event activates after something changed in the
robot controller. For example: power off, emergency
stop, executing sate, stopped state, run, and so on.

BoolVariableChanged() This event activates after one Boolean variable changed E
v

e
n

ts

NumVariableChanged() This event activates after one numeric variable changed

Table 2. Some available procedures, functions and events.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 321

Table 2 presents same procedures, functions and events developed for the

“winEthernetROBOTcontrol”. The procedure “Robot” allows making a connection between one

PC (with winEthernetROBOTcontrol) and one or more robots. For that, it is necessary to create

and configure one connection between the PC and the robot controller (Add New Alias). After

that it is possible to communicate and control the robot remotely through the connection (Alias).

With “winEthernetROBOTcontrol” we can develop a software control, for one or more

robots, in any PC. With this PC we can communicate and control the robot (or robots)

through an Ethernet (see Fig. 3).

The “winEthernetROBOTcontrol” library was developed for industrial robot manipulators, and

was implemented for the special case of ABB robots (with the new S4 control system).

Nevertheless, this very flexible library was designed to work with all robots that support Ethernet.

But, of course, if we use a different robot it is necessary to make some upgrades in this library,

according to the used robot. The basic idea is to define a library of functions for any specific

equipment that in each moment define the basic functionality of that equipment for remote use.

4. Industrials CNC Machines Software

Nowadays, all the manufactured CNC machines support Ethernet networks. But, these
actual CNC machines have the following important limitations:

− The actual CNC machines have closed numerical control (NC) and are developed
to work individually, not integrated with others equipments (e.g. others machines,
robots, and so on).

− Actual CNC machine’s controllers do not allow remote control from an external
computer.

− CNC machine’s programming environments are not powerful enough to develop
tasks requiring complex control techniques (e.g. integration and control CNC
machines in FMC).

− CNC machines from different manufacturers have their own programming
language and environments, making the task of integration and cooperation
difficult.

To reduce these limitations, we developed two programmes in C++ that allow
controlling the CNC machines through Direct Numerical Control (DNC). For lathes,
the “winTURNcontrol” programme was developed, and “winMILLcontrol” for
mills. With the proposed software we can reduce several limitations in CNC
machines:

− We can control and monitor all of the functionalities of the CNC machines
remotely (e.g. open and close door, open and close chuck, open and close vice,
start machine, machine ready, and so on). This control and monitoring
remotely is very important to integrate CNC machines in modern FMS and
FMC.

− We can develop a distributed software architecture based on personal computers
using Ethernet networks.

− We can develop applications that allow remote exploration of CNC machines using
always the same programming languages (e.g. C++).

− We can use a personal computer as programming environment, taking advantage of
the huge amount of programming and analysis tools available on these platforms.

www.intechopen.com

322 Industrial Robotics - Programming, Simulation and Applications

− We can develop Graphical User Interface (GUI) for CNC machines, in a simple and
efficient way.

Some CNC machine’s controllers (e.g. FANUC) only allow external connections through the
RS232 serial port (Ferrolho et al., 2005). In order to surpass this limitation, a “Null Modem”
cable was connected between COM1 and COM2 serial port of each PC that controls the
respective machine, as shown in Fig. 4. The developed DNC programmes use the COM1 to
send orders (e.g. open door, close vice, start NC programme, and so on) to the machine and
the CNC machine’s controllers receive the same orders by COM2. For that, we need
configure the CNC machines software to receive the DNC orders by COM2. We have
developed an Ethernet server for the PCs that control the machines, so as to allow remote
control of the machines. Thus, it is possible to control the machines remotely, as shown in
Fig. 4. Each machine’s server receives the information through the Ethernet and then sends
it to the machine’s controller through the serial port. For example, if the client 1, in Fig. 4,
needs to send an order (e.g. close door) to the machine A, the developed programme
running in the machine computer receives the order through the Ethernet and sends the
same order to the COM1 port. After that, the machine’s controller receives this order
through the COM2 (null modem cable) and then the machine closes the door.
DNC is an interface that allows a computer to control and monitor one or more CNC
machines. The DNC interface creates a connection between client (e.g. client 1) and the CNC
machine computer. After activating the DNC mode, client starts to control the CNC
machines through the Ethernet, as shown in Fig. 4. The developed DNC interface establishes
a TCP/IP connection between computer client and the CNC machine’s computer. With the
DNC interface developed it is possible to perform the following remotely: transfer NC
programmes (files of NC codes) to the CNC machines, work with different parts’ NC files,
visualize alarms and information regarding the state of the CNC machines, control all the
devices of the CNC machines (e.g. doors, clamping devices, blow-out, refrigeration system,
position tools, auxiliary drives, and so on).

Ethernet

Client n Client 1

...

Machine A

COM1

COM2

Ethernet Server

...

Machine C

COM1

COM2

Ethernet Server

COM1

COM2

Ethernet Server

Machine B

Client 2

Fig. 4. Control CNC machines through Ethernet.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 323

5. USB software and USB Kit

We have developed hardware (USB Kit) and software (USB software) for control and
integration of several equipments in FMS and FMC (e.g. conveyors, motors, sensors,
actuators, and so on). The USB Kit has various inputs and outputs where we can connect
various sensors and actuators from different manufacturers. The communication between
the PC1 and USB Kit is done by USB port, as shown in Fig. 5. The PC1 communicates with
others PCs through Ethernet.

Ethernet

…

PC1

...

Hardware

USB Kit

Inputs / Outputs

USB Software

USB

Communication

Client n Client 1

...
Client 2

Ethernet Server

Fig. 5. USB software and USB kit.

6. Developed Flexible Manufacturing Cell

The developed FMC is comprised of four sectors and the control of existing equipment
in each sector is carried out by four computers: PC1 – manufacturing sector, PC2 –
assembly sector, PC3 – handling sector and PC4 – storage sector. The coordination,
synchronization and integration of the four sectors is carried out by the FMC manager
computer. The four sectors are (Ferrolho & Crisóstomo, 2005-a) and (Ferrolho &
Crisóstomo, 2005-b):

− The manufacturing sector, made up of two CNC machines (mill and lathe), one
ABB IRB140 robot and one buffer.

− The assembly sector, made up of one Scorbot ER VII robot, one small conveyor and
an assembly table.

www.intechopen.com

324 Industrial Robotics - Programming, Simulation and Applications

− The handling sector, made up of one big conveyor.

− The storage sector, made up of five warehouses and one robot ABB
IRB1400.

The hierarchical structure implemented in the FMC is shown in Fig. 6.
In the FMC three communication types were used: Ethernet in the manufacturing
sector and storage sector, RS232 in the assembly sector and USB in the handling
sector. PC1, PC2, PC3, PC4 and FMC manager PC are connected via Ethernet as
shown in Fig. 6. If necessary it is possible to develop new applications using other
communication types.

Manufacturing sector

Assembly sector

Storage sector

Handling sector

ABB robot IRB 140

Ethernet

ABB IRB140 robot

ABB IRB1400 robot

Server software

PC1

Software

“Manufacturing Sector”

PC2 PC3 PC4

Software

“Assembly sector”

ABB robot IRB 140

Controller

Scorbot

Scorbot ER VII

Big conveyor

Hardware

Kit USB

Storage

sector

DB

Software

“Handling sector”

Software

“Storage sector”

Fifth layer

Data

acquisition

Fourth layer

Control

First layer

Engineering

Third layer

Scheduling

Second layer

Planning

Server software

The software developed for this PC allows:

- Coordination, integration and control all the

sectors in FMC.

- Control and supervision in real time all the

operation in FMC.

- Maintaining a database of jobs to

manufacture, including the respective NC

programmes.

- Synchronizing the various sectors to produce

variable lots of different types of parts

depending on the customer’s orders.

- Monitoring the current state of the

production.

(cont.)

- Guaranteeing tolerance of failures, safety

and coherence of the data.

- Developing and designing new products to

manufacture – the engineering layer.

- Production plans, assemblies and product

tests – the planning layer.

- Finding the optimum processing sequence to

optimize CNC machine use – the

scheduling layer.

FMC Manager PC

Small conveyor

Manufacturing

jobs

DB

CNC Lathe

CNC Mill

Lathe Buffer

Controller

S4Cplus

Mill Buffer

Machine state and send

Commands by DNC software

w
in

M
IL

L
co

n
tr

o
l Robot state and send commands by

“winEthernetROBOTcontrol”

w
in

E
th

er
n
et

R
O

B
O

T
co

n
tr

o
l

w
in

R
S

2
3
2

R
O

B
O

T
co

n
tr

o
l

w
in

E
th

er
n

et
R

O
B

O
T

co
n

tr
o
l

U
S

B

co
m

m
u

n
ic

at
io

n

R
S

2
3

2

co
m

m
u
n

ic
at

io
n

U
S

B
 S

o
ft

w
ar

e

w
in

T
U

R
N

co
n
tr

o
l

Fig. 6. Hierarchical structure of FMC.

The layered level of the proposed architecture has inherent benefits. This hierarchical
structure allows adding new sectors in the FMC, in an easy and efficient way. The new
sectors can also use several equipments from different manufacturers. For this, we only
need to add a computer in the fourth layer and to develop software to control the several
equipments in those sectors.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 325

Manufacturing Sector

Control of the manufacturing sector is carried out by the PC1, as shown in Fig. 6. The
manufacturing sector is controlled by software, developed in C++, and has the following
functions: buffer administration, CNC machine administration and ABB IRB140 robot
control. Control of the IRB140 robot is carried out by “winEthernetROBOTcontrol”. Control
of the Mill and Lathe is carried out by DNC software – “winMILLcontrol” and
“winTURNcontrol” (Ferrolho et al., 2005). This software has a server which allows remote
control of the manufacturing sector.

Assembly Sector

The assembly sector is made up of a Scorbot ER VII robot, a conveyor and an assembly
table, as shown in Fig. 6. Responsibility for the control and coordination of this sector falls
on PC2 and in this sector we used the “winRS232ROBOTcontrol”.

Handling Sector

Control of the handling sector is carried out through the PC3 and of a USB kit (hardware),
as shown in Fig. 6. The USB kit acquires the signals coming from the sensors and sends
them to PC3. When it is necessary to activate the stoppers, PC3 sends the control signals to
the USB kit.

Storage Sector

Control of the storage sector is carried out by PC4, as shown in Fig. 6. The functions
of the developed software are the administration of the database of the whole
warehouse, and controlling the ABB IRB1400 robot. The database can be updated at
any moment by the operator, but it is also automatically updated whenever the ABB
IRB1400 robot conducts a load operation, unloads or replaces pallets. Control of the
ABB 1400 robot is carried out by “winEthernetROBOTcontrol” functions, procedures
and events.

FMC Manager PC

The central computer (FMC manager PC) controls all of the FMC production, connecting the
various computers and data communication networks, which allows real time control and
supervision of the operations, collecting and processing information flow from the various
resources. In this PC the first three layers of the hierarchical structure presented in Fig. 6 are
implemented: engineering, planning and scheduling.
The first layer contains the engineering and product design, where the product is designed
and developed with CAD/CAM software (e.g. MasterCam). The outputs of this layer are
the drawings and the bill of materials.
The second layer is process planning. Here the process plans for manufacturing, assembling
and testing are made. The outputs of this layer are the NC code for the CNC machines. We
can obtain these NC code also with CAD/CAM software. After that we put the product
design, process plan, NC code, and so on, of each job in the products database. Whenever
we have a new product (job) it is necessary to put all the information about this job in the
products database.
The third layer is scheduling. The process plans together with the drawing, the bill of
materials and the customer orders are the input to scheduling. The output of
scheduling is the release of the order to the manufacturing floor. We used Genetic

www.intechopen.com

326 Industrial Robotics - Programming, Simulation and Applications

Algorithms (GA) to solve scheduling problems in the FMC (Ferrolho & Crisóstomo,
2005-c). Some scheduling problems are very difficult to solve, but if the GA has been
developed correctly, we can obtain good solutions, maybe even the optimal schedule.
The scheduling problems studied and implemented in FMC were: single machine
scheduling problem, flow-shop scheduling problem and job-shop scheduling
problem.
Concisely, the FMC manager PC is responsible for:

− Developing and designing new products to manufacture – the engineering
layer.

− Production plans, assemblies and product tests – the planning layer.

− Finding the optimum processing sequence so as to optimize CNC machine use –
the scheduling layer.

− Maintaining a database of jobs to manufacture, including the respective NC
programmes.

− Synchronizing the various sectors so as to produce variable lots of different types
of parts depending on the customer’s orders.

− Monitoring the current state of the production.

− Guaranteeing tolerance of failures, safety and coherence of the data.

7. Manufacturing Scheduling – Literature Review

Assuming we know the manufacturing products, their manufacturing schedule and the
available resources for execution, the scheduling task consists in determining the
schedule passage of the products (jobs) for the resources and defining the attribution of
resources, considering the times at the beginning and at the end of operations, with the
objective of optimizing one or more performance measures. This description is
particularized for the case of the scheduling problems in production systems, as is the
case of the FMC. In fact, scheduling problems appear associated to very different areas
of activity, such as arranging school schedules, defining the order in which airplanes
land at an airport, choosing the order of execution of different programs in a computer,
and so on.
Supposed we have n jobs {J1,...,Jn} to be processed in m machines {M1,... ,Mm}. Possible
solutions are determined by (n!)m (French, 1982). The processing job in a machine is
designated by operation and characterized by the respective processing time pij (job i,
machine j). For each job technological restrictions are defined, that are the necessary
operations sequence of job processing. Thus, the scheduling problem consists in
determining a sequence of passage of jobs to the respective machines so that it is: 1)
compatible with technological restrictions and 2) optimal, according to performance
measures. Table 3 and Fig. 7 clarify the notation used.
We classify scheduling problems according to four parameters: n/m/A/B. The
parameter n is the number of jobs, m is the number of machines, A describes the flow
pattern (F for the flow-shop case and G for the general job-shop case), B describes the
performance measure by which the schedule is to be evaluated. When m=1, A is left
blank.
Scheduling problems for 3 jobs and m machines up to n jobs and m machines have proven
very difficult to solve to completion. Heuristics have been developed to deal with these
kinds of problems. Unfortunately, these are the predominant problems in industry and

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 327

therefore computationally efficient techniques are very important for their solution. Some of
the problems are made even more difficult when the rate of demand for products varies.
This dynamic element violates some of the convenient assumptions about approaches used
in static cases (Rembold et al., 1993).

Description Symbol Remarks

Number of jobs n

Job i Ji

Machine j Mj

Operation time Oij

Processing time pij

Read time for Ji ri

Due date for Ji di

Allowance for Ji ai ai=di-ri

Waiting time of Ji preceding the respective k th
operation

Wik

Total waiting time of Ji Wi ∑
=

=
m

k

iki WW
1

Completion time of Ji Ci []∑
=

++=
m

k

kijikii pWrC
1

)(

Flow time of Ji Fi Fi=Ci-ri

Lateness of Ji Li Li=Ci-di

Tardiness of Ji Ti Ti=max{0, Li}

Earliness of Ji Ei Ei=max{-Li, 0}

Idle time on machine Mj Ij ∑
=

−=
n

i

ijj pCI
1

max

Table 3. Scheduling notation.

As stated, the general n jobs and m machines job-shop scheduling problem has proved to be
very difficult. The difficult is not in modeling but in computation since there is a total of
(n!)m possible schedules, and each one must be examined to select the one that gives the
minimum makespan or optimizes whatever measure of effectiveness is chosen. There are no
known efficient, exact solution procedures. Some authors have formulated integer
programming models but the computational results (computational complexity) have not
been encouraging. For small problems, the branch and bound technique has been shown to
be very good and better than integer programming formulation, but this has been
computationally prohibitive for large problems.
In the next sections we are going to present a GA to solve scheduling jobs in FMC. First, we
present a new concept of genetic operators. Then, we present a developed software tool
“HybFlexGA”. Finally, we show the good performance and the efficiency of the developed
“HybFlexGA” to solving scheduling problems in FMC.

8. Genetic Algorithms

The strong performance of the GA depends on the choice of good genetic operators.
Therefore, the selection of appropriate genetic operators is very important for

www.intechopen.com

328 Industrial Robotics - Programming, Simulation and Applications

constructing a high performance GA. Various crossover and mutation operators have
been examined for sequencing problems in the literature (for example, see (Goldberg,
1989), (Oliver et al., 1987), (Syswerda, 1991), (Ferrolho & Crisóstomo, 2005-d) and
(Murata & Ishibuchi, 1994)). When the performance of a crossover operator is
evaluated, a GA without mutation is employed and the evaluation of a mutation
operator is carried out by a GA without crossover. In the literature, various crossover
operators and mutation operators were examined in this manner (for example, see
(Murata & Ishibuchi, 1994)).
In this section, we propose a new concept of genetic operators for scheduling problems. We
evaluate each of various genetic operators with the objective of selecting the best
performance crossover and mutation operators.

Oij(3)

Wi2 pij(2)

...

Oij(2)

Wim pij(m)

Oij(m-1)

...

Oij(m-1)

...

M1

M2

Mj

...

...
Oij(m)

...

pij(1)

Oij(1)

...

M(m-1)

...

Mm

...

ri di

Ci

Fi

ai Li

Fig. 7. Gantt diagram of a typical job Ji.

8.1 Crossover Operators

Crossover is an operation to generate a new sequence (child chromosome) from two
sequences (parent chromosomes). We developed the following crossover operators:

− One-point crossover: 1 child (OPC1C) in Fig. 8 a).

− Two-point crossover: 1 child (Version I) (TPC1CV1) in Fig. 8 b).

− Two-point crossover: 1 child (Version II) (TPC1CV2) in Fig. 8 c).

− One-point crossover: 2 children (OPC2C) in Fig. 8 d).

− Two-point crossover: 2 children (Version I) (TPC2CV1) in Fig. 8 e).

− Two-point crossover: 2 children (Version II) (TPC2CV2) in Fig. 8 f).
We also developed crossover operators with 3 and 4 children. The crossover operators with
3 children are called two-point crossover: 3 children (Version I) (TPC3CV1) and two-point
crossover: 3 children (Version II) (TPC3CV2). TPC3CV1 is a mix of TPC1CV1 plus TPC2CV1

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 329

and TPC3CV2 is a mix of TPC1CV2 plus TPC2CV2. The crossover operator with 4 children
is called two-point crossover: 4 children (TPC4C). This operator is a mix of TPC2CV1 plus
TPC2CV2.
In our computational tests in section 4 we also used the following crossover operators:

− Order crossover (OX) in Goldberg (Goldberg, 1989);

− Cycle crossover (CX) in Oliver (Oliver et al., 1987);

− Position based crossover (PBX) in Syswerda (Syswerda, 1991).

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child J1 J2 J3 J5 J10 J7 J8 J4 J6 J9

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child J1 J2 J3 J5 J7 J8 J4 J6 J9 J10

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

(a) One-point crossover: 1 child (b) Two-point crossover: 1 child (Vers. I)

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child J2 J10 J3 J4 J5 J6 J7 J8 J1 J9

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child 1 J1 J2 J3 J5 J10 J7 J8 J4 J6 J9

Child 2 J5 J2 J10 J1 J3 J4 J6 J7 J8 J9

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

(c) Two-point crossover: 1 child (Vers. II) (d) One-point crossover: 2 children

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child 1 J1 J2 J3 J5 J7 J8 J4 J6 J9 J10

Child 2 J5 J2 J10 J1 J3 J4 J7 J8 J6 J9

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

Parent 1 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Child 1 J2 J10 J3 J4 J5 J6 J7 J8 J1 J9

Child 2 J2 J5 J6 J3 J7 J1 J8 J4 J9 J10

Parent 2 J5 J2 J10 J3 J7 J1 J8 J4 J6 J9

(e) Two-point crossover: 2 children (Vers. I) (f) Two-point crossover: 2 children (Vers. II)

Fig. 8. Illustration of crossover operators.

www.intechopen.com

330 Industrial Robotics - Programming, Simulation and Applications

8.2 Mutation Operators

Mutation is an operation to change the order of n jobs in the generated child. Mutation
operators are used to prevent the loss of genetic diversity. We examined the following four
mutations used by Murata in (Murata & Ishibuchi, 1994).

− Adjacent two-job change (Adj2JC) in Fig. 9 a).

− Arbitrary two-job change (Arb2JC) in Fig. 9 b).

− Arbitrary three-job change (Arb3JC) in Fig. 9 c).

− Shift change (SC) in Fig. 9 d).
As we can see in Fig. 9 a), b) and c) the jobs to be changed are arbitrarily and
randomly selected. In Fig. 9 d) a job at one position is removed and placed at another
position.
We developed a new mutation operator called the arbitrary 20%-job change (Arb20%JC), as
we can see in Fig. 10. This mutation selects 20% of the jobs in the child chromosome. The
20% of the jobs to be changed are arbitrarily and randomly selected, and the order of the
selected jobs after the mutation is randomly specified. The percentage in this mutation
operator gives the operator some flexibility, i.e., the number of jobs to be changed depends
on the size of the chromosome. For example, if we have a chromosome with 20 jobs (see Fig.
10) and another with 100 jobs, the number of jobs to be changed is 4 and 20 respectively.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

J1 J2 J3 J4 J6 J5 J7 J8 J9 J10

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

J1 J8 J3 J4 J5 J6 J7 J2 J9 J10

(a) Adjacent two-job change (b) Arbitrary two-job change

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

J1 J7 J3 J4 J5 J6 J10 J8 J9 J2

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

J1 J7 J2 J3 J4 J5 J6 J8 J9 J10

(c) Arbitrary three-job change (d) Shift change

Fig. 9. Illustration of mutation operators.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18 J19 J20

J1 J7 J3 J4 J5 J6 J12 J8 J9 J10 J11 J17 J13 J14 J15 J16 J2 J18 J19 J20

Fig. 10. Arbitrary 20%-job change.

9. Scheduling software for Flexible Manufacturing Cells

We developed a software tool, called HybFlexGA (Hybrid and Flexible Genetic Algorithm),
to examine the performance of various crossover and mutation operators by computing
simulations on scheduling problems. The HybFlexGA was coded in C++ language and Fig.
11 shows its architecture. Its architecture is composed of three modules: interface, pre-
processing and scheduling module.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 331

Instance

S
c
h

e
d

u
li

n
g

p
a

r
a

m
e
te

r
s

In
te

fa
ce

Problem definition Parameters definition

Found solution:

 - Optimal solution

 - Near-optimal solution

D
a

ta

P
r
o

b
le

m
 t

y
p

e

Pre-processing

Scheduling

PC

Disk

Fig. 11. Architecture of the HybFlexGA.

9.1 Interface Module

The interface module with the user is very important for the scheduling system’s success.

Thus, this interface should be user-friendly and dynamic so as to allow easy manipulation

of the scheduling plan, jobs, and so forth. This interface allows the connection between the

user and the scheduling module, facilitating data entry (for example, parameter definition

and problem definition) and the visualization of the solutions for the scheduling module.

Fig. 12 shows the interface window.

9.2 Pre-processing Module

The inputs of the pre-processing module are the problem type and the scheduling

parameters. The instance of the scheduling problem can be randomly generated or

www.intechopen.com

332 Industrial Robotics - Programming, Simulation and Applications

generated by PC file, as shown in Fig. 12. This module, pre-processes the input information

and then sends the data to the next module – the scheduling module.

Fig. 12. Interface window.

9.3 Scheduling Module

In this module, we implemented the GA shown in Fig. 13. The objective of the scheduling
module is to give the optimal solution of any scheduling problem. If the optimal solution is
not found, the GA gives the best solution found (near-optimal solution).

Step 1 - Initialization
Let t=0, where t is the generation index, and generate an initial population randomly

0Ψ

including Npop solutions (Npop is the number of solutions in each population, i.e., Npop is
the population size). The number of solutions (chromosomes) in the t generation is given

by { }popN

tttt xxxΨ ,...,, 21
= .

Step 2 - Selection
Select pairs of solutions (parents’ chromosomes) from the current population

tΨ . Each

chromosome i

tx is selected according to the selected operator chosen in the interface module.

Step 3 - Crossover
Apply a crossover operator, selected in the interface module, to each of the selected pairs
in step 2. This way, new chromosomes will be generated according to the crossover
probability (Pc) selected.
Step 4 - Mutation
Apply a mutation operator, selected in the interface module, to the generated
chromosomes in step 3, according to the mutation probability (Pm) selected.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 333

Step 5 – Elitism
Select the best Npop chromosomes to generate the next population

1+tΨ and the other

chromosomes are eliminated. Thus, the best chromosomes, i.e. solutions, will survive
into the next generation. However, duplicated solutions may occur in

1+tΨ . To minimize

this, new chromosomes are generated for all duplicated chromosomes.
Step 6 – Termination test
Stops the algorithm if the stopping condition, specified previously in the interface
module, is satisfied. Otherwise, update t for t:=t+1 and return to step 2.

Fig. 13. GA implemented in the scheduling module.

10. Computer Simulations

This section presents the results of the computational tests performed to examine the
crossover and mutation operators presented in section 7. The computational tests were
carried out on a PC Pentium IV, 3 GHz and 1 GB of RAM.

10.1 Test Conditions

For each job i (i=1, ..., n) both the processing time pi and the weight wi are randomly
generated integers from the closed interval [1, 100] and [1, 10] respectively. The due
date di for each job is a randomly generated integer from the interval [P(1-TF-
RDD/2), P(1-TF+RDD/2)], where RDD is the range of due dates, TF is the tardiness

factor and ∑
=

=
n

i ipP
1

. RDD and TF can assume the following values: 0.2, 0.4, 0.6, 0.8

and 1.0. By varying RDD and TF we can generate instance classes of different
hardness.
As a test problem, we randomly generated a SMTWT scheduling problem with 40 jobs to
use in computational tests.

10.2 Examination of Crossover Operators

We applied the HybFlexGA presented in section 9, with the objective of examining the
twelve crossover operators in subsection 8.1. When the crossover operators were examined
the mutation operator was not used. Each crossover operator was examined by using the
following conditions:

− Number of tests: 20.

− Initial population tΨ : constant.

− Number of jobs: 40.

− Instance used: constant.

− Population size Npop: 20, 40, 60, 80 and 100.

− Stopping condition: 1000 generations.

− Crossover probabilities Pc: 0.2, 0.4, 0.6, 0.8 and 1.0.

− Mutation operators and mutation probabilities: not used.

We used the following performance measure with the aim of evaluating each genetic
operator:

)()(endinitial xfxfePerformanc −= , (1)

www.intechopen.com

334 Industrial Robotics - Programming, Simulation and Applications

where
initialx is the best chromosome in the initial population and endx is the best

chromosome in the last population. That is,)(initialxf is the fitness average (of the 20

computational tests) of the best chromosomes in the initial population and)(endxf is the

fitness average of the best chromosomes in the end of the 1000 generations. The
performance measure in (1) gives the total improvement in fitness during the execution of
the genetic algorithm.
We used 20 computational tests to examine each crossover operator. The average value of
the performance measure in (1) was calculated for each crossover operator with each
crossover probability and each population size.
Table 4 shows the best average value of the performance measure obtained by each
crossover operator with its best crossover probability and its best population size. This table
shows the crossover operator by classification order.

Position Crossover Pc Npop Performance

1st TPC4C 1.0 100 3834.1

2nd TPC3CV2 1.0 100 3822.9

3rd TPC2CV2 1.0 100 3821.8

4th PBX 1.0 80 3805.8

5th TPC1CV2 0.8 100 3789.3

6th CX 0.8 80 3788.7

7th TPC3CV1 0.8 80 3680.2

8th TPC2CV1 1.0 80 3662.1

9th OPC2C 0.6 100 3647.8

10th OX 1.0 100 3635.4

11th TPC1CV1 1.0 100 3624.7

12th OPC1C 0.6 100 3570.5

Table 4. Classification of the crossover operators.

Fig. 14 presents the CPU time average and the fitness average along the 1000
generations. As we can see in Fig. 14 a), TPC4C, TPC3CV2 and TPC2CV2 require
more CPU time than the other crossover operators. On the other hand, Fig. 14 b)
shows these crossover operators present a very fast evolution at first (in the first 100
generations).

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

Generation

C
P
U
 T
im
e
 A
v
e
ra
ge

(s
e
c
.
)

TPC4C, Pc=1.0, Npop=100

TPC3CV2, Pc=1.0, Npop=100

TPC2CV2, Pc=1.0, Npop=100

PBX, Pc=1.0, Npop=80

TPC1CV2, Pc=0.8, Npop=100

CX, Pc=0.8, Npop=80

100 200 300 400 500 600 700 800 900 1000

2000

2200

2400

2600

2800

3000

Generation

A
v
e
ra
ge

TPC4C, Pc=1.0, Npop=100

TPC3CV2, Pc=1.0, Npop=100

TPC2CV2, Pc=1.0, Npop=100

PBX, Pc=1.0, Npop=80

TPC1CV2, Pc=0.8, Npop=100

CX, Pc=0.8, Npop=80

a) b)

Fig. 14. The six best crossover operators: a) CPU time average along the 1000 generations b)
Fitness average along the 1000 generations

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 335

For the same number of generations, PBX and CX do not need as much CPU time (see Fig.
14 a)) but, these operators present a worse fitness average evolution (see Fig. 14 b)). These
crossover operators obtained the best performance for Npop=80 (see Table 4) and this is one
of the reasons both obtained a good CPU time average.
From Fig. 14 b) we can see TPC4C is the best crossover operator along the 1000 generations,
but Fig. 14 a) shows that it needed more CPU time.

10.3 Examination of Mutation Operators

We applied the HybFlexGA presented in section 9, with the objective of examining the five
mutation operators in subsection 8.2. When the mutation operators were examined the
crossover operator was not used. Each mutation operator was examined by using the same
conditions used in the examination of crossover operators.
The average value of the performance measure in (1) was calculated for each mutation
operator with each mutation probability and each population size.
Table 5 shows the best average value of the performance measure obtained by each
mutation operator with its best mutation probability and its best population size. This table
shows the mutation operator by classification order.

Position Mutation Pm Npop Performance

1st Arb20%JC 1.0 100 3833.9

2nd Arb2JC 0.8 100 3826.4

3rd Arb3JC 1.0 60 3814.9

4th SC 0.8 60 3673.5

5th Adj2JC 0.4 100 3250.4

Table 5. Classification of the mutation operators

Fig. 15 presents the CPU time average and the fitness average along the 1000 generations.
As we can see in Fig. 15 a), Arb20%JC and Arb2JC require more CPU time than Arb3JC. The
CPU time for the Arb20%JC and for Arb2JC are very similar but, in Arb20%JC the CPU time
is a little more. For this reason, in Fig. 15 a) we cannot see any difference in its lines. The
Arb3JC operator obtained the best performance for Npop=60 (see Table 5) and this is the
reason it has a good CPU time average.
As we can see in Fig. 15 b), the Arb20%JC is the best mutation operator along the 1000
generations, but Fig. 15 a) shows that it needs more CPU time.

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

Generation

C
P
U
 T
im
e
 A
v
e
ra
ge

(s
e
c
.
)

Arb20%JC, Pm=1.0, Npop=100

Arb2JC, Pm=0.8, Npop=100

Arb3JC, Pm=1.0, Npop=60

100 200 300 400 500 600 700 800 900 1000

2000

2200

2400

2600

2800

3000

Generation

A
v
e
ra
ge

Arb20%JC, Pm=1.0, Npop=100

Arb2JC, Pm=0.8, Npop=100

Arb3JC, Pm=1.0, Npop=60

a) b)

Fig. 15. The three best mutation operators: a) CPU time average along the 1000 generations
b) Fitness average along the 1000 generations.

www.intechopen.com

336 Industrial Robotics - Programming, Simulation and Applications

11. Computational Results

This section presents the computational results obtained in the single machine total
weighted tardiness (SMTWT) problem. In the SMTWT n jobs have to be sequentially
processed on a single machine. Each job i has an associated processing time pi, a
weight wi, and an associated due date di associated, and the job becomes available for
processing at time zero. The tardiness of a job i is defined as Ti=max{0, Ci-di}, where
Ci is the completion time of job i in the current job sequence. The objective is to find a

job sequence which minimizes the sum of the weighted tardiness given by ∑
=

n

i

ii Tw
1

. .

For arbitrary positive weights, the SMTWT problem is strongly NP-hard (Lenstra et
al., 1977). Because the SMTWT problem is NP-hard, optimal algorithms for this
problem would require a computational time that increases exponentially with the
problem size (Morton & David, 1993), (Baker, 1974), (Lawer, 1977), (Abdul-Razaq et
al., 1990) and (Potts & Wassenhove, 1991). Several algorithms have been proposed to
solve this, for example: branch and bound algorithms (Shwimer, 1972), (Rinnooy et
al., 1975), (Potts & Wassenhove, 1985) and dynamic programming algorithms
(Schrage & Baker, 1978), have been proposed to generate exact solutions, i.e.,
solutions that are guaranteed to be optimal solutions. But, the branch and bound
algorithms are limited by computational times and the dynamic programming
algorithms are limited by computer storage requirements, especially when the
number of jobs is more than 50. Thereafter, the SMTWT problem was extensively
studied by heuristics. These heuristics generate good or even optimal solutions, but
do not guarantee optimality. In recent years, several heuristics, such as Simulated
Annealing, Tabu Search, Genetic Algorithms and Ant Colony (Huegler & Vasko,
1997), (Crauwels et al., 1998), and (Morton & David, 1993), have been proposed to
solve the SMTWT problem.
We going to present, in this section, the computational results obtained with 40, 50 and
100 jobs, using Genetic Algorithms. From the OR-Library (http#3), we randomly
selected some instances of SMTWT problems with 40, 50 and 100 jobs. We used 20
computational tests for each instance of SMTWT problem. We used the six best
crossover operators (see Table 4) and the best mutation operator (see Table 5) in the
HybFlexGA. Each instance of SMTWT problem was examined by using the following
conditions:

− Number of tests: 20.

− Initial population
tΨ : randomly generated.

− Number of jobs: 40, 50 and 100.

− Instance used: from the OR-Library (http#3).

− Population size Npop: 80 and 100 (see Table 4 and Table 5).

− Stopping condition: 1000 generations for the instances with 40 and 50 jobs or the
optimal solution, and 5000 generations for the instances with 100 jobs or the
optimal solution.

− Crossover operators: the six best crossover operators in Table 4.

− Crossover probabilities Pc: 0.8 and 1.0 (see Table 4).

− Mutation operators: the best mutation operator in Table 5.

− Mutation probabilities Pm: 1.0 (see Table 5).

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 337

Instance 40A 40B 40C 50A 50B 50C 100A 100B 100C

Optimal solution 6575 1225 6324 2134 22 2583 5988 8 4267

Tests with optimal
solution

16 20 19 20 20 15 16 20 19

CPU time average
(sec.)

362.4 190.0 319.7 88.3 45.5 214.1 2405.1 523.9 3213.5

TPC4C
+

Arb20%
JC

Generations average 593 284 475 107 54 256 1611 323 1971

Tests with optimal
solution

13 15 15 18 20 12 15 20 15

CPU time average
(sec.)

382.9 231.3 260.5 112.3 50.4 207.9 3851.0 1012.4 4453.7

TPC3C
V2
+

Arb20%
JC Generations average 725 402 448 158 70 290 3042 727 3181

Tests with optimal
solution

8 16 15 17 20 12 9 20 5

CPU time average (sec.) 369.1 216.8 305.8 146.2 92.0 157.8 3921.3 1339.8 4036.2

TPC2C
V2
+

Arb20%
JC

Generations average 380 449 627 246 152 263 3685 1142 3423

Tests with optimal
solution

0 8 1 18 20 10 1 20 3

CPU time average
(sec.)

--- 236.1 312.0 144.6 86.3 151.6 2067.0 1413.6 3237.7

PBX
+

Arb20%
JC

Generations average --- 747 976 371 218 385 2957 1828 4182

Tests with optimal
solution

0 3 2 13 20 5 1 19 2

CPU time average
(sec.)

--- 230.0 363.5 224.7 118.2 180.0 4104.0 2190.7 3847.0

TPC1C
V2
+

Arb20%
JC Generations average --- 609 956 487 252 385 4948 2405 4192

Tests with optimal
solution

0 4 4 17 20 11 3 20 5

CPU time average
(sec.)

--- 165.3 270.5 107.8 51.0 140.0 2594.0 736.4 3224.2

CX
+

Arb20%
JC

Generations average --- 551 892 292 136 375 3912 1011 4390

Table 6. Computational results obtained for the SMTWT problems with 40, 50 and 100 jobs.

Table 6 shows the computational results obtained for the SMTWT problems with 40, 50 and
100 jobs. In this table, we have the number of tests with optimal solution, the CPU time
average (in seconds) and the generations average for each instance problem. For example,
we chose the TPC4C with Pc=1.0, Arb20%JC with Pm=1.0 and instance 40A (SMTWT
problem with 40 jobs, from the OR-Library (http#3)) in the HybFlexGA. We did 20
computational tests for this instance. In these tests we obtained the optimal solutions in 16
tests. In these 16 tests, the CPU time average was 362.4 seconds and the generation average
was 593.
As we can see in Table 6, we obtained good results with the TPC4C+Arb20%JC,
TPC3CV2+Arb20%JC and TPC2CV2+Arb20%JC combination, for all the instances with 40,
50 and 100 jobs. But, as we can see in this table, the best results are obtained for the
TPC4C+Arb20%JC combination. When we used the TPC4C+Arb20%JC combination, the
HybFlexGA is very efficient. For example, in the three instances with 40 jobs (see Table 6 –
40A, 40B and 40C) the HybFlexGA found 20 tests with optimal solution in one instance
(40B), 19 tests with optimal solutions in one instance (40C) and 16 tests with optimal
solutions in one instance (40A).

www.intechopen.com

338 Industrial Robotics - Programming, Simulation and Applications

In subsection 10.2 and 10.3, we demonstrated that TPC4C and Arb20%JC need more CPU
time (for the same generations) than the other genetic operators. But, we also demonstrated
that TPC4C and Arb20%JC need fewer generations to find good solutions, probably the
optimal solutions. The computational results obtained in Table 6 show the HybFlexGA with
the TPC4C+Arb20%JC combination requires less CPU time than the one with the other
combinations. For example, in the 50B instance the HybFlexGA always found the optimal
solution for all combinations (e.g., TPC3CV2+Arb20%JC, TPC2CV2+Arb20%JC, and so on).
For this instance, as we can see in Table 6, the combination that needs less CPU time average
was the TPC4C+Arb20%JC (45.5 seconds). All the other combinations need more CPU time
average.

12. Conclusion

Robust control software is a necessity for an automated FMS and FMC, and plays an
important role in the attainable flexibility. Often FMS and FMC are built with very flexible
machines (robots, CNC machines, ASRS, etc) but the available control software is unable to
exploit the flexibility of adding new machines, parts, changing control algorithms, etc. The
present robot control and CNC machines control systems are closed and with deficient
software interfaces. Nowadays, the software is typically custom written, very expensive,
difficult to modify, and often the main source of inflexibility in FMS. We have developed a
collection of software tools: “winRS232ROBOTcontrol”, “winEthernetROBOTcontrol”,
“winMILLcontrol”, “winTURNcontrol” and USB software. These software tools allow the
development of industrial applications of monitoring and controlling robotic networks and
CNC machines inserted in FMS or FMC. All the software developed has operation
potentialities in Ethernet. The basic idea is to define for any specific equipment a library of
functions that in each moment define the basic functionality of that equipment for remote
use.
In this chapter we also propose a new concept of genetic operators for scheduling problems.
We developed a software tool called HybFlexGA, to examine the performance of various
crossover and mutation operators by computing simulations on job scheduling problems.
The HybFlexGA obtained good computational results in the instances of SMTWT problems
with 40, 50 and 100 jobs (see Table 6). As we demonstrated, the HybFlexGA is very efficient
with the TPC4C+Arb20%JC combination. With this combination, the HybFlexGA always
found more optimal solutions than with the other combinations: TPC3CV2+Arb20%JC,
TPC2CV2+Arb20%JC, and so on. When we used this combination (TPC4C+Arb20%JC) in
the HybFlexGA, the genetic algorithm required fewer generations and less CPU time to find
the optimal solutions. These results show the good performance and efficiency of the
HybFlexGA with the TPC4C and Arb20%JC genetic operators.
Application of the HybFlexGA, with these same genetic operator combinations, in other
scheduling problems (e.g. job-shop and flow-shop) is left for future work.

13. References

Abdul-Razaq, T.; Potts C. & Wassenhove L. (1990). A survey for the Single-Machine
Scheduling Total WT Scheduling Problem. Discrete Applied Mathematics, No 26,
(1990), pp. 235–253.

Baker, R. (1974). Introduction to Sequencing and Scheduling, Wiley, New York.

www.intechopen.com

Control and Scheduling Software for Flexible Manufacturing Cells 339

Crauwels H.; Potts C. & Wassenhove L. (1998). Local search heuristics for the single

machine total weighted tardiness scheduling problem. INFORMS Journal on

Computing, Vol. 10, No 3, (1998), pp. 341–350.

Ferrolho A.; Crisóstomo M. & Lima M. (2005). Intelligent Control Software for Industrial

CNC Machines, Proceedings of the IEEE 9th International Conference on Intelligent

Engineering Systems, Cruising on Mediterranean Sea, September 16-19, 2005, in CD-

ROM.

Ferrolho A. & Crisóstomo M. (2005-a). Scheduling and Control of Flexible Manufacturing

Cells Using Genetic Algorithms. WSEAS Transactions on Computers, Vol. 4, 2005, pp.

502–510.

Ferrolho A. & Crisóstomo M. (2005-b). Flexible Manufacturing Cell: Development,

Coordination, Integration and Control, in Proceedings of the IEEE 5th Int.

Conference on Control and Automation, pp. 1050-1055, Hungary, June 26-29, 2005,

in CD-ROM.

Ferrolho A. & Crisóstomo M. (2005-c). Genetic Algorithms for Solving Scheduling Problems

in Flexible Manufacturing Cells, in Proceedings of the 4th WSEAS International

Conference on Electronics, Signal Processing and Control (ESPOCO2005), Brazil, April

25-27, 2005, in CD-ROM.

Ferrolho A. & Crisóstomo M. (2005-d). Genetic Algorithms: concepts, techniques and

applications. WSEAS Transactions on Advances in Engineering Education, Vol. 2, 2005,

pp. 12–19.

French S. (1982). Sequencing and Scheduling: An Introduction to the Mathematics of the Job-Shop,

John Wiley & Sons, New York.

Goldberg D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,

Addison-Wesley.

Hadj-Alouane N.; Chaar J.; Naylor A. & Volz R. (1988). Material handling systems as

software components: An implementation. Tech. Paper, Center for Res. on Integrated

Manufacturing. The Univ. Michigan, May 1988.

Huegler P. & Vasko F. (1997). A performance comparison of heuristics for the total weighted

tardiness problem. Computers & Industrial Engineering, Vol. 32, No 4, (1997), pp.

753–767.

Joshi S.; R. A. Wysk & E. G. Mettala (1991). Automatic Generation of Control System

Software for Flexible Manufacturing Systems. IEEE Trans. on Robotics and

Automation, Vol. 7, No. 6, (December 1991) pp. 283–291.

Joshi, S.; J. S. Smith; R. A. Wysk; B. Peters & C. Pegden (1995). Rapid-CIM: An approach to

rapid development of control software for FMS control. 27th CIRP International

Seminar on Manufacturing Systems, Ann Arbor, MI, 1995.

Kusiak A., (1986). Modelling and Design of Flexible Manufacturing Systems, Elsevier Science

Publishers.

Lawer, E. (1977). A pseudopolinomial algorithm for Sequencing Jobs to Minimize Total

Tardiness. Annals of Discrete Mathematics, (1977), pp. 331–342.

Lenstra J.; Kinnooy Kan H. & Brucker P. (1977). Complexity of machine scheduling

problems. Annals of Discrete Mathematics, Vol. 1 (1977), pp. 343–362.

Maimon O. & Fisher E. (1988). An object-based representation method for a manufacturing

cell controller. Artificial Intelligence in Engineering, Vol. 3, No. 1.

Morton, E. & David W. (1993). Heuristic Scheduling Systems, John Wiley & Sons.

www.intechopen.com

340 Industrial Robotics - Programming, Simulation and Applications

Murata T. & Ishibuchi H. (1994). Performance Evaluation of Genetic Algorithms for
Flowshop Scheduling Problems, Proceedings of the 1st IEEE Int. Conference on
Evolutionary Computation, pp. 812–817, Orlando, USA.

Oliver J.; Smith D. & Holland J. (1987). A study of permutation crossover operators on the
traveling salesman problem, Proceedings of the Second ICGA , pp. 224–230.

Potts C. & Wassenhove L.(1985). A branch and bound algorithm for the total weighted
tardiness problems. Operations research, Vol. 33, No 2, (1985), pp. 363–377.

Potts, C. & Wassenhove L. (1991). Single Machine Tardiness Sequencing Heuristics. IIE
Transactions, Vol. 23, No 4, (1991), pp. 346–354.

Rembold U.; Nnaji B. & Storr A. (1993). Computer Integrated Manufacturing and Engineering,
Addison-Wesley.

Rinnooy H.; Lageweg B. & Lenstra J. (1975). Minimizing total costs in one-machine
scheduling. Operations research, Vol. 23, No 5, (1975), pp. 908–927.

Sanjay B. Joshi; Erik G. Mettala; Jeffrey S. Smith & Richard A. Wysk (1995). Formal
Models for Control of Flexible Manufacturing Cells: Physical and System
Model. IEEE Trans. on Robotics and Automation, Vol. 11, No. 4, (August 1995) pp.
558–570.

Schrage L. & Baker K. (1978). Dynamic programming solution of sequencing problem with
precedence constraints. Operations research, Vol. 26, (1978), pp. 444–449.

Shwimer J. (1972). On the n-job, one-machine, sequence-independent scheduling problem
with tardiness penalties: a branch-bound solution. Management Science, Vol. 18, No
6, (1972), pp. 301–313.

Syswerda G. (1991). Scheduling optimization using genetic algorithms. L. Davis (Ed.) Handbook
of Genetic Algorithms, Van Nostrand Reinhold, New York, pp. 332–349.

Waldner JB., (1992). CIM, Principles of Computer Integrated Manufacturing, John Wiley &
Sons.

Sites WWW
http#1 - Rapid Prototyping and Development of FMS Control Software for Computer

Integrated Manufacturing. Available: http://tamcam.tamu.edu/rapidcim/
rc.htm

http#2 - RapidCIM. Available: http://www.engr.psu.edu/cim/
http#3 - http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html

www.intechopen.com

Industrial Robotics: Programming, Simulation and Applications

Edited by Low Kin Huat

ISBN 3-86611-286-6

Hard cover, 702 pages

Publisher Pro Literatur Verlag, Germany / ARS, Austria

Published online 01, December, 2006

Published in print edition December, 2006

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation

technologies. Although being highly technical and complex in nature, the papers presented in this book

represent some of the latest cutting edge technologies and advancements in industrial robotics technology.

This book covers topics such as networking, properties of manipulators, forward and inverse robot arm

kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here.

The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic

and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using

the ideas and concepts presented herein.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Antonio Ferrolho and Manuel Crisostomo (2006). Control and Scheduling Software for Flexible Manufacturing

Cells, Industrial Robotics: Programming, Simulation and Applications, Low Kin Huat (Ed.), ISBN: 3-86611-286-

6, InTech, Available from:

http://www.intechopen.com/books/industrial_robotics_programming_simulation_and_applications/control_and_

scheduling_software_for_flexible_manufacturing_cells

© 2006 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

