34,937 research outputs found

    Hardware accelerated protein inference framework

    Full text link
    Protein inference plays a vital role in the proteomics study. Two major approaches could be used to handle the problem of protein inference; top-down and bottom-up. This paper presents a framework for protein inference, which uses hardware accelerated protein inference framework for handling the most important step in a bottom-up approach, viz. peptide identification during the assembling process. In our framework, identified peptides and their probabilities are used to predict the most suitable reference protein cluster for a given input amino acid sequence with the probability of identified peptides. The framework is developed on an FPGA where hardware software co-design techniques are used to accelerate the computationally intensive parts of the protein inference process. In the paper we have measured, compared and reported the time taken for the protein inference process in our framework against a pure software implementation

    Peptide mass fingerprinting using field-programmable gate arrays

    Get PDF
    The reconfigurable computing paradigm, which exploits the flexibility and versatility of field-programmable gate arrays (FPGAs), has emerged as a powerful solution for speeding up time-critical algorithms. This paper describes a reconfigurable computing solution for processing raw mass spectrometric data generated by MALDI-TOF instruments. The hardware-implemented algorithms for denoising, baseline correction, peak identification, and deisotoping, running on a Xilinx Virtex-2 FPGA at 180 MHz, generate a mass fingerprint that is over 100 times faster than an equivalent algorithm written in C, running on a Dual 3-GHz Xeon server. The results obtained using the FPGA implementation are virtually identical to those generated by a commercial software package MassLynx

    Protein alignment HW/SW optimizations

    Get PDF
    Biosequence alignment recently received an amazing support from both commodity and dedicated hardware platforms. The limitless requirements of this application motivate the search for improved implementations to boost processing time and capabilities. We propose an unprecedented hardware improvement to the classic Smith-Waterman (S-W) algorithm based on a twofold approach: i) an on-the-fly gap-open/gap-extension selection that reduces the hardware implementation complexity; ii) a pre-selection filter that uses reduced amino-acid alphabets to screen out not-significant sequences and to shorten the S-Witerations on huge reference databases.We demonstrated the improvements w.r.t. a classic approach both from the point of view of algorithm efficiency and of HW performance (FPGA and ASIC post-synthesis analysis)

    String Matching with Multicore CPUs: Performing Better with the Aho-Corasick Algorithm

    Full text link
    Multiple string matching is known as locating all the occurrences of a given number of patterns in an arbitrary string. It is used in bio-computing applications where the algorithms are commonly used for retrieval of information such as sequence analysis and gene/protein identification. Extremely large amount of data in the form of strings has to be processed in such bio-computing applications. Therefore, improving the performance of multiple string matching algorithms is always desirable. Multicore architectures are capable of providing better performance by parallelizing the multiple string matching algorithms. The Aho-Corasick algorithm is the one that is commonly used in exact multiple string matching algorithms. The focus of this paper is the acceleration of Aho-Corasick algorithm through a multicore CPU based software implementation. Through our implementation and evaluation of results, we prove that our method performs better compared to the state of the art

    TRAPID : an efficient online tool for the functional and comparative analysis of de novo RNA-Seq transcriptomes

    Get PDF
    Transcriptome analysis through next-generation sequencing technologies allows the generation of detailed gene catalogs for non-model species, at the cost of new challenges with regards to computational requirements and bioinformatics expertise. Here, we present TRAPID, an online tool for the fast and efficient processing of assembled RNA-Seq transcriptome data, developed to mitigate these challenges. TRAPID offers high-throughput open reading frame detection, frameshift correction and includes a functional, comparative and phylogenetic toolbox, making use of 175 reference proteomes. Benchmarking and comparison against state-of-the-art transcript analysis tools reveals the efficiency and unique features of the TRAPID system

    ProteoClade: A taxonomic toolkit for multi-species and metaproteomic analysis

    Get PDF
    We present ProteoClade, a Python toolkit that performs taxa-specific peptide assignment, protein inference, and quantitation for multi-species proteomics experiments. ProteoClade scales to hundreds of millions of protein sequences, requires minimal computational resources, and is open source, multi-platform, and accessible to non-programmers. We demonstrate its utility for processing quantitative proteomic data derived from patient-derived xenografts and its speed and scalability enable a novel de novo proteomic workflow for complex microbiota samples

    Editorial overview: Folding and binding: In silico, in vitro and in cellula

    Get PDF
    The essence of any biological processes relies on the conformational states of macromolecules and their interactions. It comes therefore with no surprises that the study of folding and binding has been centre stage since the birth of structural biology. In this context, the collaborative efforts of experimen- talists and theoreticians have tremendously increased our current knowl- edge on macromolecular structure and recognition. Nevertheless, several challenges and open questions are still present and a multidisciplinary approach would appear the most appropriate means to shed light onto the mechanisms of folding and binding to the highest level of detail. This thematic issue brings together a collection of reviews describing our current understanding of folding and binding, looking at these fundamental pro- blems from a wide perspective ranging from the single molecule to the complexity of the living cell, drawing on approaches that span from compu- tational (in silico), to the test tube (in vitro) and cell cultures (in cellula)
    • 

    corecore