346 research outputs found

    Masquerading Techniques in IEEE 802.11 Wireless Local Area Networks

    Get PDF
    The airborne nature of wireless transmission offers a potential target for attackers to compromise IEEE 802.11 Wireless Local Area Network (WLAN). In this dissertation, we explore the current WLAN security threats and their corresponding defense solutions. In our study, we divide WLAN vulnerabilities into two aspects, client, and administrator. The client-side vulnerability investigation is based on examining the Evil Twin Attack (ETA) while our administrator side research targets Wi-Fi Protected Access II (WPA2). Three novel techniques have been presented to detect ETA. The detection methods are based on (1) creating a secure connection to a remote server to detect the change of gateway\u27s public IP address by switching from one Access Point (AP) to another. (2) Monitoring multiple Wi-Fi channels in a random order looking for specific data packets sent by the remote server. (3) Merging the previous solutions into one universal ETA detection method using Virtual Wireless Clients (VWCs). On the other hand, we present a new vulnerability that allows an attacker to force the victim\u27s smartphone to consume data through the cellular network by starting the data download on the victim\u27s cell phone without the victim\u27s permission. A new scheme has been developed to speed up the active dictionary attack intensity on WPA2 based on two novel ideas. First, the scheme connects multiple VWCs to the AP at the same time-each VWC has its own spoofed MAC address. Second, each of the VWCs could try many passphrases using single wireless session. Furthermore, we present a new technique to avoid bandwidth limitation imposed by Wi-Fi hotspots. The proposed method creates multiple VWCs to access the WLAN. The combination of the individual bandwidth of each VWC results in an increase of the total bandwidth gained by the attacker. All proposal techniques have been implemented and evaluated in real-life scenarios

    Sensor Networks in the Low Lands

    Get PDF
    This paper provides an overview of scientific and industrial developments of the last decade in the area of sensor networks in The Netherlands (Low Lands). The goal is to highlight areas in which the Netherlands has made most contributions and is currently a dominant player in the field of sensor networks. On the one hand, motivations, addressed topics, and initiatives taken in this period are presented, while on the other hand, special emphasis is given to identifying current and future trends and formulating a vision for the coming five to ten years. The presented overview and trend analysis clearly show that Dutch research and industrial efforts, in line with recent worldwide developments in the field of sensor technology, present a clear shift from sensor node platforms, operating systems, communication, networking, and data management aspects of the sensor networks to reasoning/cognition, control, and actuation

    Human Sensing and Indoor Location: From coarse to fine detection algorithms based on consumer electronics RF mapping

    Get PDF
    Depois de definida toda a arquitectura para captura dos dados de Wi-Fi, foi desenvolvido um software para a criação de uma base de dados contendo informações de posição e de força de sinal. Inicialmente, foi desenvolvido um algoritmo preliminar de localização. Posteriormente, implementou-se um algoritmo de classificação para mapear os dados recebidos dos sensores com os guardados anteriormente.Foram feitos testes usando estes algoritmos, e comparados os resultados.Em fase de escrita do documento

    MSc THESIS - Occupancy Detection in Indoor Environments Based on Wi-Fi Measurements and Machine Learning Methods

    Get PDF
    Οι κινητές συσκευές γίνονται σήμερα σημαντικά μέρος της καθημερινότητάς μας λόγω των δυνατοτήτων ασύρματης επικοινωνίας που έχουν επιτρέψει μια σειρά από υπηρεσίες υψηλού επιπέδου. Αυτός ο εξοπλισμός Wi-Fi στέλνει συνεχώς πακέτα που δηλώνονται ως αιτήματα ανίχνευσης που μπορούν να καταγραφούν χρησιμοποιώντας ασύρματα sniffer. Σε αυτή τη διατριβή, προσπαθήσαμε να λύσουμε το πρόβλημα της αξιοποίησης μιας τέτοιας μεθοδολογίας για την ολοκλήρωση της εκτίμησης της πληρότητας λαμβάνοντας υπόψη πόσα άτομα υπάρχουν σε έναν συγκεκριμένο χώρο. Αρχικά, συζητήσαμε τη συλλογή πακέτων αιτημάτων ανίχνευσης Wi-Fi χρησιμοποιώντας τη συσκευή Raspberry Pi και την ανάλυσή τους με εργαλεία ανάλυσης πακέτων. Χειριστήκαμε τη συλλογή δεδομένων σε διαφορετικά περιβάλλοντα, εύρη σε διαφορετικές πυκνότητες επιπέδων και χρησιμοποιήσαμε την κάμερα κινητής τηλεφωνίας ως βασική τιμή αλήθειας. Στη συνέχεια, παρουσιάσαμε πώς μπορούμε να χρησιμοποιήσουμε διευθύνσεις MAC και πληροφορίες επιπέδου ισχύος για την πρόβλεψη εσωτερικού χώρου στο προτεινόμενο μοντέλο γραμμικής παλινδρόμησης κορυφογραμμής χρησιμοποιώντας διαφορετικές προσεγγίσεις. Παρουσιάσαμε ένα φθηνό και ακριβές μοντέλο εκτίμησης πληρότητας που βασίζεται στην καταγραφή των συσκευών των χρηστών πλαισίων Wi-Fi. Το μοντέλο εφαρμόζεται σε υλικό χαμηλού κόστους και χρησιμοποιεί ένα μοντέλο εποπτευόμενης εκμάθησης για να ταιριάζει σε διαφορετικά περιβάλλοντα. Τα πειράματα τέτοιων εκτιμήσεων εσωτερικού χώρου έχουν εφαρμοστεί σε διαφορετικά σενάρια για να καταδειχθεί η εγκυρότητα της προτεινόμενης λύσης και να αξιολογηθούν τα αποτελέσματά της. Τα αποτελέσματα προσδιορίζουν ότι οι κινητές συσκευές έχουν καλές δυνατότητες πρόβλεψης του αριθμού των ατόμων στο χώρο.Mobile devices are currently significantly becoming part of our daily lives due to the wireless communication capabilities that have enabled a series of high-level services. These Wi-Fi equipment are continuously sending packets stated as probe requests that can be captured using wireless sniffers. In this thesis, we tried to solve the problem of exploiting such a methodology to complete occupancy estimation by considering how many people exist in a specific space. At first, we discussed collecting Wi-Fi probe request packets using the Raspberry Pi device and analysing them with packet analyzer tools. We operated data collection in different environments, ranges in different level densities and used the mobile camera as the ground truth value. Afterwards, we represented how we can use MAC addresses and power level information for indoor prediction in the proposed linear ridge regression model using different approaches. We introduced a cheap and precise occupancy estimation model based on the capture of Wi-Fi frames user’s devices. The model is applied on low-cost hardware and utilized a supervised learning model to fit different environments. The experiments of such indoor estimations have been implemented in different scenarios to demonstrate the validity of the proposed solution and evaluate its results of it. The outcomes specify that mobile devices have good potential for predicting of the number of people in the space

    A Robotic Platooning Testbed for Cooperative ITS Components

    Get PDF
    Os Sistemas Inteligentes de Transporte estão a tornar-se cada vez mais relevantes nos contextos sociais e de mobilidade atuais e futuros, pois aplicam tecnologias de informação, comunicação e sensores em veículos e infraestrutura de transporte. Estes sistemas fornecem informações em tempo real para condutores e operadores de sistemas de transporte, permitindo decisões melhores, mais informadas e eficientes. Esta tecnologia pode ser usada para controlar o tráfego rodoviário, a fim de reduzir o congestionamento, aumentar a eficiência da infraestrutura de transporte e melhorar a mobilidade. Embora esta tecnologia possa ser a força motriz da condução autónoma cooperativa, ainda existem problemas de segurança a serem resolvidos. Portanto, é fundamental incluir mecanismos de segurança para garantir o nível de segurança exigido para estes sistemas. Atualmente, a investigação em sistemas autónomos cooperativos ´e geralmente realizada em ambiente de simulação, devido ao facto de experiências reais serem ainda muito caras. Uma boa solução para esse problema ´e depender de plataformas robóticas, uma vez que são mais baratas e replicam veículos reais com funcionalidade semelhante. Nesta linha, esta Tese concentra-se no desenvolvimento de uma plataforma robótica para ”platooning” com veículos robóticos `a escala de 1/10. Para provar sua eficácia, validamos um mecanismo de segurança cooperativo para ”platooning”.Intelligent Transportation Systems are becoming increasingly relevant in the current and future social and mobility aspects, since they apply information, communication, and sensor technologies to vehicles and transportation infrastructure. They provide real-time information for road users and transportation system operators enabling better and more informed and efficient decisions. This technology can be used to manage road traffic in order to reduce congestion, increase the efficiency of existing transport infrastructure and improve mobility. Although this technology might be the powerhouse of cooperative autonomous driving, as others matters, there are still safety concerns to be managed. Thus, it is fundamental to include safety mechanism to assure the required safety level for these systems. Currently, research in cooperative autonomous systems usually conducted over simulation frameworks as real experiments are still too costly. A good solution for this problem is to rely on robotic platforms since they are cheaper and replicate with similar functionality real vehicles. In this line, this Thesis focuses on developing a platooning robotic testbed platform with a 1/10 scale robotic vehicles. To prove it’s effectiveness, we validate a cooperative safety mechanism for platooning

    Real-Time Waveform Prototyping

    Get PDF
    Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen. Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen. Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt: Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten. Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen. Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part listThe demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas. This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures List of tables Abbreviations Notations 1 Introduction 1.1 Wireless applications 1.2 Motivation 1.3 Software-Defined Radio 1.4 State of the art 1.5 Testbed 1.6 Summary 2 Background 2.1 System Model 2.2 PHY Layer Structure 2.3 Generalized Frequency Division Multiplexing 2.4 Wireless Standards 2.4.1 IEEE 802.15.4 2.4.2 802.11 WLAN 2.4.3 LTE 2.4.4 Low Latency Industrial Wireless Communications 2.4.5 Summary 3 Wireless Prototyping 3.1 Testbed Examples 3.1.1 PHY - focused Testbeds 3.1.2 MAC - focused Testbeds 3.1.3 Network - focused testbeds 3.1.4 Generic testbeds 3.2 Considerations 3.3 Use cases and Scenarios 3.4 Requirements 3.5 Methodology 3.6 Hardware Platform 3.6.1 Host 3.6.2 FPGA 3.6.3 Hybrid 3.6.4 ASIC 3.7 Software Platform 3.7.1 Testbed Management Frameworks 3.7.2 Development Frameworks 3.7.3 Software Implementations 3.8 Deployment 3.9 Discussion 3.10 Conclusion 4 Flexible Transceiver 4.1 Signal Processing Modules 4.1.1 MAC interface 4.1.2 Encoding and Mapping 4.1.3 Modem 4.1.4 Post modem processing 4.1.5 Synchronization 4.1.6 Channel Estimation and Equalization 4.1.7 Demapping 4.1.8 Flexible Configuration 4.2 Analysis 4.2.1 Numerical Precision 4.2.2 Spectral analysis 4.2.3 Latency 4.2.4 Resource Consumption 4.3 Discussion 4.3.1 Extension to MIMO 4.4 Summary 5 Testbed 5.1 Infrastructure 5.2 Automation 5.3 Software Defined Radio Platform 5.4 Radio Frequency Front-end 5.4.1 Sub 6 GHz front-end 5.4.2 26 GHz mmWave front-end 5.5 Performance evaluation 5.6 Summary 6 Experiments 6.1 Single Link 6.1.1 Infrastructure 6.1.2 Single Link Experiments 6.1.3 End-to-End 6.2 Multi-User 6.3 26 GHz mmWave experimentation 6.4 Summary 7 Key lessons 7.1 Limitations Experienced During Development 7.2 Prototyping Future 7.3 Open points 7.4 Workflow 7.5 Summary 8 Conclusions 8.1 Future Work 8.1.1 Prototyping Workflow 8.1.2 Flexible Transceiver Core 8.1.3 Experimental Data-sets 8.1.4 Evolved Access Point Prototype For Industrial Networks 8.1.5 Testbed Standardization A Additional Resources A.1 Fourier Transform Blocks A.2 Resource Consumption A.3 Channel Sounding using Chirp sequences A.3.1 SNR Estimation A.3.2 Channel Estimation A.4 Hardware part lis

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Mitigating the Impact of Physical Layer Capture and ACK Interference in Wireless 802.11 Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Getting smarter about smart cities: Improving data privacy and data security

    Get PDF
    Abstract included in text

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate
    corecore