204 research outputs found

    Robust Stabilization and Disturbance Rejection for Autonomous Helicopter

    Get PDF

    Tail motion model identification for control design of an unmanned helicopter

    Get PDF
    This paper explains the methodology developed to design the yaw control system (heading control system) of the α-SAC UAV. The problem of modeling and controlling the tail motion of this UAV along a desired trajectory is considered. First, the response data of the system are collected during special flight test and a linear time invariant model is extracted by identification techniques. Then, the control system is designed and implemented using a PID feedback/feedforward control method. The technique is tested in simulation and validated in the autonomous flight of the small scale helicopter.Peer ReviewedPostprint (published version

    Automatic Landing of a Rotary-Wing UAV in Rough Seas

    Full text link
    Rotary-wing unmanned aerial vehicles (RUAVs) have created extensive interest in the past few decades due to their unique manoeuverability and because of their suitability in a variety of flight missions ranging from traffic inspection to surveillance and reconnaissance. The ability of a RUAV to operate from a ship in the presence of adverse winds and deck motion could greatly extend its applications in both military and civilian roles. This requires the design of a flight control system to achieve safe and reliable automatic landings. Although ground-based landings in various scenarios have been investigated and some satisfactory flight test results are obtained, automatic shipboard recovery is still a dangerous and challenging task. Also, the highly coupled and inherently unstable flight dynamics of the helicopter exacerbate the difficulty in designing a flight control system which would enable the RUAV to attenuate the gust effect. This thesis makes both theoretical and technical contributions to the shipboard recovery problem of the RUAV operating in rough seas. The first main contribution involves a novel automatic landing scheme which reduces time, cost and experimental resources in the design and testing of the RUAV/ship landing system. The novelty of the proposed landing system enables the RUAV to track slow-varying mean deck height instead of instantaneous deck motion to reduce vertical oscillations. This is achieved by estimating the mean deck height through extracting dominant modes from the estimated deck displacement using the recursive Prony Analysis procedure. The second main contribution is the design of a flight control system with gust-attenuation and rapid position tracking capabilities. A feedback-feedforward controller has been devised for height stabilization in a windy environment based on the construction of an effective gust estimator. Flight tests have been conducted to verify its performance, and they demonstrate improved gust-attenuation capability in the RUAV. The proposed feedback-feedforward controller can dynamically and synchronously compensate for the gust effect. In addition, a nonlinear H1 controller has been designed for horizontal position tracking which shows rapid position tracking performance and gust-attenuation capability when gusts occur. This thesis also contains a description of technical contributions necessary for a real-time evaluation of the landing system. A high-infedlity simulation framework has been developed with the goal of minimizing the number of iterations required for theoretical analysis, simulation verification and flight validation. The real-time performance of the landing system is assessed in simulations using the C-code, which can be easily transferred to the autopilot for flight tests. All the subsystems are parameterized and can be extended to different RUAV platforms. The integration of helicopter flight dynamics, flapping dynamics, ship motion, gust effect, the flight control system and servo dynamics justifies the reliability of the simulation results. Also, practical constraints are imposed on the simulation to check the robustness of the flight control system. The feasibility of the landing procedure is confimed for the Vario helicopter using real-time ship motion data

    Robust Helicopter Stabilization in the Face of Wind Disturbance

    Get PDF

    Robust Adaptive Backstepping Controller for Altitude Control of a Small Scale Helicopter by Considering the Ground Effect Compensation

    Get PDF
    Abstract In this paper, I focus on the design and implementation of a controller for a two degree-of-freedom system. A nonlinear robust adaptive control technique is proposed to control the altitude of a small-scale helicopter for hovering as well as vertically take-off/landing near the ground surface in the presence of strong horizontal wind gusts. In order to stabilize the vertical dynamics of the small-scale helicopter, a recursive (backstepping) design procedure is used to design the robust adaptive controller based on Lyapunov approach. Simulation results demonstrate that the proposed robust adaptive backstepping controller is capable of controlling the altitude for hovering flight of a small-scale helicopter near ground surface in the presence of strong horizontal wind gusts

    Hierarchical Control Design of a UAV Helicopter

    Get PDF

    Flight control design for small-scale helicopter using disturbance observer based backstepping

    Get PDF
    Flight control design for small-scale helicopter using disturbance observer based backsteppin
    • …
    corecore