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Nomenclature

a, b = longitudinal and lateral flapping angles of main rotor, deg

Ab, Ba = cross-coupled rotor flapping derivatives, 1/s

Alat, Alon = cross-coupled and control derivatives for longitudinal flapping angle, deg/s

Blat, Blon = control and cross-coupled derivatives for lateral flapping angle, deg/s

dp, dq, dr = normalized lumped moment disturbances along xb, yb, and zb body axes, deg/s2

dx, dy, dz = normalized lumped force disturbances along xb, yb, and zb body axes, m/s2

dF = vector of lumped force disturbances; [ dx dy dz ]T , m/s2

dM = vector of lumped moment disturbances; [ dp dq dr ]T , deg/s2

F , F0 = normalized external force and aerodynamic force, m/s2

g = acceleration of gravity, m/s2

I = inertia matrix; diag{Ixx, Iyy, Izz}, kg ·m2

Ixx, Iyy, Izz = roll, pitch and yaw moments of inertia, kg ·m2

La, Mb = cross-coupled derivatives for roll and pitch moments, 1/s2

Lb, Ma = control derivatives for roll and pitch moments, 1/s2

m = helicopter mass, kg

M , M0 = normalized external moment and aerodynamic moment, deg/s2

Ncol, Nped = collective control and pedal control derivatives for yaw moment, deg/s2

Nr = damping derivative for yaw moment, 1/s

p, q, r = angular rates of roll, pitch, and yaw, deg/s

P = vector of helicopter position components; [ x y z ]T , m

T = normalized main rotor thrust, m/s2

ucol, uped = collective pitch and pedal control inputs; range [−1, 1]

ulat, ulon = lateral and longitudinal cyclic control inputs; range [−1, 1]

vx, vy, vz = helicopter velocity components along xe, ye, and ze earth axes, m/s

V = vector of helicopter velocity components; [ vx vy vz ]T , m/s

x, y, z = helicopter position components along xe, ye, and ze earth axes, m

β = vector of flapping angles; [ a b ]T , deg

τ = main rotor time constant, s
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ϕ, θ, ψ = Euler angles of roll, pitch, and yaw, deg

Φ = vector of Euler angles; [ ϕ θ ψ ]T , deg

Ω = vector of angular rates; [ p q r ]T , deg/s

∥ · ∥ = Euclidean norm

Subscript

c = command signal

d = desired signal

ref = reference signal

Superscript

ˆ = estimate value

˜ = estimation error

I. Introduction

Recent years have witnessed increasing research activities in the area of small-scale helicopters

since they are popular autonomous platforms for various flying missions. Compared to their full

size counterparts, small-scale helicopters are more susceptible to aerodynamic uncertainties, external

disturbances, and other adverse factors due to their low inertia and limited power, which in turn

necessitates the development of more stable and robust flight control systems. To this end, this note

adopts the disturbance observer based control scheme to enhance the flight control performance.

This method is known as an active "anti-disturbance" strategy where the lumped disturbances from

various sources are estimated by a disturbance observer (DO) and then incorporated into a nominal

controller to compensate for their adverse effects [1–3]. A preliminary study has demonstrated the

disturbance rejection ability of this control strategy on a small-scale helicopter [4].

The classical disturbance observer, such as that shown in [4], is constructed given that all the

system states are measurable, but this assumption may not be true for systems like helicopters. To

damp the fast dynamics and improve the stability of a scaled-down helicopter, the main rotor is

commonly augmented by the Bell-Hiller mechanism which provides a derivative feedback for roll

and pitch responses. In general, the main rotor dynamics can be characterised by two flapping
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angles. For a small-scale helicopter with a rigid rotor head, such rotor dynamics represent a lumped

flapping effect primarily introduced by the Bell-Hiller flybar and are therefore more significant [5, 6].

Unfortunately, the flapping angles are not directly measured by onboard sensors, which leaves an

open problem in control design. Some early studies tend to ignore the flapping dynamics and

assume these angles can be directly controlled [7, 8], but a common practice is to use the quasi-

steady approximation by setting the derivatives of flapping angles to zero [4, 9, 10]. Nevertheless,

completely neglecting the transient response may degrade the control performance especially when

flapping dynamics are relatively slow with the increased flybar diameter and weight. To this end,

the output feedback control method is adopted based on the linear model [11, 12]. Another attempt

reported in [13] develops an extended Kalman filter to estimate the flapping angles. However, the

unmeasurable state still remains an open problem for the disturbance observer design.

To exploit the flapping dynamics in helicopter control design, this note proposes a novel dis-

turbance observer design that extends the scope of the classical one to partial-state unmeasurable

system. The unknown external disturbances and system states can be estimated simultaneously and

asymptotically. Although this information can be incorporated into many conventional controllers

to enhance robustness [3], the recursive backstepping method is employed as a baseline controller

due to the cascaded structure of helicopter dynamics. In this work, command filtered backstepping

(CFBS) [14] is adopted. Compared to the standard backstepping, the CFBS introduces command

filters that not only eliminate the tedious analytic derivative computation of virtual control signals,

but also impose physical constraints on them if necessary. The design procedure of the composite

controller for a small-scale helicopter is detailed in this note and its performance is demonstrated

in a demanding trajectory tracking scenario. It should be noted that although demonstrated on

a small-scale helicopter in this note, the disturbance observer technique can be readily applied to

other aircraft to improve control robustness.
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II. Helicopter Model

The flight control design is based on a general mathematical model of small-scale helicopters.

Its six degrees-of-freedom rigid-body model can be represented as [4, 10]

Ṗ = V (1a)

V̇ = gze +R(Θ)F (1b)

Ṙ(Θ) = R(Θ)Sk(Ω) (1c)

Ω̇ = −I−1Ω× IΩ+M (1d)

where P = [x, y, z]T and V = [vx, vy, vz]
T are the helicopter’s position and velocity in the earth

reference frame, Θ = [ϕ, θ, ψ]T represent the Euler angles, Ω = [p, q, r]T denote the angular rates,

and ze = [0, 0, 1]T . R(Θ) ∈ R3×3 is the standard rotation matrix from the earth reference frame to

the body reference frame, Rij denotes the element in ith row and jth column of R(Θ), and Sk(Ω)

is a skew-symmetric matrix (see [4, 10]).

The external force F and moment M in (1) are normalized by helicopter mass m and inertia

matrix I, respectively. They are composed of two parts: one is the force F0 and moment M0

dominantly generated by the main rotor and the tail rotor, and another is the lumped disturbances

originated from other force and moment contributions, such as wind turbulences and parameter

uncertainties, denoted as force disturbance dF and moment disturbance dM , respectively. The

complete expressions are [4, 5]:

F = [ 0 0 T ]T︸ ︷︷ ︸
F0

+ [ dx dy dz ]T︸ ︷︷ ︸
dF

(2a)

M =


Laa+ Lbb

Maa+Mbb

Nrr +Ncolucol +Npeduped


︸ ︷︷ ︸

M0

+


dp

dq

dr


︸ ︷︷ ︸

dM

(2b)

where T is the main rotor thrust controlled by collective pitch ucol, and uped is the pedal input. The

main rotor flapping angles a and b denote the tilt of the rotor disc along longitudinal and lateral

axes, respectively. For small-scale helicopters, a flybar with small airfoils attached is mounted at

90-degree to the main rotor blades, which is used to damp the cyclic inputs (ulon and ulat) and
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enhance the stability against gust. Following the modelling methods introduced in [4, 5], the flybar

dynamics can be lumped into the main rotor flapping dynamics which can be expressed as ȧ

ḃ


︸ ︷︷ ︸

β̇

=

 − 1
τ Ab

Ba − 1
τ


︸ ︷︷ ︸

A1

 a

b


︸ ︷︷ ︸

β

+

 0 −1

−1 0


︸ ︷︷ ︸

A2

 p

q


︸ ︷︷ ︸

ω2

+

 Alat Alon

Blat Blon


︸ ︷︷ ︸

B

 ulat

ulon


︸ ︷︷ ︸

ucyc

(3)

or compactly, β̇ = A1β +A2ω2 +Bucyc where τ is the effective rotor time constant which includes

the flybar effects.

The full helicopter dynamics are characterised by the rigid body model (1), the forces and mo-

ments (2), and the flapping dynamics (3). Since the flapping dynamics, reflected in the horizontal

motion, are the main focus of this note, only the control design for the longitudinal-lateral dynam-

ics will be discussed. Therefore, extracting the relevant longitudinal-lateral dynamics yields the

cascaded system:



Ṗ2 = V2

V̇2 = R2T +RNdF̄

Ṙ2 = RMω2

ω̇2 = Φβ + dM̄

β̇ = A1β +A2ω2 +Bucyc

(4a)

(4b)

(4c)

(4d)

(4e)

where P2 = [x, y]T , V2 = [vx, vy]
T , R2 = [R13, R23]

T , dF̄ = [dx, dy]
T , dM̄ = [dp, dq]

T ,

RN =

 R11 R12

R21 R22

 , RM =

 −R12 R11

−R22 R21

 , and Φ =

 La Lb

Ma Mb

 .
For a particular helicopter, the derivativesA(·), B(·), L(·), M(·), N(·), and effective rotor time constant

τ can be acquired from system identification.

III. Disturbance Observer Design

Since there is no onboard sensor to measure the flapping angle β directly, it is usually approxi-

mated by using the quasi-steady form

β = −A−1
1 A2ω2 −A−1

1 Bucyc (5)
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which can be found in many prior helicopter control designs [4, 9, 10]. It can be seen that the

transient response has been ignored in this approximation. Therefore, if an accurate estimate of the

flapping angle can be provided to the feedback design, the control performance would be improved

[13]. On the other hand, small-scale helicopters are susceptible to parameter uncertainties and

external disturbances, which may also degrade the flight control performance. Hence, estimating

the flapping angle and lumped disturbances simultaneously and incorporating the estimates into the

feedback controller provide a promising way to enhance the flight control performance. However, the

classical nonlinear disturbance observer, e.g. [1], is incapable for partial-state unmeasurable systems

with external disturbances, such as subsystem (4), which in turn motivates a new disturbance

observer design.

The basic principle of disturbance observer design [1–3] is that an internal state with carefully

designed dynamics is introduced for the lumped disturbance estimation. Inspired by this, an addi-

tional internal state for the unmeasurable state is introduced so that the novel disturbance observer

for flapping angle β and roll and pitch moment disturbance dM̄ is proposed as

 ż1

ż2

 =

 A1 0

0 0


 β̂

d̂M̄

+

 A2ω2 +Bucyc

0

−

 l1(ω2)

l2(ω2)

 (Φβ̂ + d̂M̄ )

 β̂

d̂M̄

 =

 z1

z2

+

 p1(ω2)

p2(ω2)


(6)

where β̂ and d̂M̄ are the estimates of β and dM̄ , z1 and z2 are the internal states of the observer,

and l1(ω2) and l2(ω2) are the observer gains derived from functions p1(ω2) and p2(ω2), such that

li(ω2) =
∂pi(ω2)

∂ω2
, i = 1, 2 (7)

Different from all prior work in the disturbance observer design, the observer (6) estimates not only

the unknown lumped moment disturbance dM̄ but also the unmeasurable state flapping angle β.

To establish the stability property of the proposed disturbance observer, estimation errors need

to be examined. Define β̃ = β − β̂ and d̃M̄ = dM̄ − d̂M̄ as the corresponding estimation errors.

Under the assumption that the disturbance dM̄ varies slowly with respect to the observer dynamics

(i.e., ḋM̄ ≃ 0) [1], differentiating β̃ and d̃M̄ and incorporating the system dynamics (4) yields the
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estimation error dynamics: ˙̃
β

˙̃
dM̄

 =

 A1 − l1(ω2)Φ −l1(ω2)

−l2(ω2)Φ −l2(ω2)


 β̃

d̃M̄

 (8)

After the estimates β̂ and d̂M̄ have been obtained, the force disturbance dF̄ in Eq. (4b) also

needs to be estimated noting that it can be incorporated into the system whose entire states are

measurable. The disturbance observer for dF̄ is designed as
ż3 = −l3(V2)(R2T +RN d̂F̄ )

d̂F̄ = z3 + p3(V2)

(9)

where z3 is the internal state, d̂F̄ is the estimate for dF̄ , and the observer gain is determined by

l3(V2) =
∂p3(V2)

∂V2
. This form is identical to the classical one proposed in [1]. Under the assumption

that the disturbance dF̄ is slowly time varying (i.e., ḋF̄ ≃ 0), the time derivative of the estimation

error d̃F̄ = dF̄ − d̂F̄ is

˙̃
dF̄ = −l3(V2)RN d̃F̄ (10)

Letting d̃ = [β̃T , d̃T
M̄
, d̃T

F̄
]T and combining Eqs. (8) and (10), the full estimation error dynamics

are governed by

˙̃
d = Ξd̃ (11)

where

Ξ =


A− l1(ω2)Φ −l1(ω2) 0

−l2(ω2)Φ −l2(ω2) 0

0 0 −l3(V2)RN

 (12)

The asymptotical stability of error system (11) can be guaranteed if the system matrix Ξ is a

Hurwitz matrix continuous in all fixed ω2 and V2 [15, Definition 2.1 and Procedure 4.1]. That is,

the observer gains l1(ω2), l2(ω2), and l3(V ) are selected such that the two diagonal blocks of Ξ

are Hurwitz stable for all fixed ω2 and V2. Usually, the observer gain is chosen to be constant but
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nonlinear gain design is also possible. In this work the observer gain matrices are selected as

l1(ω2) = diag{k1, k2}Φ−1

l2(ω2) = diag{k3, k4}

l3(V2) = diag{k5, k6}R−1
N

(13)

where ki ∈ R+, i = 1, ..., 6 are the observer gain parameters. By integrating the observer gains listed

in (13), the corresponding observer functions are obtained as p1(ω2) = l1(ω2)ω2, p2(ω2) = l2(ω2)ω2,

and p3(V2) = l3(V2)V2. The established stability of the error system (11) means that the estimates

β̂, d̂M̄ , and d̂F̄ can approach their actual values β, dM̄ , and dF̄ asymptotically regardless of the

control inputs. These estimates will be incorporated into a feedback control strategy to enhance the

control performance.

IV. Estimation Enhanced Command Filtered Basckstepping Control

In this section, the command filtered backstepping approach is selected to design a control law

for the tracking control of the helicopter. The longitudinal-lateral subsystem (4) is a fifth-order

system so that a five-step backstepping controller is built to generate the cyclic input ucyc to make

the helicopter track the pre-defined reference horizontal position P2,ref = [xref , yref ]
T . Applying

the CFBS algorithm introduced in [14] to this subsystem results in the control laws:



V2,d = −cP δP + Ṗ2,ref

R2,d = T−1(−cV δV − δ̄P + V̇2,c −RN d̂F̄ )

ω2,d = R−1
M (−cRδR − T δ̄V + Ṙ2,c)

βd = Φ−1(−cωδω −RM δ̄R + ω̇2,c − d̂M̄ )

ucyc = B−1(−cβδβ − Φδ̄ω −A1β̂ −A2ω2 + β̇c)

(14a)

(14b)

(14c)

(14d)

(14e)

where V2,d, R2,d, ω2,d, and βd are the desired virtual control signals that are used to control the

horizontal position, horizontal velocity, roll and pitch angle, and roll and pitch rate, respectively.

c(·) ∈ R+ are the control gains. The tracking errors are defined as δP = P2 −P2,ref , δV = V2 −V2,c,

δR = R2 − R2,c, δω = ω2 − ω2,c, and δβ = β̂ − βc where V2,c, R2,c, ω2,c, and βc are the command

signals that are generated sequentially. The command signals and their derivatives are produced
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by virtual control signals through command filters so that these relationships can be expressed as

[ V2,c V̇2,c ] = CF1(V2,d), [ R2,c Ṙ2,c ] = CF2(R2,d), [ ω2,c ω̇2,c ] = CF3(ω2,d), and [ βc β̇c ] =

CF4(βd). CF denotes the command filter which is a second-order low-pass filter to produce the

command signal and its derivative satisfying the magnitude, rate and bandwidth constraints [14].

The use of the command filter produces the difference between the command filter output and

the desired virtual control signal due to the filter dynamics and constraints. For example, supposing

that V2,c is the command filtered version of the desired virtual control signal V2,d, their difference

V2,c−V2,d denotes the unachieved portion. The effects of these unachieved portions can be removed

from the tracking errors δ(·) by constructing the compensating signals ξ(·), the dynamics of which

are expressed as 

ξ̇P

ξ̇V

ξ̇R

ξ̇ω


=



−cP ξP + (V2,c − V2,d) + ξV

−cV ξV + T (R2,c −R2,d) + TξR

−cRξR +RM (ω2,c − ω2,d) +RMξω

−cωξω +Φ(β̂ − βd) + Φξβ


(15)

where ξβ = 0. The compensated tracking errors are defined as δ̄(·) = δ(·) − ξ(·). By combining (4),

(14), and (15), the time derivatives of the compensated tracking errors are calculated as

˙̄δP

˙̄δV

˙̄δR

˙̄δω

˙̄δβ


︸ ︷︷ ︸

˙̄δ

=



−cP 1 0 0 0

−1 −cV T 0 0

0 −T −cR RM 0

0 0 −RM −cω Φ

0 0 0 −Φ −cβ


︸ ︷︷ ︸

Π



δ̄P

δ̄V

δ̄R

δ̄ω

δ̄β


︸ ︷︷ ︸

δ̄

+



0 0 0

0 0 RN

0 0 0

Φ 1 0

A1 0 0


︸ ︷︷ ︸

Γ


β̃

d̃M̄

d̃F̄


︸ ︷︷ ︸

d̃

(16)

The disturbance estimates d̂F̄ yielded by (9) and d̂M̄ by (6) are incorporated in (14b) and (14d) to

compensate for the influences of disturbances dF̄ and dM̄ . As the flapping angle β is unmeasurable,

it is replaced by its estimate β̂ obtained from (6) in the actual cyclic input (14e). Consequently, the

estimation errors d̃F̄ , d̃M̄ , and β̃ are coupled with compensated tracking errors in Eq. (16).

The overall structure of the disturbance observer based command filtered backstepping con-

troller, summarized by the set of Eqs. (6), (9), and (14), can be expressed in the block diagram

10



shown in Fig. 1.

Small-Scale Helicopter 

Rigid Body Dynamics 

Eq. (4)

ˆ ˆ ˆ
M F

, d , d

Command Filtered 

Backstepping

Eq. (14) 

Measured

States 

Reference 

Signal

Disturbance Observer
Eqs. (6) and (9)

latu

lonu

Fig. 1 Disturbance observer based command filtered backstepping control scheme

V. Stability Analysis

The stability of the resultant closed-loop system developed in Section IV is now analyzed. First,

the compensated tracking errors (16) can be written into the compact form:

˙̄δ = Πδ̄ + Γd̃ (17)

Considering d̃ as the input to system (17), the remaining ˙̄δ = Πδ̄ is the original unforced system.

Using V (δ̄) = 1
2 δ̄

T δ̄ as a Lyapunov function candidate, the derivative of V along the trajectory of

˙̄δ = Πδ̄ is

V̇ (δ̄) =
1

2
δ̄T (ΠT +Π)δ̄ =− cP δ̄

2
P − cV δ̄

2
V − cRδ̄

2
R − cω δ̄

2
ω − cβ δ̄

2
β

≤max{−cP ,−cV ,−cR,−cω,−cβ}∥δ̄∥2

It can be concluded from [16, Theorem 4.10] that system ˙̄δ = Πδ̄ has a globally exponentially stable

equilibrium point at the origin δ̄ = 0. Considering Πδ̄+Γd̃ is continuously differentiable and globally

Lipschitz in (δ̄, d̃), it follows [16, Lemma 4.6] that system (17) is input-to-state stable.

Combining the estimation error system (11) and compensated tracking error system (17), the

augmented closed-loop error system is expressed as
˙̄δ = Πδ̄ + Γd̃

˙̃
d = Ξd̃

(18)

Since system (17), with d̃ as input, is input-to-state stable and system (11) is globally asymptotically

stable, then the augmented error system (18) is globally asymptotically stable by following [16,
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Lemma 4.7]. It should be noticed that it is the compensated tracking error δ̄, not the actual tracking

error δ, that converges to zero. However, Theorem 2 in [14] ensures that as the natural frequency

ωn of the command filter increases, the performance of the command filtered backstepping can be

made arbitrarily close to that of the standard backstepping using analytic calculation of derivatives.

VI. Simulation Studies

This section evaluates the performance of the proposed disturbance observer based command

filtered backstepping. Comparison studies are carried out against the original CFBS controller. The

original CFBS controller uses the quasi-steady approximation (5) to calculate the cyclic input from

the desired flapping angle, which implies that it does not contain the last step (14e) of the proposed

control scheme. In the simulation, the helicopter, starting from the origin, is set to track a square

trajectory anticlockwise. The initial velocity is zero and the cruising velocity is up to 5m/s with

abrupt turns at each corners, which will excite large flapping motions. Throughout the maneuver

the altitude and heading angle are controlled to remain constant.

The simulation is based on the numerical model of the Raptor 90 small-scale helicopter where

the vehicle parameters can be found in [5] (see Table 1). The overall weight of the helicopter is

9.5 kg, the full length of fuselage is 1410mm, and the main rotor diameter is 1605mm. The designed

controller and observer gains are given in Table 2. Note that I2 denotes a second-order identity

matrix in the table. Because of the cascaded structural property of helicopter system and the time-

scale separation principle, it is natural to select the control gain of the former step larger than that

of the next step. Moreover, the observer gains k3 and k4 are chosen relatively large to make the

flapping angle estimation faster than the disturbance estimation. The command filter parameters

used for the simulation are given in Table 3. The magnitude and rate limitations are determined

by the physical constraints of the state variables, and it is also natural to select a lower natural

frequency ωn for the prior step.

To illustrate the benefits of estimating the flapping angles, the first simulation is carried out

without adding external disturbances and parameter uncertainties. As depicted in Fig. 2(a), the

original CFBS controller and the disturbance observer based CFBS controller are tuned to achieve

12



Table 1 Vehicle parameters

Parameter Value Parameter Value Parameter Value

Ab 2.223 Alat 12.50 Alon 141.08

Ba 2.448 Blat 180.98 Blon -10.29

Ixx 0.305 Iyy 0.684 Izz 0.787

La 55.86 Lb 708.02 Ma 345.19

Mb -23.03 Nr -11.445 Nped 2095.16

Ncol 256.42 τ 0.1078

Table 2 Controller and observer gains

Controller gains DO+CFBS CFBS Observer gains

cP I2 I2 k1, k2 20

cV 2I2 2I2 k3, k4 40

cR 10I2 10I2 k5, k6 20

cω 10I2 100I2

cβ 10I2

almost the identical trajectory. However, because the original CFBS controller ignores the transient

response of flapping dynamics in quasi-steady approximation (5), a large gain in the last step

(cw = 100I2) has to be adopted to deliver sufficient flapping angle moments and to achieve the fast

regulation. Another difference between the two methods can be seen in cyclic inputs ulat and ulon

from Fig. 2(b) where the original CFBS controller shows chattering control signals while those of

the disturbance observer based CFBS controller are much smoother. Therefore, incorporating the

Table 3 Command filter parameters

No. of CF Command variable ωn, deg/s Mag. limit Rate limit

CF1 V2,d 287I2 ±15I2 m/s ±5I2 m/s2

CF2 R2,d 1146I2 ±0.8I2 ±4I2 1/s

CF3 ω2,d 2005I2 ±114.6I2 deg/s ±573I2 deg/s
2

CF4 βd 3438I2 ±8.595I2 deg ±85.95I2 deg/s
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flapping angle estimates can help improve the control efficiency, reducing the workload of the servo

actuators and increasing their life.
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Fig. 2 Comparison without disturbance and uncertainty

The second simulation demonstrates the anti-disturbance property of the proposed compos-

ite controller. It assumes 30% uncertainties on the aerodynamic coefficients, a constant wind

disturbance of 5m/s acting on the helicopter, and a normalized lumped moment disturbance

dM̄ = [172 deg/s2, 172 deg/s2]T . Degradation of the tracking performance of the original CFBS

controller is visible in Fig. 3(a) while the tracking performance of the disturbance observer based

CFBS controller is hardly affected by the disturbances and uncertainties. The difference between

these two controllers is better revealed in the time history of the attitude angles in Fig. 3(b). Com-

pared to the top plot, the bottom plot shows oscillations, which implies that the helicopter achieves

better attitude stability with the disturbance observer based CFBS controller than with the original

CFBS controller. Moreover, Fig. 3(d) shows that the disturbances and uncertainties aggravate the

chattering of the control signals. Especially in the fourth segment when the helicopter is flying

against the wind along its right side, the oscillations of the attitude angles and control signals are

much severer. In contrast, the disturbance observer based CFBS controller retains the smooth con-

trol signals as shown in Fig. 3(c). Therefore, it can be concluded that the proposed disturbance

observer based CFBS controller not only improves the control efficiency but also provides enhanced

robustness against wind disturbances and parameter uncertainties.
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Fig. 3 Comparison with disturbances and uncertainties

VII. Conclusion

This paper introduced a composite control strategy, namely disturbance observer based com-

mand filtered backstepping, for improved tracking control, as demonstrated for a small-scale heli-

copter. A novel disturbance observer is proposed to estimate the unmeasurable flapping angles and

the lumped force and moment disturbances simultaneously. The acquired estimates are incorpo-

rated in a command filtered backstepping baseline controller to improve the control performance.

The global asymptotic stability of the closed-loop system is established through the cascaded sys-

tem analysis using the input-to-state stability property. Simulation results show that the proposed

composite control strategy achieves better tracking performance and robustness against parameter

uncertainties and wind disturbances. However, the more significant benefits of using the proposed
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composite controller are the improvement of control efficiency, the reduction of demand on actuators,

and the enhancement of attitude stability.
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