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Abstract 

This paper explains the methodology developed to design the yaw control system (heading 

control system) of the α-SAC UAV. The problem of modeling and controlling the tail motion 

of this UAV along a desired trajectory is considered. First, the response data of the system are 

collected during special flight test and a linear time invariant model is extracted by 

identification techniques. Then, the control system is designed and implemented using a PID 

feedback/feedforward control method. The technique is tested in simulation and validated in 

the autonomous flight of the small scale helicopter. 
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1. INTRODUCTION 

The Advanced Control Systems research group at Universitat Politècnica de Catalunya decided to 

develop a platform suitable for control algorithms test and design. The selected platform was a fleet of 

small scale unmanned autonomous helicopters (the acronym UAV is used for convenience). The long 

term research objective of the group is to design a fully autonomous and reliable helicopter autopilot, 

able to perform well with different UAV models and in different operating conditions. 

Helicopters are mechanically complex and their dynamic behavior is very unstable, apart from being 

nonlinear and multivariable, with strong couplings between variables. Those are the main reasons why 

they require a lot of work by the pilot during flight and the main motivation for the design of a reliable 

autopilot. The viability of the small scale helicopter as a multipurpose research vehicle has driven great 

interest these days [1]-[6]. 

This paper explains the hardware and software system designed and mounted on the commercial R/C 

models the group has. This system converts the models into real UAVs. The paper also describes the 

control architecture developed and shows results of the methodology carried out to design the yaw 

control system (lateral control system). The small scale helicopter used for the results given here is a 
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Thunder Tiger Raptor 30 model, named hereafter α-SAC. Fig. 1 (left) shows a picture of the α-SAC 

carrying all the instrumentation during one of the experiments.  
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Figure 1: α-SAC helicopter in autonomous flight (left) and block diagram (right) 

The paper is organized as follows: in section 2, the α-SAC hardware description is given; section 3 is 

devoted to the software design; section 4 describes the overall low-level autopilot control structure; the 

heading identification methodology is presented in section 5; the control design of the yaw dynamics 

and some results are given in section 6; finally, in Section 7 the main conclusions are summarized. 

 

2. HIGH LEVEL SYSTEM DESCRIPTION 

The UAV is configured around three subsystems: the helicopter, the command computer and the 

on-ground computer, as shown in fig. 1. The helicopter carries instrumentation, an on-board computer 

and a specialized microcontroller (µC). All the hardware devices are off the shelf commercial devices 

which were assembled, connected and programmed by the members of the research group. 

The command computer is used to operate the helicopter manually. It is used as a safety device in 

case there is a system malfunction. The human pilot controls the helicopter with a radio control attached 

to a special interface in the command computer. The computer sends the pilot’s commands to both the 

on-board computer and the µC via radio using a MaxStream XBeePRO modem. 

The helicopter system receives the pilot’s commands from the command computer with a 990.001 

XBee module and distributes them to the on-board computer and the µC through serial/USB 

connections. Several sensors are also attached to the on-board computer: an Inertial Measurement Unit 

(IMU) that measures, among other variables, the orientation of the helicopter (pitch, roll and yaw); a 

barometer, used to obtain the altitude and a camera, that can be used to have an onboard perspective.  

The µC is used to drive the helicopter’s servos. The information transmitted to the on-board 

computer by the sensors and/or the command computer is processed and transmitted via a wired serial 

connection to the specialized microcontroller. Nevertheless, when the human pilot needs to take control 

of the system, he turns a safety switch of the radio controller on and then the µC ignores everything but 

the pilot’s commands. 
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The on-ground computer connects to the on-board computer via standard Wi-Fi. The on-ground 

computer is used to monitor and control the UAV system. 

 

3. SOFTWARE DESCRIPTION 

The UAV system depends on the correct operation of several subsystems. Each of them is programmed 

for a specific task as described in the previous section. The most delicate part is the on-board computer 

since it is in charge of receiving data from sensors, receiving commands from the pilot (command 

computer), interacting with the supervising user, calculating control actions and finally issuing servo 

commands to the µC. 

 

Figure 2: Diagram of the α-SAC software system. Dotted boxes represent applications, each of them 

running in a different computer; grayed boxes represent physical devices; and white boxes represent 

threads. 

The on-board computer is a Linux machine with the real time kernel patch. Its processor is an Intel 

Atom Z530 at 1.6GHz with 1GB of board memory and the total weight of the computer is about 300gr. 

The program running in the on-board computer is organized as a multithreaded process. The 

communication between threads is accomplished through message queues. This way it is possible to 

have different cycle times for each thread and different types of communication needs solved in a very 

robust and homogeneous way. 

Sensor reading threads (labelled IMUsensor and AltSensor in fig. 2) are in charge of regularly 

collecting data from the inertial unit and the pressure sensor, respectively. They process the readings if 

necessary; for example, the altitude needs to be calculated from a filtered reading of the atmospheric 

pressure. Finally, they transmit the data through their message queues, which are of size one, allowing 

this way to send only the latest information from the sensors. Thread IControl behaves similarly but 

collecting data frames from the command computer instead of sensor readings. 

The Logger thread buffers all the data the DataController thread sends. Its cycle time is the largest in 

the application and so is its priority (large numbers mean less priority). When it has collected enough 
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data it sends the data through a standard Wi-Fi connection using the UDP protocol. 

The Supervisor thread is in charge of controlling the application operation mode. It is an 

asynchronous thread since it only reacts to commands sent from the on-ground computer application. 

Typical actions that this thread carries out are: changing the control mode from automatic to manual, 

changing the controller from one type another one, setting new values for setpoints, etc. 

Finally, the Control thread implements the control algorithms that drive one or more variables of the 

UAV autonomously. All the values of the helicopter servos are calculated each cycle, or obtained 

directly from the human pilot. Then they are sent to the Servos thread, which delivers them to the µC. 

The software system introduces unavoidable delays to the control loop. When the on-board computer 

is controlling directly the servos of the helicopter, there is a maximum delay of 30ms between sensor 

data acquisition and servo movement. The sampling time is 20ms so the delay introduced by the control 

system is between one and two samples. When the human pilot is controlling the helicopter the delay 

can rise up to approximately 55ms, including all the communications and computing delays. This delay 

is short enough to allow an experienced pilot to control the helicopter. 

 

4. CONTROL STRUCTURE 

The control architecture of an autonomous helicopter is a controversial topic, according to the variety of 

options found in the literature. The reason for that is that helicopter control involves several variables 

(attitude, position, velocity) which can be dealt with in various ways. 

Hierarchical control is often employed to separate attitude control from velocity or position control, 

as in [9]. In this case attitude control is in the lowest level loop. 

Even attitude can be treated in various ways. In [10] and [11] an independent control loop for pitch, 

roll and yaw is proposed. On the opposite side [12] uses a MIMO controller with four control actions 

and 8 measures. 

The control of a real helicopter is achieved through four flight controls operated by the pilot: the 

collective lever, the cyclic joystick, the lateral control pedals and the throttle. The first two are used to 

control the main rotor, the third one is for the tail rotor system and the last one is usually connected to a 

governor that depends on the amount of pitch in the main blades. 

Although the effects of each control handle are not strictly related to only one variable in the system, 

it is true that there is a dominant relation between each control and the key variables of the system as 

follows: the cyclic stick works in two dimensions affecting roll and pitch angles; the collective lever is 

used to control the altitude of the craft; finally, the lateral control pedals change the yaw angle or 

heading of the helicopter. 

The control structure used here for attitude control, shown in fig. 3, follows the structure of a real 

helicopter. There is a control loop for each actuator. 
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Figure 3: Control structure diagram. It shows the relations between the control variables that are taken 

into account. 

 

5. IDENTIFICATION OF α-SAC HEADING DYNAMICS 

To ensure the quality of data and obtain a model which represents the operation point dynamics reliably, 

flight experiments have to be carefully designed. The system is unstable and it cannot receive arbitrary 

input signals in open loop. Nevertheless, with the help of a skilled pilot, it is possible to place the 

helicopter in hover position and inject predesigned input sequences for a period of time during which 

the pilot does not operate on the commands. After that, or interrupting the experiment if the pilot feels it 

is necessary, the pilot recovers the control over the helicopter and it is safely returned to the ground. 

This way, all the experiments are virtually open loop experiments. Typical duration of an experiment is 

about 20s, which yields 1000 samples. 

The data sets used as inputs are the following: a 10s MLBS (Maximum Length Binary Signal) 

spanning frequencies from 0.1 Hz to 25 Hz; a 5s MLBS spanning frequencies from 0.2 Hz to 25 Hz; a 

20s multisine signal spanning frequencies from 0.5 Hz to 5 Hz; and a step signal. The amplitudes of the 

signals were tuned manually to make them as large as possible within the range of behaviors from 

which the pilot could recover the control of the helicopter. For the pedals input, u2, binary and multisine 

signals were used. For the collective input, u1, pulses inserted by hand were used. The amplitude was 

also tuned to be the largest. Fig. 4 shows sample fragments of the signals captured during the 

experiments. 

System identification, based on the prediction error method, is applied to α-SAC UAV as a MISO 

system. The ident Matlab toolbox is used and the reader is addressed to [7] for a very comprehensive 

review of the methods used along this section. The auto-regressive moving average exogenous 

(ARMAX) models and the state space (SS) models are used to describe the dynamics of this system. 

The SS and ARMAX models incorporate a polynomial that models additional information that is not 

a part of the model and is treated as noise. When the experiments are well designed and carried out, the 

data obtained has enough useful information of the models and this term and its effects are small. 

The noise term of the ARMAX model obtained has a large influence in the output, which means that 
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the resulting model does not describe well the helicopter.  
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Figure 4: Fragments of the signals captured during identification experiments. Red line, y, is the yaw 

angle; green line, u1, is the lateral control pedal signal; blue line, u2, is the collective lever signal. 

 

The selected model for the pedals-yaw relation is 
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with a loss function of 0.643393 and an FPE of 0.647958. 

For the collective-yaw relation we have: 
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with a loss function of 0.0248903 and an FPE of 0.0250202. 

The other method of identification was done considering a state space pre-fixed structure based on 

the physics model of the helicopter’s tail dynamics and on [8]. The identification algorithm used was 

PEM. The advantage of using this type of identification is that additional information of the system 

known beforehand can introduce in the model. 

The initial structure is 
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where x1 represents the angle, x2 the angular velocity, u1 the collective input, u2 the pedals input and y 

the yaw angle. The seed parameters are taken from [9]. a21=-.3, a22=.9 b21=.1 and b22=.2. 

In general these values show that the collective (u1) has a smaller influence in the yaw output than the 

pedals (u2) and that the system has and integrator effect. This linear model is assumed to be good 

enough when the output and inputs are small, the helicopter is hovering and the angular velocities are 

small. 

From the experiments of the pedals-yaw it is obtained: 
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with a loss function of 0.639837 and an FPE of 0.642947. 

For the collective-yaw relation it is obtained: 
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with a loss function 0.0254125 and FPE 0.0255121. 

The two model structures are evaluated in table I. The parameters compared are the 5-step prediction fit, 

FPE, loss function, the noise-output/u-output coefficient and the model order; the first parameter should 

be as high as possible, and for the rest of the parameter the lower the number is, the better. 

Table 1: ARMAX and SS Model Comparison 

 ARMAX SS 

 Collective Pedals Collective Pedals 

Fit id-data 95.57% 97.18% 96.02% 97.25% 

Fit val-data 96.39% 91.43% 95.97% 92.32% 

Noise-Y/u-Y 53 26.8 37 20.3 

FPE 0.02502 0.6479 0.02551 0.6429 

Loss 0.02489 0.6433 0.02541 0.6398 

Model Order 3 3 2 2 

 

Based on this comparison, that shows the slightly better results of the SS model compared to the 

ARMAX one, the SS model will be used along the rest of this work. 

Fig. 5 shows the time responses of the 5-step predicted output of the chosen model and the measured 

output.  
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Figure 5: Measured and model 5-step ahead predicted output for the pedals-yaw relation (left) and for 

the collective-yaw relation (right). Validation data set is used. 

 

The two transfer functions obtained from the SS model are: 
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6. CONTROL DESIGN 

A PID feedback controller is used for the pedals-yaw relation, and a feedforward controller for the 

collective-yaw relation. The control diagram is shown in fig. 6. Disturbance rejection is managed by the 

feedback loop but it also helps correcting the disturbances caused by changes on the cyclic commands. 

Disturbances correspond mainly to air gusts. The changes in collective are compensated for with the 

feedforward controller. 

feedforward
PID

feedback 
PID

yaw
dynamics

collective input

yaw
reference yaw input+

++
-

yaw angle

 

Figure 6: Block diagram of the yaw controller, considering two inputs, one output, a feedback controller 

and a feedforward controller. 

The controller is developed according to the following specifications: rise time of 1 sec., settling time 

smaller than 5 sec. and overshoot between 5% and 8%. The design is made focusing on disturbance 

rejection and the actuator’s ranges. The controller is designed using the sisotool of Matlab and 
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implemented and tested in simulation with Simulink. 

The amplitudes for the collective and pedals step signals are taken from the usual maximum 

variations that the inputs have in flight. The wind gust step value (load perturbation) is deduced with the 

help of the pilot. A step with amplitude of 5 produces 45 degrees per second change and is considered a 

high strength wind. A breeze corresponds to a value of 1 and causes an angular change of 9 degrees per 

second. The amplitude selected for the simulation is 2.5. 

The feedforward controller is 

 . (7) 

This part was first modeled as a pure static gain (FFgain=0.0147). It showed a very poor performance 

and its effect was barely noticeable, so the complete transfer function of the feedforward controller is 

used. 

The feedback controller transfer function is: 

 . (8) 

Its rise time is 0.201s, the overshoot is 61.3%, the settling time is 2.85s, the gain margin is 9.5 dB and 

the phase margin is 26.1˚. 

Fig. 7 shows the response of the system under control. The overshoot is higher than expected because 

this simulation includes delay terms not accounted for in the design. 
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Figure 7: Closed loop response. At time 1s there is a yaw set point change and at time 10s there is a 

collective change. Left figure corresponds to a feedback controller and right figure corresponds to a 

feedforward-feedback controller. 

Figure 8 shows the feedforward and feedback controllers working in the helicopter in flight. The 

controller is activated at time 20. After it is working we can see that the yaw angle stays around the 

reference of -165°; from this point until time 105 the “pedals” input is only modified by the controllers 

output. If we disregard the peaks that take place at time 60, that correspond to a bounce with the ground, 

the angle does not exceed 5 degrees of error. If we take close attention to the two input signals, we can 

see that the pedals’ input reacts to the movements of the collective; it is more noticeable at time 30, 55 
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(before the bump) and 75. Although Wind and air gusts were present during the experiment, they could 

not be measured, but their effects are reflected in the tracking of the reference. A simplified, but similar 

effect was seen in the simulation of the wind gust. 
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Figure 8: Experimental results of yaw controller. Top figure shows the inputs of the system; middle 

figure shows the altitude of the helicopter; and bottom figure shows the yaw angle and the set point. 

 

7. CONCLUSIONS 

This paper resents the control design of the yaw of an unmanned helicopter system using multi-loop 

control approach. System identification experiments are applied to model the yaw motion of the UAV 

then ARMAX and SS models are identified and validated. Accuracy of the model is verified by 

comparing real flight and simulation data obtained during the experiments. 

The controller for the yaw system consists of a feedforward and a feedback controller. Essentially the 

feedforward section consists in a mathematic cancellation of the signal that affects the system. In the 

simulations this controller shows good attenuation of the perturbation but not a complete cancellation 

due to the delays of the signals.  

The feedback controller is obtained by tuning the PID controller parameters taking into account the 

specifications proposed. The control design is validated experimentally showing good performance. 
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