9 research outputs found

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Uncertainty quantification for an electric motor inverse problem - tackling the model discrepancy challenge

    Get PDF
    In the context of complex applications from engineering sciences the solution of identification problems still poses a fundamental challenge. In terms of Uncertainty Quantification (UQ), the identification problem can be stated as a separation task for structural model and parameter uncertainty. This thesis provides new insights and methods to tackle this challenge and demonstrates these developments on an industrial benchmark use case combining simulation and real-world measurement data. While significant progress has been made in development of methods for model parameter inference, still most of those methods operate under the assumption of a perfect model. For a full, unbiased quantification of uncertainties in inverse problems, it is crucial to consider all uncertainty sources. The present work develops methods for inference of deterministic and aleatoric model parameters from noisy measurement data with explicit consideration of model discrepancy and additional quantification of the associated uncertainties using a Bayesian approach. A further important ingredient is surrogate modeling with Polynomial Chaos Expansion (PCE), enabling sampling from Bayesian posterior distributions with complex simulation models. Based on this, a novel identification strategy for separation of different sources of uncertainty is presented. Discrepancy is approximated by orthogonal functions with iterative determination of optimal model complexity, weakening the problem inherent identifiability problems. The model discrepancy quantification is complemented with studies to statistical approximate numerical approximation error. Additionally, strategies for approximation of aleatoric parameter distributions via hierarchical surrogate-based sampling are developed. The proposed method based on Approximate Bayesian Computation (ABC) with summary statistics estimates the posterior computationally efficient, in particular for large data. Furthermore, the combination with divergence-based subset selection provides a novel methodology for UQ in stochastic inverse problems inferring both, model discrepancy and aleatoric parameter distributions. Detailed analysis in numerical experiments and successful application to the challenging industrial benchmark problem -- an electric motor test bench -- validates the proposed methods

    The roles of random boundary conditions in spin systems

    Get PDF
    Random boundary conditions are one of the simplest realizations of quenched disorder. They have been used as an illustration of various conceptual issues in the theory of disordered spin systems. Here we review some of these result

    Complexity Reduction in Image-Based Breast Cancer Care

    Get PDF
    The diversity of malignancies of the breast requires personalized diagnostic and therapeutic decision making in a complex situation. This thesis contributes in three clinical areas: (1) For clinical diagnostic image evaluation, computer-aided detection and diagnosis of mass and non-mass lesions in breast MRI is developed. 4D texture features characterize mass lesions. For non-mass lesions, a combined detection/characterisation method utilizes the bilateral symmetry of the breast s contrast agent uptake. (2) To improve clinical workflows, a breast MRI reading paradigm is proposed, exemplified by a breast MRI reading workstation prototype. Instead of mouse and keyboard, it is operated using multi-touch gestures. The concept is extended to mammography screening, introducing efficient navigation aids. (3) Contributions to finite element modeling of breast tissue deformations tackle two clinical problems: surgery planning and the prediction of the breast deformation in a MRI biopsy device

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Cone Penetration Testing 2022

    Get PDF
    This volume contains the proceedings of the 5th International Symposium on Cone Penetration Testing (CPT’22), held in Bologna, Italy, 8-10 June 2022. More than 500 authors - academics, researchers, practitioners and manufacturers – contributed to the peer-reviewed papers included in this book, which includes three keynote lectures, four invited lectures and 169 technical papers. The contributions provide a full picture of the current knowledge and major trends in CPT research and development, with respect to innovations in instrumentation, latest advances in data interpretation, and emerging fields of CPT application. The paper topics encompass three well-established topic categories typically addressed in CPT events: - Equipment and Procedures - Data Interpretation - Applications. Emphasis is placed on the use of statistical approaches and innovative numerical strategies for CPT data interpretation, liquefaction studies, application of CPT to offshore engineering, comparative studies between CPT and other in-situ tests. Cone Penetration Testing 2022 contains a wealth of information that could be useful for researchers, practitioners and all those working in the broad and dynamic field of cone penetration testing

    Uncertainty Quantification with Applications to Engineering Problems

    Get PDF
    corecore