46,975 research outputs found

    MEdit4CEP: A model-driven solution for real-time decision making in SOA 2.0

    Get PDF
    Organizations all around the world need to manage huge amounts of data from heterogeneous sources every day in order to conduct decision making processes. This requires them to infer what the value of such data is for the business in question through data analysis as well as acting promptly for critical or relevant situations. Complex Event Processing (CEP) is a technology that helps tackle this issue by detecting event patterns in real time. However, this technology forces domain experts to define these patterns indicating such situations and the appropriate actions to be executed in their information systems, generally based on Service-Oriented Architectures (SOAs). In particular, these users face the incommodity of implementing these patterns manually or by using editors which are not user-friendly enough. To deal with this problem, a model-driven solution for real-time decision making in event-driven SOAs is proposed and conducted in this paper. This approach allows the integration of CEP with this architecture type as well as defining CEP domain and event pattern through a graphical and intuitive editor, which also permits automatic code generation. Moreover, the solution is evaluated and its benefits are discussed. As a result, we can assert this is a novel solution for bringing CEP technology closer to any user, positively impacting on business decision making processes

    A model-driven approach for facilitating user-friendly design of complex event patterns

    Get PDF
    Complex Event Processing (CEP) is an emerging technology which allows us to efficiently process and correlate huge amounts of data in order to discover relevant or critical situations of interest (complex events) for a specific domain. This technology requires domain experts to define complex event patterns, where the conditions to be detected are specified by means of event processing languages. However, these experts face the handicap of defining such patterns with editors which are not user-friendly enough. To solve this problem, a model-driven approach for facilitating user-friendly design of complex event patterns is proposed and developed in this paper. Besides, the proposal has been applied to different domains and several event processing languages have been compared. As a result, we can affirm that the presented approach is independent both of the domain where CEP technology has to be applied to and of the concrete event processing language required for defining event patterns

    Indexing the Event Calculus with Kd-trees to Monitor Diabetes

    Get PDF
    Personal Health Systems (PHS) are mobile solutions tailored to monitoring patients affected by chronic non communicable diseases. A patient affected by a chronic disease can generate large amounts of events. Type 1 Diabetic patients generate several glucose events per day, ranging from at least 6 events per day (under normal monitoring) to 288 per day when wearing a continuous glucose monitor (CGM) that samples the blood every 5 minutes for several days. This is a large number of events to monitor for medical doctors, in particular when considering that they may have to take decisions concerning adjusting the treatment, which may impact the life of the patients for a long time. Given the need to analyse such a large stream of data, doctors need a simple approach towards physiological time series that allows them to promptly transfer their knowledge into queries to identify interesting patterns in the data. Achieving this with current technology is not an easy task, as on one hand it cannot be expected that medical doctors have the technical knowledge to query databases and on the other hand these time series include thousands of events, which requires to re-think the way data is indexed. In order to tackle the knowledge representation and efficiency problem, this contribution presents the kd-tree cached event calculus (\ceckd) an event calculus extension for knowledge engineering of temporal rules capable to handle many thousands events produced by a diabetic patient. \ceckd\ is built as a support to a graphical interface to represent monitoring rules for diabetes type 1. In addition, the paper evaluates the \ceckd\ with respect to the cached event calculus (CEC) to show how indexing events using kd-trees improves scalability with respect to the current state of the art.Comment: 24 pages, preliminary results calculated on an implementation of CECKD, precursor to Journal paper being submitted in 2017, with further indexing and results possibilities, put here for reference and chronological purposes to remember how the idea evolve

    Extension to UML-B Notation and Toolset

    No full text
    The UML-B notation has been created as an attempt to combine the success and ease of use of UML, with the verification and rigorous development capabilities of formal methods. However, the notation currently only supports a basic diagram set. To address this we have, in this project, designed and implemented a set of extensions to the UML-B notation that provide a much fuller software engineering experience, critically making UML-B more appealing to industry partners. These extensions comprise five new diagram types, which are aimed at supplying a broader range of design capabilities, such as conceptual Use-Case design and future integration with the ProB animator tool

    Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Approach

    Full text link
    The adoption of blockchain-based distributed computation platforms is growing fast. Some of these platforms, such as Ethereum, provide support for implementing smart contracts, which are envisioned to have novel applications in a broad range of areas, including finance and Internet-of-Things. However, a significant number of smart contracts deployed in practice suffer from security vulnerabilities, which enable malicious users to steal assets from a contract or to cause damage. Vulnerabilities present a serious issue since contracts may handle financial assets of considerable value, and contract bugs are non-fixable by design. To help developers create more secure smart contracts, we introduce FSolidM, a framework rooted in rigorous semantics for designing con- tracts as Finite State Machines (FSM). We present a tool for creating FSM on an easy-to-use graphical interface and for automatically generating Ethereum contracts. Further, we introduce a set of design patterns, which we implement as plugins that developers can easily add to their contracts to enhance security and functionality

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専
    corecore