
A model-driven approach for facilitating user-friendly

design of complex event patterns

Juan Boubeta-Puig∗, Guadalupe Ortiz, Inmaculada Medina-Bulo

Department of Computer Science and Engineering, University of Cádiz,
C/ Chile 1, 11002 Cádiz, Spain

Abstract

Complex Event Processing (CEP) is an emerging technology which allows
us to efficiently process and correlate huge amounts of data in order to dis-
cover relevant or critical situations of interest (complex events) for a specific
domain. This technology requires domain experts to define complex event
patterns, where the conditions to be detected are specified by means of event
processing languages. However, these experts face the handicap of defin-
ing such patterns with editors which are not user-friendly enough. To solve
this problem, a model-driven approach for facilitating user-friendly design of
complex event patterns is proposed and developed in this paper. Besides, the
proposal has been applied to different domains and several event processing
languages have been compared. As a result, we can affirm that the presented
approach is independent both of the domain where CEP technology has to be
applied to and of the concrete event processing language required for defining
event patterns.

Keywords:
complex event processing, model-driven development, event processing
language, fast data

∗Corresponding author. Tel.: +34 956 01 56 92
Email addresses: juan.boubeta@uca.es (Juan Boubeta-Puig),

guadalupe.ortiz@uca.es (Guadalupe Ortiz), inmaculada.medina@uca.es (Inmaculada
Medina-Bulo)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio de Objetos de Docencia e Investigación de la Universidad de Cádiz

https://core.ac.uk/display/161360065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

In recent years, volumes of data produced by a variety of heterogeneous
sources have increased around the world (Tsuchiya et al., 2012). As a re-
sult, both Information Technology (IT) and business users need to efficiently
collect and process this huge amount of data in real time to discover rele-
vant situations which will allow driving successful business decisions or ac-
tions (Hansen, 2013).

In this regard, big data is an approach which helps to process this huge
amount of data. It is characterized in terms of the three V’s : Volume, Veloc-
ity and Variety (Russom, 2011). Volume refers to the amount of data that
can be managed and stored every day. Velocity is the big data dimension
which deals with measuring how fast data can be collected and analyzed.
Variety means the different existent data types: audio, video, text etc. How-
ever, big data normally focus on data previously collected and stored in
databases. For that reason, it is not the best solution to process data from
different sources in real time. To solve it, big data can be complemented with
fast data (Hansen, 2013), an approach which allows to continuously analyze
data and which can be characterized by a new dimension known as Value.
This dimension aims to determine why such data is important for business.

In order to detect relevant or critical situations in business, fast data
may be integrated with Complex Event Processing (CEP) (Luckham, 2002),
a technology that allows detecting meaningful events in real time and in-
ferring valuable knowledge for end users. For that purpose, the conditions
describing the situations to be detected must be specified by using special
templates known as event patterns. These patterns will be added into an
event processing engine, the software responsible for analyzing and correlat-
ing the events received from different sources, as well as for raising alerts to
users or systems interested in complex events (situations) generated by the
detected event patterns.

These event patterns are defined using specific languages —developed for
this purpose— known as Event Processing Languages (EPLs). Nevertheless,
a wide experience on EPLs is required for defining such patterns. Thereby,
one of the main drawbacks of using CEP by non-technical users, who are the
ones having the domain-specific knowledge on the pattern to be detected, is
the big learning curve necessary for becoming an expert in these languages.
Some software solutions, such as Esper’s editor (EsperTech Inc., 2013), Or-
acle CEP Visualizer (Oracle, 2013), StreamBase Studio (StreamBase, 2013)

2

and SAP Sybase ESP Studio (Sybase, 2013), provide graphical tools to ad-
dress this problem. Despite this fact, these tools are not user-friendly enough
since non-experts on CEP have to write some EPL code by hand.

As a solution, in this paper, we propose a model-driven approach so that
domain experts (but non experts on CEP) can concentrate in the graphi-
cal definition of event patterns in a user-friendly way without the need of
hand-writing any code. Afterwards, the required code will be automatically
generated. In concrete, our approach has four major contributions. Firstly,
a metamodel is proposed to define event patterns as models which do not de-
pend on the specific EPL required by the final engine used for complex event
processing. Secondly, a domain-independent editor is implemented from this
metamodel to facilitate user-friendly design of event patterns. Thirdly, a
model validation process checks the correctness of these event patterns rep-
resented as models. Fourthly, a model transformation process automatically
transforms such models into any particular EPL —Esper EPL code in this
work. Furthermore, a case study in the field of health care is described
and implemented for illustrating our proposal, which is also evaluated and
discussed.

The rest of this paper is organized as follows. Section 2 includes back-
ground on Model-Driven Software Development (MDSD), CEP and EPL.
Section 3 describes our model-driven approach in a nutshell and, afterwards,
this approach is detailed in the following sections. In concrete, Section 4
explains the EPL metamodel for defining event patterns, Section 5 describes
the implemented editor, Section 6 specifies the metamodel constraints and
Section 7 details the process for transforming event pattern models into EPL
code and the latter integration into a CEP engine. Then, Section 8 describes
the application of our approach in a health-care case study. Subsequently,
our approach is evaluated and discussed in Section 9. Some related works
are described in Section 10. Finally, the conclusion and future work are
highlighted in Section 11.

2. Background

In this section, the relevant subject matters for the scope of this paper,
MDSD, CEP and EPL, are introduced.

3

2.1. Model-driven software development

MDSD is an important paradigm in software development which aims to
find domain-specific abstractions and make them accessible by means of for-
mal modeling (Stahl et al., 2006). These abstract representations of aspects
of a system, known as models, are used as primary artifacts in the develop-
ment process (Hussmann et al., 2011). The key features of this paradigm is
that makes use of models of different levels of abstraction and provides model
transformations in order to automatically transform a model into another as
well as a model into implementation code.

Each model is an instance of a metamodel. In this scope a metamodel de-
scribes the structure of models in an abstract way. Particularly, a metamodel
is defined using a metamodel language joined to a set of rules which specify
the constraints so that the metamodel is well-formed. The most well-known
metamodel language is Ecore and the de facto standard for capturing such
constraints is Object Constraint Language (OCL).

This way, MDSD facilitates the automation of software production, in-
creasing the productivity, quality and maintainability of software systems
(Stahl et al., 2006). Even more, domain experts (non-technical users) can
also understand such models, so that they can play an active role in software
development.

2.2. Complex event processing

CEP is a cutting-edge technology which provides powerful techniques
for processing and correlating events in order to detect relevant or critical
business situations (complex events) in real time.

An event can be defined as anything that happens or could happen (Luck-
ham, 2012). Mainly, events can be classified into three categories: a simple
event is indivisible and happens at a point in time, a complex event con-
tains more semantic meaning which summarizes a set of other events, and
a derived event is generated when applying a process to one or more other
events (Event Processing Technical and Society, 2011). Events can be de-
rived from other events by applying or matching event patterns, templates
where the conditions describing the situations to be detected are specified. A
CEP engine is the software used to match these patterns over continuous and
heterogenous event streams (timely ordered sequence of events of multiple
types), and to raise alerts about the complex events created when detecting
such event patterns.

4

According to Vincent (2010), CEP systems, as well as other decision-
support systems such as expert systems take expert event-driven decisions,
where expert knowledge is encoded from the available subject matter ex-
perts. In addition, these systems use “rules” (or event patterns) to determine
whether stated goals (conditions) are fulfilled.

CEP can be applied to different areas. According to Luckham (2012,
chap. 5), some of the major areas for sales of CEP are: fraud detection
and security (Edge and Falcone Sampaio, 2012), transportation and traffic
management (Dunkel et al., 2011), health care (Yuan and Lu, 2009; Yao
et al., 2011), energy and manufacturing (Vikhorev et al., 2013), location-
based services (Uhm et al., 2011), financial systems and operations (Edge and
Falcone Sampaio, 2012), and operational intelligence in business (Chaudhuri
et al., 2011). Among other additional areas, CEP can also be applied to
home automation (Romero et al., 2011) and RFID signals (Yao et al., 2011).

To sum up, CEP allows detecting meaningful events and inferring valuable
knowledge for end users in different domains. The main advantage of using
this technology to process complex events is that the latter can be identified
and reported in real time, reducing the latency in decision making, unlike
the methods used in traditional software for event analysis.

2.3. Event processing language

As previously mentioned, in order to detect situations of interests on
specific areas it is necessary the definition of so-called event patterns. These
event patterns are defined using specific languages developed for this purpose
known as EPLs. According to Etzion and Niblett (2010), these languages can
be classified by the following language styles: stream-oriented, rule-oriented
and imperative.

Stream-oriented EPLs are SQL-like languages but including new con-
cepts, such as timing and temporal relationships. The learning curve is not
high because their syntax is very close to SQL, worldwide known. Some of
these EPLs are: Esper EPL (EsperTech Inc., 2013), CQL (Oracle, 2013),
StreamSQL (StreamBase, 2013) and CCL (Sybase, 2013). In this work, we
decided to transform graphical event patterns into Esper EPL since this lan-
guage provides more operators than the others and its open-source engine is
very efficient: it can process over 500,000 events/s (EsperTech Inc., 2013).

Rule-oriented EPLs implement event queries where condition expressions
are evaluated over a set of facts. Some of CEP solutions that provide rule-

5

oriented EPLs are: IBM Operational Decision Management (IBM, 2013),
Drools Fusion (JBoss, 2013) and ETALIS (ETALIS, 2013).

Imperative EPLs define rules in an imperative way where operators define
transformations over their inputs. Progress Apama (Progress Software, 2013)
is an event processing platform which provides this EPL style.

Further information about other existing EPLs and CEP systems can be
found in the survey by Cugola and Margara (2012).

3. Our approach in a nutshell

This section outlines the main contributions of our model-driven approach
to facilitate user-friendly design of complex event patterns. The ultimate
goal of this approach is the creation of a domain-independent editor allowing
non-technical users to graphically define event patterns in a user-friendly
way without the need of hand-writing any code. To reach this goal, we have
followed the steps below:

Firstly, a metamodel to enable models (event patterns) definition through
the use of such an editor has been defined (Section 4). One of the key
aspects of this metamodel is that event pattern definition does not depend
on the specific EPL required by the engine used for complex event processing.
Therefore, every event pattern is graphically designed by the user once and
then it can be automatically transformed into any particular EPL, such as
Esper EPL, CQL, StreamSQL or CCL, among others.

Secondly, a graphical editor has been implemented from this metamodel
(Section 5). This editor makes possible non-technical users to concentrate in
the definition of the relevant or critical situations to be detected based on
their expertise knowledge. These definitions can be reused on different IT
systems requiring the implementation of these event patterns in a different
specific language. According to Luckham (2012), “we must not confuse what
the event pattern is with how we specify it using a language”.

Thirdly, a model validation process which checks the correctness of these
event patterns represented as models has been provided (Section 6). Partic-
ularly, checking the correctness of a model includes examining three kinds
of properties: consistency —a model is inconsistent if it has some contra-
dictions, completeness —a model is incomplete if there are missing elements
which should be used to give an adequate specification— and validation —it
checks if the model formalizes the requirements correctly.

6

Finally, Section 7 defines a model transformation process in order to au-
tomatically transform such models into any particular EPL. In addition, the
generated code will be then automatically inserted in a concrete CEP engine.
Thanks to the transformations rules defined in this work, such patterns can
be automatically transformed into Esper EPL code and inserted in an Esper
engine.

4. The EPL metamodel

This section describes our metamodel for describing event patterns in a
user-friendly way. Defining these patterns as models allows domain experts
to be oblivious to the complexity of the concrete syntax corresponding to the
specific EPL which will be used to implement them.

Figure 1 shows the main metaclasses in our metamodel and their relation-
ships. We have only represented the main metaclasses to facilitate the com-
prenhension of the metamodel. The remaining metaclasses are described in
the following tables: a detailed description of the types of Operator metaclass
(ConditionOperator, PatternOperator and OutOperator) is given in Table 1,
a detailed description of the types of Operand metaclass (ConditionOperand,
PatternOperand and OutOperand) is given in Table 2 and a description about
DataWindow and PatternTimer is given in Table 3. The main metaclasses
in Figure 1 are described below following top-down and left-right order:

EPLModel It is the main concept of the metamodel and represents EPL
sentences. EPL models consist of three kinds of components: search
conditions, pattern and output. In order to establish the relationships
between the elements contained in these components, links are used.

Link It defines the graphical representation of one or more relationships
between operators and operands. Each link is characterized by an order
(0, 1 . . . N) that is used to enumerate the operands that participate in
a relationship; order set to 0 indicates that it is not relevant in that
relationship.

Operator It is used to express a specific operation between one or more
operands. The description of the types of Operator metaclass is de-
scribed in Table 1.

7

EP
LM

od
el

m
od

el
N

am
e

: E
St

rin
g

Li
nk

or
de

r :
 E

In
t

O
pe

ra
to

r
O

pe
ra

nd

Se
ar

ch
Co

nd
iti

on
s

na

m
e

: E
St

rin
g

Pa
tt

er
n

na
m

e
: E

St
rin

g
O

ut
pu

t
na

m
e

: E
St

rin
g

O
ut

pu
tP

ro
pe

rt
y

na

m
e

: E
St

rin
g

O
ut

Ex
pr

es
si

on

O
ut

O
pe

ra
to

r
O

ut
O

pe
ra

nd

Co
nd

iti
on

El
em

en
t

Pa
tte

rn
El

em
en

t

D
at

aW
in

do
w

W
in

do
w

El
em

en
t

Pa
tte

rn
Ex

pr
es

si
on

Pa
tte

rn
Co

nd
iti

on

Pa
tte

rn
O

pe
ra

to
r

Pa
tte

rn
O

pe
ra

nd

Co
nd

iti
on

Ex
pr

es
si

on

Co
nd

iti
on

O
pe

ra
to

r
Co

nd
iti

on
O

pe
ra

nd

Pa
tte

rn
Ti

m
er

U
na

ry

Bi
na

ry

N
ar

y

O
ut

pu
tE

le
m

en
t

O
ut

pu
tG

ro
up

By

op
er

at
or

To
O

pe
ra

nd0.
.*

se
ar

ch
Co

nd
iti

on
s

0.
.1

pa
tt

er
n

0.
.1

ou
tp

ut
0.

.1

op
er

at
or0.

.1
op

er
an

d
0.

.1

ou
tb

ou
nd

Li
nk

0.
.*

in
bo

un
dL

in
k

0.
.*

co
nd

iti
on

El
em

en
t

1.
.*

pa
tt

er
nE

le
m

en
t

1.
.*

ou
tE

xp
re

ss
io

n
1.

.*
w

in
do

w
El

em
en

t
1.

.*

pa
tt

er
nE

xp
re

ss
io

n

1.
.*

ou
tp

ut
El

em
en

t
1.

.*

Figure 1: EPL metamodel.

8

T
y
p
e

S
u
b
ty

p
e

O
p
e
ra

to
r

A
ri
ty

D
e
sc
ri
p
ti
o
n

P
a
tt

er
n

O
pe

ra
to

r
E

ve
ry

U
It

ke
ep

s
fi

ri
n

g
w

h
en

en
co

u
n
te

ri
n

g
th

e
sp

ec
ifi

ed
pa

tt
er

n
ex

p
re

ss
io

n
.

E
ve

ry
D

is
ti

n
ct

U
It

is
si

m
il

ar
to

E
ve

ry
,

b
u

t
el

im
in

at
in

g
d

u
p

li
ca

te
re

su
lt

s
ac

co
rd

in
g

to
a

gi
ve

n
d
is

ti
n

ct
-v

a
lu

e
ex

p
re

ss
io

n
.

F
o
ll

o
w

ed
B

y
N

It
d

et
er

m
in

es
a

pa
tt

er
n

ex
p
re

ss
io

n
m

u
st

b
e

fo
ll

o
w

ed
by

an
ot

h
er

.
R

a
n

ge
U

It
sp

ec
ifi

es
th

e
m

in
im

u
m

n
u

m
b

er
of

ti
m

es
w

h
ic

h
th

e
pa

tt
er

n
ex

-
p
re

ss
io

n
as

so
ci

at
ed

w
it

h
U

n
ti

l
m

u
st

b
ec

om
e

tr
u

e.
R

ep
ea

t
U

It
d

efi
n

es
h

ow
m

an
y

ti
m

es
a

pa
tt

er
n

ex
p
re

ss
io

n
m

u
st

b
e

re
p

ea
te

d
.

U
n

ti
l

B
It

m
at

ch
es

a
pa

tt
er

n
ex

p
re

ss
io

n
u

n
ti

l
th

e
co

n
d

it
io

n
(a

n
ot

h
er

pa
t-

te
rn

ex
p
re

ss
io

n
)

is
ev

al
u

at
ed

to
tr

u
e.

W
h
il

e
B

It
m

at
ch

es
a

pa
tt

er
n

ex
p
re

ss
io

n
w

h
il

e
th

e
co

n
d

it
io

n
(a

n
ot

h
er

pa
t-

te
rn

ex
p
re

ss
io

n
)

is
ev

al
u

at
ed

to
tr

u
e.

P
a
tt

er
n

O
pe

ra
to

r
&

L
og

ic
a
l

A
n

d
N

It
re

tu
rn

s
a

tr
u

e
va

lu
e

on
ly

if
al

l
o
pe

ra
n

d
s

ar
e

tr
u

e.
C

o
n

d
it

io
n

O
pe

ra
to

r
N

o
t

U
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if

th
e

o
pe

ra
n

d
is

fa
ls

e,
an

d
a

fa
ls

e
va

lu
e

if
th

e
o
pe

ra
n

d
is

tr
u

e.
O

r
N

It
re

tu
rn

s
a

tr
u

e
va

lu
e

if
at

le
as

t
on

e
o
pe

ra
n

d
is

tr
u

e.

C
o
n

d
it

io
n

O
pe

ra
to

r
C

o
m

pa
ri

so
n

E
qu

a
l

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1

=
op
er
a
n
d
2.

G
re

a
te

rE
qu

a
l

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1
≥

op
er
a
n
d
2.

G
re

a
te

rT
h
a
n

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1
>

op
er
a
n
d
2.

L
es

sE
qu

a
l

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1
≤

op
er
a
n
d
2.

L
es

sT
h
a
n

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1
<

op
er
a
n
d
2.

N
o
tE

qu
a
l

B
It

re
tu

rn
s

a
tr

u
e

va
lu

e
if
op
er
a
n
d
1
6=

op
er
a
n
d
2.

C
o
n

d
it

io
n

O
pe

ra
to

r
A

ri
th

m
et

ic
A

d
d
it

io
n

B
It

su
m

s
tw

o
n
u

m
er

ic
va

lu
es

.
&

O
u

tO
pe

ra
to

r
D

iv
is

io
n

B
It

d
iv

id
es

on
e

n
u

m
er

ic
va

lu
e

b
y

an
ot

h
er

.
M

od
u

lu
s

B
It

re
tu

rn
s

th
e

re
m

ai
n

d
er

of
d

iv
id

in
g

on
e

n
u
m

er
ic

va
lu

e
b
y

an
ot

h
er

.
M

u
lt

ip
li

ca
ti

o
n

B
It

m
u

lt
ip

li
es

tw
o

n
u

m
er

ic
va

lu
es

.
S

u
bt

ra
ct

io
n

B
It

su
b

tr
ac

ts
on

e
n
u

m
er

ic
va

lu
e

fr
om

an
ot

h
er

.

O
u

tO
pe

ra
to

r
A

gg
re

ga
te

A
vg

U
It

re
tu

rn
s

th
e

av
er

ag
e

of
th

e
va

lu
es

in
an

ex
p

re
ss

io
n

.
F

u
n

ct
io

n
C

o
u

n
t

U
It

re
tu

rn
s

th
e

n
u

m
b

er
of

th
e

va
lu

es
in

an
ex

p
re

ss
io

n
.

M
a
x

U
It

re
tu

rn
s

th
e

h
ig

h
es

t
va

lu
e

in
an

ex
p

re
ss

io
n

.
M

in
U

It
re

tu
rn

s
th

e
lo

w
es

t
va

lu
e

in
an

ex
p

re
ss

io
n

.
S

u
m

U
It

ad
d
s

th
e

va
lu

es
in

an
ex

p
re

ss
io

n
.

T
ab

le
1:

M
et

am
o
d

el
o
p

er
a
to

rs
(U

=
U

n
a
ry

,
B

=
B

in
a
ry

,
N

=
N

-a
ry

).

9

Type Operand Description

PatternOperand AtTimer It turns into true at a defined time (minutes,
hours, daysOfMonth, months, daysOfWeek or
seconds).

IntervalTimer It waits for the specified time period (years,
months, weeks, days, hours, minutes, seconds
and milliseconds) before turning to true.

PatternOperand &
ConditionOperand

Event An event is a domain relevant concept. Every
event must have a type name and can contain
different properties.

ConditionOperand Property A property describes a feature of an event.
Every property must have a name associated
with one of the following types: boolean, dou-
ble, float, integer, long or string. A property
can be linked to different property references.

ConditionOperand &
OutOperand

Value It defines a boolean, double, float, integer, long
or string value.

OutOperand PropertyReference It allows to reference a property. Therefore,
a property is created once into an event and
can be used several times by means of this
operand.

Table 2: Metamodel operands.

10

Type Window/Timer Description

DataWindow Length Sliding window by the specified number of
events (size).

LengthBatch Tumbling window up to the specified number of
events (size).

Time Sliding window by the specified time period
(years, months, weeks, days, hours, minutes, sec-
onds and milliseconds).

TimeAccumulating Sliding window accumulating events until no
more events arrive within a given time period.

TimeBatch Tumbling window that batches events and re-
leases them every specified time period.

TimeLengthBatch It is a combination of LengthBatch and Time-
Batch windows.

PatternTimer WithinTimer It is permanently evaluated to false if the asso-
ciated pattern expression does not turn to true
during the specified time period.

WithinMaxTimer It is similar to WithinTimer. It is permanently
evaluated to false if the associated pattern ex-
pression does not turn to true during the spec-
ified time period, or the number of matches
reaches the maxCount counter.

Table 3: Metamodel data windows and pattern timers.

11

Operand A data on which an operator is performed. The description of the
types of Operand metaclass is described in Table 2.

Unary A unary operator has only an operand. Therefore, it is not necessary
to specify the order of the link that connects the operator with the
operand.

Binary A binary operator has two operands. Some binary operators require
the definition of order for the links connected to their operands.

Nary A n-ary operator has two or more operands. The Followed-By operator
requires the definition of order for the links connected to their operands.

SearchConditions This component represents the conditions that can be
defined to join event streams or filter events. These conditions can be
defined by means of data windows and condition expressions.

DataWindow It specifies a bounded set of events from an event stream.
A data window can contain other data windows, condition expressions
or pattern expressions. The descriptions of data windows are given in
Table 3.

ConditionOperator It defines the types of operators which can be con-
tained into a search conditions component: arithmetic, comparison and
logical.

ConditionOperand It defines the types of operands which can be contained
into a search conditions component: value, property and event.

Pattern An event pattern is a template specifying conditions which can
match sets of related events. These conditions can be defined by means
of data windows and pattern expressions. A pattern condition can be
described by means of pattern operands, pattern operators and condition
expressions.

PatternTimer It represents the time conditions for an event pattern. A
pattern timer can contain other pattern timers or pattern conditions.
The descriptions of pattern timers are given in Table 3.

PatternOperator It describes the types of operators which can be con-
tained into a pattern component: logical and specific pattern operators.

12

PatternOperand It describes the types of operands which can be contained
into a pattern component: event and pattern timer.

Output This component defines the results to be obtained from the search
condition or pattern components. These results can be summarized as
a set of other events, in this case creating a complex event.

OutputGroupBy It divides the output into groups of one or more event
property names. It contains one or more property references linked to
such event properties.

OutputProperty It describes one of the properties which form the EPL
output. It contains one or more out expressions.

OutOperator It represents the types of operators which can be contained
into an output property : aggregate function and arithmetic.

OutOperand It represents the types of operands which can be contained
into an output property : value and property reference.

5. The event pattern editor

The Epsilon family of languages (Kolovos et al., 2013) has been used to
implement this editor. Epsilon provides EuGENia (Epsilon, 2013), a tool
which generates automatically the models needed for the implementation
of a Graphical Modeling Framework (GMF) editor resulting from a single
annotated Ecore metamodel. This editor allows to create models (event
patterns) conforming to our EPL metamodel which will be saved as XML
Metadata Interchange (XMI) files.

There are two relevant elements in the editor: the palette and the canvas.
The palette has been customized using Epsilon Object Language (EOL)

(Kolovos et al., 2013, chap. 3), an imperative language inspired by OCL,
classifying its elements into the following ten groups:

Connections It contains the Link tool for linking operators to operands. It
also contains the PropertyToReference tool for linking event properties
(Property) to references of event properties (PropertyReference).

Components It groups the tools corresponding to the following metamodel
classes: Output, Pattern and SearchConditions.

13

Elements It groups the tools corresponding to the following metamodel
classes: Event, OutputProperty, OutputGroupBy, Property, PropertyRef-
erence and Value.

Arithmetic Operators It contains tools for all arithmetic operators de-
fined in our metamodel.

Comparison Operators It contains tools for all comparison operators de-
fined in our metamodel.

Logical Operators It groups the tools for all logical operators defined in
our metamodel.

Pattern Operators It contains all pattern operators defined in our meta-
model, except And, Or and Not operators which have been already
included in the Logical Operators group.

Pattern Timers It includes both pattern operands (AtTimer and Interval-
Timer) and pattern timers (WithinTimer and WithinMaxTimer).

Aggregate Functions It specifies tools for the aggregate functions included
in our metamodel: Avg, Count, Max, Min and Sum.

Data Windows It contains the tools for data windows described in our
metamodel.

The canvas is the editor area where the elements in the palette can be
inserted, in a drag-and-drop fashion, to define models that conform to our
metamodel. These elements’ attributes can be set both in a graphical way
and using the application’s properties view.

This canvas can only contain components, i.d. domain experts can only
drag and drop SearchConditions, Pattern or Output components into the can-
vas. The rest of palette tools can be drag and drop into such components.
Notice that a particular palette tool can be used in a specific component if
the obtained model is conformed to our metamodel and is also correct ac-
cording to the metamodel constraints defined in Section 6. Some screenshots
which illustrate the implemented graphical modeling editor can be seen in
Section 8.2.

14

6. Model validation

This section describes the model validation process which checks the cor-
rectness of event patterns represented as models (metamodel instances). To
this end, we enriched our metamodel with the following textual constraints
for specific metaclasses:

• It must be named: EPLModel, Event and Property metaclasses.

• Pattern or SearchConditions must be included: EPLModel metaclass.

• An operator cannot be linked to itself or another identical operator :
Link metaclass.

• It must be linked to pattern operands : PatternOperator metaclass.

• It must be linked to condition operands : ConditionOperator metaclass.

• It must be linked to out operands : OutOperator metaclass.

• It must have 1 outbound link : Unary metaclass.

• It must have 2 outbound links with orders 1 and 2, or both 0: Binary
metaclass.

• It must have at least 2 outbound links with orders 1, 2 . . . N , or all set
to 0 (except FollowedBy): Nary metaclass.

• It cannot be linked to Event and both operands must have the same
data type: Arithmetic and Comparison.

• An appropiate value must be set according to its data type: Value
metaclass.

• It must contain unique properties : Event metaclass.

• All contained PropertyReference must be unique: EveryDistinct and
OutputGroupBy metaclasses.

• lowEndpoint ≤ highEndpoint : Range metaclass.

• None of referenced properties must be used with aggregate functions :
OutputGroupBy metaclass.

15

• Attributes must be positive: AtTimer, EveryDistinct, IntervalTimer,
Length, LengthBatch, LengthBatchWithinTimer, Repeat, Time, TimeAc-
cumulating, TimeBatch, TimeLengthBatch, WithinTimer and Within-
MaxTimer metaclasses.

These metamodel constraints have been defined using Epsilon Validation
Language (EVL) (Kolovos et al., 2013, chap. 4). Although OCL is the de
facto standard for capturing constraints in modeling languages, it has several
shortcomings compared to EVL. OCL does not support meaningful messages
that can be reported to the end user. In addition, OCL supports only errors
(not warnings) and does not accept repairing inconsistencies as EVL does,
among others.

7. EPL code generation and insertion in a CEP engine

Once event patterns have been modeled by domain experts and automat-
ically validated with the help of our implemented editor, the last step of our
model-driven approch consists of transforming the event pattern models into
EPL code.

As previously mentioned, one of the relevant features of our approach is
that domain experts only have to define event patterns once. Afterwards,
our editor will be able to transform them into different EPLs. To this end,
it will be necessary to create a new module which allows us to transform the
defined patterns into a particular EPL.

In order to transform these graphical models into Esper EPL code, we
have created a module using Epsilon Generation Language (EGL) (Kolovos
et al., 2013, chap. 7), a language for model-to-text transformation. In addi-
tion, this module will automatically deploy this EPL code into Esper engine.
For this purpose we have made use of the API provided by this engine.

It is important to highlight that, although we have only transformed event
pattern models into Esper EPL, our editor can be extended to support other
EPLs, creating such a module per EPL to be incorporated.

8. Defining event patterns with the editor

In this section, we specify the phases to be followed to make use of our
approach for facilitating user-friendly design of complex event patterns . Af-
terwards, we apply it to a health-care scenario. In concrete, we propose and

16

Design time Runtime

User-friendly
graphical specification
of event pattern

Automated
validation of
event pattern

Automated code
generation of EPL
event pattern

Automated
insertion of EPL
code in CEP engine

Automated
event pattern
detection

select *
from pattern [
 every e = Event]

CEP engine

Situation 1

Situation n

...

21 4 53

Figure 2: Phases of our approach for defining event patterns in a user-friendly way.

define some event patterns to detect influenza outbreaks around the world.
Then, these patterns are defined graphically making use of our editor.

8.1. Overview

The phases to be followed for defining event patterns with our model-
driven approach are detailed below (see Figure 2):

1. Event pattern modeling: the domain expert is responsible for graph-
ically defining the event patterns to be detected in a specific scenario,
such as health care or stock market. The obtained models (event pat-
terns) will conform to our metamodel described in Section 4.

2. Event pattern validation: once an event pattern is modeled, the
editor will validate it by means of the metamodel constraints defined
in Section 6. If the model is not correct, then the editor will show the
errors which must be solved before going on.

3. Model-to-code transformation: the event pattern model will be
automatically transformed into EPL code. This code will depend on
the specific EPL provided by the chosen CEP engine, as explained in
Section 7.

4. Insertion of EPL code in a CEP engine: the EPL code of the
modeled event pattern will be automatically inserted into the CEP
engine at runtime (also explained in Section 7).

5. Pattern detection: from this moment, the engine will be able to
detect the new critical or relevant business situation described by the
EPL event pattern recently added to the engine.

Notice that the first three phases are executed at design time and the last
ones at runtime.

17

8.2. Case study of influenza outbreaks

In this case study we illustrate our approach in the domain of health care.
In particular, we propose to detect epidemics and pandemics of influenza in
real time around the world. Thereby, CEP would allow health officials to
mitigate as soon as possible the impact of epidemics and global pandemics.

8.2.1. Event patterns for detecting influenza outbreaks

In order to detect influenza outbreaks by means of CEP technology, it
is necessary the definition of a set of event patterns for this domain. To do
this, we did some research in this field, thanks the help of specialist health
books and websites (WHO, 2013; Longo et al., 2012) as well as the expertise
and knowledge of Spanish National Health System’s workers.

According to real requirements for detecting influenza cases, we defined
the following complex event patterns:

Influenza possible case This pattern detects possible occurrences of in-
fluenza cases, when the following conditions are fulfilled:

1. The patient has fever (above 38 ◦C) and myalgia.

2. The patient has mucus, sneeze, sore throat or cough.

3. The patient has chill, headache or fatigue.

Influenza epidemic case There are 25 influenza possible cases of influenza
in a particular country during 5 days.

Influenza pandemic case There are 2 or more influenza epidemic cases
during 3 days.

Notice that the number of cases and days for detecting epidemic and pan-
demic cases would be different depending on external factors from different
countries. Nevertheless, this fact is not relevant to demonstrate the usabil-
ity and functionality of our editor since the domain expert can graphically
change such numbers at any moment.

The following step consists of graphically defining the event patterns using
our implemented editor.

18

8.2.2. Graphical definition and EPL code of influenza possible case

Figure 3 highlights the model of influenza possible case pattern obtained
as a result of using the different tools provided by the editor palette.

First of all, a Pattern component is dropped into the editor canvas in order
to define the conditions to be matched. An event element is then included
into Pattern and named as PatientStatus, the simplest event in this scenario
which represents a particular status of a patient which visits a doctor in a
hospital. All events are represented by E letter in the model. Its properties,
represented by P letter, are the following: the timestamp when the patient
status was registered in the system, the id of this patient, the location where
the patient was reviewed by the doctor, and the symptoms which the patient
had: temperature, myalgia, mucus, sneeze, sore throat, cough, chill, headache
and fatigue. Afterwards, such symptoms are connected by comparison and
logical operators to define the conditions of the pattern. Besides, the every
pattern operator is connected to PatientStatus in order to analyze all events
of this type.

If the conditions of the pattern are matched, then we are interested in cre-
ating a new event of InfluenzaPossibleCase type, which will summarize such
situation. This complex event will only have three new properties: registra-
tionTime, patientId and possibleCaseLocation that are the same properties
of PatientStatus (timestamp, id and location, respectively) but with other
more meaningful names, i.d. these new properties are alias of the other ones.
These associations are made by means of PropertyToReference links.

The model is conformed to our metamodel, and therefore it is properly
validated. We are aware of this because there are no cross symbols in the
figure indicating that there are problems with any element in the model. An
example of this type of errors can be seen in Section 8.2.4.

Once the model is validated, it can be automatically transformed into
EPL code. To achieve this goal, the domain expert will select the option
Transform the model into EPL code of the context menu of the editor. The
EPL code generated by the editor is shown below:

@Name(’InfluenzaPossibleCase’)

insert into InfluenzaPossibleCase

select p.timestamp as registrationTime, p.id as patientId,

p.location as possibleCaseLocation

from pattern[every p = PatientStatus(

(temperature > 38) and myalgia

19

Figure 3: Event pattern model of influenza possible case.

20

and (mucus or sneeze or soreThroat or cough)

and (chill or headache or fatigue))]

Notice that the select clause specifies the event properties or events to
be retrieved, and the from clause indicates the pattern (or event streams) to
be used. The insert into is used to make available the results of the event
pattern as an event stream (complex events) so that they can be used in
further event patterns —it can also be used to merge multiple event streams
in order to form a single event stream.

Finally, according to our approach, this code will be dynamic and auto-
matically inserted into the CEP engine to start detecting this new pattern.

8.2.3. Graphical definition and EPL code of influenza epidemic case

Figure 4 shows the graphical definition of influenza epidemic case. In this
case, the conditions must be satisfied within 5 days. For that purpose, all
the conditions are included into a 5-day WithinTimer.

As previously mentioned, this pattern is detected if there are 25 influenza
possible cases of influenza in a particular country during 5 days. In other
words, it is satisfied if there is an InfluenzaPossibleCase event followed by 24
more InfluenzaPossibleCase, with the restriction that all of these 25 events
belong to the same country (location). Because of we are not interested in
detecting more than one influenza epidemic by country, in this model we use
the every-distinct operator containing the reference to the location property,
instead of the every operator.

As represented by the output component, if the pattern is satisfied then
InfluenzaEpidemicCase complex events will be created with a new property:
epidemicCaseLocation.

In Figure 4 it can be checked that end users will be able to define the
value of properties graphically or by making use of the property panel.

The EPL code generated by the editor is shown below:

@Name(’InfluenzaEpidemicCase’)

insert into InfluenzaEpidemicCase

select i.possibleCaseLocation as epidemicCaseLocation

from pattern[every-distinct(i.possibleCaseLocation)

i = InfluenzaPossibleCase -> [24] InfluenzaPossibleCase(

possibleCaseLocation = i.possibleCaseLocation)

where timer:within(5 days)]

21

Figure 4: Event pattern model of influenza epidemic case.

22

Figure 5: Event pattern model of influenza pandemic case.

8.2.4. Graphical definition and EPL code of influenza pandemic case

Figure 5 sketches the graphical definition of influenza pandemic case. In
this case, a 3-day WithinTimer contains an InfluenzaEpidemicCase event,
which is linked by the range repetition operator.

As the figure shows, this model does not conform to the metamodel since
the defined range operator is not correct. The error message reports that
“lowEndpoint value must be less or equal than highEndpoint value”. So this
model would not be transformed into EPL code as long as such operator is
properly defined.

In this model, the output component —called InfluenzaPandemicCase—
is empty. This means that the complex events generated by this event pattern
will have the same properties of influenza-epidemic-case event type.

The EPL code generated by the editor is shown below:

@Name(’InfluenzaPandemicCase’)

insert into InfluenzaPandemicCase

select *

from pattern[[2:242] InfluenzaEpidemicCase

where timer:within(3 days)]

Notice that this code has been generated by the editor once the end
user has changed the wrong value of highEndpoint into 242, which is greater
than 2.

9. Evaluation and discussion

In this section we demonstrate that our model-driven approach for defin-
ing event patterns allows us to transform them into different EPLs. There-

23

fore, it makes possible that the event patterns designed by domain experts
can be reused in IT systems that use different CEP engines to generate rel-
evant alarms in real time. Furthermore, we check that our approach can be
applied to different domains where CEP technology is required.

9.1. Metamodel evaluation

We have evaluated that our EPL metamodel allows us to define event
patterns as models regardless of the EPL used by a concrete CEP engine.
For this purpose, it is fundamental to check if the event pattern models,
conformed to our metamodel and created with our editor, can be transformed
into other EPLs apart from Esper EPL. As previously mentioned, we decided
to generate Esper EPL code in this work since it provides more pattern
operators compared to the other evaluated languages.

To demonstrate such assertion, we have done a comparison (see Table 4)
where we determine how every metaclass of the model elements used in any
of the event patterns graphically defined in this paper would be transformed
into Esper EPL, CQL, StreamSQL and CCL code, among others. These
metaclasses have been selected as representative samples for the paper, but
we conducted this study for all the metaclasses in the model.

We summarizes the most important aspects of this comparison in the
following paragraphs:

Table 4 shows how some metaclasses are equivalent to more than one
clause in EPL code. Concretely, SearchConditions component is equivalent
to both from and where clauses while Output component is equivalent to
both insert into and select. We have defined our metamodel in that way
so that domain experts do not have to know what these specific clauses mean;
they only have to focus on designing the search conditions and the output
they would like to obtain.

The Every metaclass is not equivalent to any StreamSQL or CCL oper-
ator. This is because when an StreamSQL or CCL pattern is defined it will
automatically look for all events which can be matched, without the need
of using a specific operator, but providing the same functionality that Every
operator.

The EveryDistinct metaclass is not equivalent to any CQL or CCL op-
erator. However, there is an alternative to EveryDistinct which consists of
using Every plus And and Not operators. For instance, the Esper expres-
sion every-distinct (a.id) a = Event is equivalent to every a = Event

and not b = Event(b.id = a.id). Taking this equivalence into account,

24

Metaclass Esper EPL CQL StreamSQL CCL

SearchConditions from FROM FROM FROM

where WHERE WHERE WHERE

Pattern from pattern MATCHING MATCHING FROM PATTERN

Output insert into INSERT INTO INSERT INTO INTO

select SELECT SELECT SELECT

as AS AS AS

OutputGroupBy group by GROUP BY GROUP BY GROUP BY

Every every EVERY By default By default

EveryDistinct every-distinct ONCE

FollowedBy -> FOLLOWED BY , -> and THEN

Range [a:b] BETWEEN a BETWEEN a BETWEEN a

AND b AND b AND b

Repeat [n] BETWEEN n BETWEEN n BETWEEN n

AND n AND n AND n

And and and , AND && and AND && and AND

Or or OR || and OR || and OR

Equal = = = ==

GreaterThan > > > >

Subtraction − − − −
Time win:time RETAIN KEEP SIZE n

(n seconds) n SECONDS n SECONDS

WithinTimer timer:within WITHIN n SECONDS: WITHIN

(n seconds) n SECONDS n TIME

Table 4: A comparison between the metaclasses of model elements used in any of the
event patterns graphically defined in this paper and their equivalent Esper EPL, CQL,
StreamSQL and CCL code.

25

EveryDistinct metaclass can be transformed into CQL or CCL code making
use of Every operator.

The Range and Repeat metaclasses can be transformed into the equivalent
operator BETWEEN ... AND ... —this operator is also provided by Esper
EPL— since CQL, StreamSQL and CCL do not distinguish between range
and repeat operators.

The And and Or metaclasses can be transformed into different Stream-
SQL and CCL operators depending on if they are used as logical operators
or pattern operators. In the case of logical operators, the And and Or meta-
classes are equivalent to && and ||, respectively. In the case of pattern
operators, these metaclasses are equivalent to AND and OR, respectively.

Therefore, from this comparison it can be concluded that all model ele-
ments used in the graphical definition of event patterns in this paper can also
be transformed into CQL, StreamSQL and CCL code, among others —not
only for Esper. To that end, we would have to create a new model-to-text
module in our editor for each new language to be used (see Section 7). This
fact emphasizes the usefulness of our approach, making possible that every
event pattern is graphically defined by expert domains once, and automati-
cally transformed into different EPL codes, should it be necessary.

9.2. Editor and EPL code generation evaluation

We previously showed how our model-driven approach was applied to a
health-care domain where we created new health event patterns from scratch
(see Section 8).

In order to prove that our approach can be applied to different domains
—and not only to health domain— we illustrate below how other existing
event patterns, defined by other authors in a different domain, can also be
designed and implemented with our editor.

Particularly, the event patterns described by Dunkel et al. (2011) to de-
tect relevant situations in the domain of road traffic management have been
modeled by means of our editor.

Because of space limitations on this paper, we only illustrate one of such
event patterns. Concretely, the event pattern which notifies about retention
caused by a trunk incident. The EPL code of this pattern is as follows:

insert into Problem

select Aft.id as location,

’retention because of trunk incident’ as description,

26

’linear connection’ as type,

Aft.demand - Aft.capacity as excess,

’incident’ as state,

’problem’ as category

from Section.win:time (30 seconds) Aft,

Section.win:time (30 seconds) Bef

where Bef.next_section = Aft.id

and (Bef.speed = ’LOW’ or Bef.occupancy = ’HIGH’)

and (Aft.density = ’LOW’ or Aft.density = ’MEDIUM’)

and (Aft.occupancy = ’LOW’ or Aft.speed = ’HIGH’)

group by Aft.id

output last every 30 seconds;

Notice that the where clause describes search conditions that specify
which event or event combination should be detected. According to these
authors, “this pattern matches when a section is characterized by low speed or
high occupancy and, in the subsequent section, shows low or medium density,
and either high speed or low occupancy”.

Figure 6 sketches the graphical definition of this pattern using our editor.
As shown in the figure, the pattern model obtained is understandable and
user-friendly.

It is important to highlight that the code generated by our editor is the
same as the code shown in Dunkel et al. (2011). Therefore, we can affirm
that our editor can adequately model event patterns in different domains and
can correctly generate the EPL code for these patterns.

10. Related work

Nowadays there are several proprietary and academic editors for defining
event patterns and transforming them into their own EPL code. Although
most of these editors provide a metamodel implementation, they are not
user-friendly enough since they still require that non-experts on CEP have
to write some EPL code by hand. In the following paragraphs, we are going
to examine the most representative approaches for each type of EPL.

Taking into account stream-oriented EPLs, Esper Enterprise Edition from
EsperTech offers an editor based on Adobe Flash/Flex technology (EsperTech
Inc., 2013). Notice that although the Esper engine is open source, this ed-
itor is not. Another editor (SocEDA, 2013) has been developed for EPL

27

Figure 6: Event pattern model of traffic problem.

28

Esper in SocEDA (SOCial Event Driven Architecture), an ANR (National
Research Agency) project. Furthermore, Oracle provides the Oracle CEP Vi-
sualizer (Oracle, 2013), StreamBase offers StreamBase Studio (StreamBase,
2013), and Sybase develops SAP Sybase ESP Studio (Sybase, 2013). Even
though these editors allow to design these patterns in a graphical way, end
users must type some EPL code as text. Therefore, these editors require that
non-technical users know the corresponding EPL syntax.

On the other side, there are other editors for defining these situations
of interests as rules. For instance, IBM provides the Operational Decision
Management editor (IBM, 2013) which enables end users to write and edit
event-condition-action rules in natural language. JBoss proposes Drools Fu-
sion (JBoss, 2013), a module for describing textually inference rules which
provides temporal logic analysis. In addition, ALERT (Active support and
reaL-time coordination based on Event pRocessing in open source software
developmenT), a project supported by the EU 7th Framework Programme,
has developed the PANTEON editor (ALERT, 2013). This editor allows to
transform graphical event patterns into the EPL provided by the ETALIS
engine. Nevertheless, PANTEON only provides Filter, And, Or, Not and
Seq operators, while our editor offers much more operators. On the other
hand, SocEDA’s editor only includes Join, Aggregate and Query into its tool
palette.

Finally, there are other editors which allow to define event patterns by
means of imperative EPLs. Comparing imperative languages to others, these
languages express how to do the sequences of actions to be taken, and not
only what to do. Anyway, they also have limitations regarding their graph-
ical interfaces. Some of these CEP systems are Progress Apama (Progress
Software, 2013) and Aurora/Borealis (Abadi et al., 2003).

11. Conclusion and future work

In this paper, we have proposed a model-driven approach for describing
complex event patterns in a user-friendly way. In concrete, domain experts,
which have a wide expertise knowledge but not EPL knowledge, will be able
to make use of our developed editor to easily design the critical or relevant
situations (event patterns) that have to be detected in real time. Afterwards,
these patterns will be automatically validated and transformed into the EPL
code required by the software CEP engine. Thanks to this engine, domain
experts will be warned about the situations in which they are interested in,

29

obtaining more valuable information from huge amounts of heterogeneous
data shared, processed and stored by many IT systems every day.

In order to show its usefulness, our approach has been applied to a case
study for detecting influenza outbreaks around the world. This case study
highlights that experts on health care, though not necessarily on CEP, can
easily design event patterns for detecting such situations with success using
our editor. We have also evaluated and demonstrated that our editor permits
the graphical definition of existing event patterns proposed by other authors
for other domains. Furthermore, we have analysed the differences among the
most relevant EPL languages and proved that our metamodel is valid for any
of them.

As a result, we can confirm that our approach, and thereby our pro-
posed metamodel and implemented user-friendly editor, are independent of
both the domain where CEP technology is needed to be applied to, and the
concrete EPL required by a particular CEP engine.

In our future work, we plan to extend this editor allowing to transform
the event pattern models into other EPLs and make an empirical study of
the editor use by domain experts, such as health workers or business brokers.

Acknowledgements

This work was funded by the Spanish Ministry of Science and Innova-
tion under the National Program for Research, Development and Innova-
tion, project MoD-SOA (TIN2011-27242). We would like to specially thank
Vı́ctor Ayllón and Juan Manuel Reina, Novayre managers, for their fruitful
comments and discussions on the topic dealt with in this paper.

References

Abadi, D. J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S.,
Stonebraker, M., Tatbul, N., Zdonik, S., Aug. 2003. Aurora: a new model
and architecture for data stream management. The VLDB Journal 12 (2),
120–139.

ALERT, 2013. PANTEON - Interaction Pattern Editor. http://www.

alert-project.eu/content/interaction-pattern-editor, accessed:
15/06/2013.

30

Chaudhuri, S., Dayal, U., Narasayya, V., Aug. 2011. An overview of business
intelligence technology. Communications of the ACM 54 (8), 88–98.

Cugola, G., Margara, A., Jun. 2012. Processing flows of information: From
data stream to complex event processing. ACM Computing Surveys 44 (3),
15:1–15:62.

Dunkel, J., Fernández, A., Ortiz, R., Ossowski, S., Jun. 2011. Event-driven
architecture for decision support in traffic management systems. Expert
Systems with Applications 38 (6), 6530–6539.

Edge, M. E., Falcone Sampaio, P. R., Sep. 2012. The design of FFML: a
rule-based policy modelling language for proactive fraud management in
financial data streams. Expert Systems with Applications 39 (11), 9966–
9985.

Epsilon, 2013. EuGENia. http://www.eclipse.org/epsilon/doc/

eugenia/, accessed: 15/06/2013.

EsperTech Inc., 2013. Esper - Complex Event Processing. http://esper.
codehaus.org, accessed: 15/06/2013.

ETALIS, 2013. ETALIS: Event-driven Transaction Logic Inference System.
https://code.google.com/p/etalis/, accessed: 17/06/2013.

Etzion, O., Niblett, P., 2010. Event Processing in Action. Manning Publica-
tions Co., USA.

Event Processing Technical and Society, Jul. 2011. Event processing
glossary - version 2.0. http://www.complexevents.com/wp-content/

uploads/2011/08/EPTS_Event_Processing_Glossary_v2.pdf, ac-
cessed: 15/06/2013.

Hansen, D., Mar. 2013. Big data gets real-time: Oracle fast data. An oracle
white paper, Oracle.

Hussmann, H., Meixner, G., Zuehlke, D. (Eds.), Jan. 2011. Model-Driven
Development of Advanced User Interfaces. No. 340 in Studies in Compu-
tational Intelligence. Springer Berlin Heidelberg.

31

IBM, 2013. IBM Operational Decision Management. http://www-03.

ibm.com/software/products/us/en/subcategory/SW55A, accessed:
15/06/2013.

JBoss, 2013. JBoss Drools Fusion. http://www.jboss.org/drools/

drools-fusion.html, accessed: 15/06/2013.

Kolovos, D., Rose, L., Garćıa-Domı́nguez, A., Paige, R., May 2013. The
Epsilon Book. http://eclipse.org/epsilon/doc/book/.

Longo, D., Fauci, A., Kasper, D., Hauser, S., Jameson, J., Loscalzo, J., 2012.
Harrison’s Principles of Internal Medicine: Volumes 1 and 2, 18th Edition.
McGraw-Hill, USA.

Luckham, D., 2002. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Addison-Wesley, MA, USA.

Luckham, D., 2012. Event Processing for Business: Organizing the Real-
Time Enterprise. Wiley, USA.

Oracle, 2013. Oracle Event Processing. http://www.oracle.com/

technetwork/middleware/complex-event-processing, accessed:
15/06/2013.

Progress Software, 2013. Progress Apama Event Processing Platform. http:
//www.progress.com/es-es/apama/complex-event-processing.html,
accessed: 15/06/2013.

Romero, D., Hermosillo, G., Taherkordi, A., Nzekwa, R., Rouvoy, R.,
Eliassen, F., 2011. The DigiHome service-oriented platform. Software:
Practice and Experience.

Russom, P., 2011. Big data analytics. Tech. Rep. 4th Quarter, The Data
Warehousing Institute.

SocEDA, 2013. SocEDA - CEP Editor. https://research.linagora.com/
display/soceda/CEP+Editor, accessed: 15/06/2013.

Stahl, T., Voelter, M., Czarnecki, K., 2006. Model-Driven Software Develop-
ment: Technology, Engineering, Management. John Wiley & Sons.

32

StreamBase, 2013. StreamBase Studio. http://www.streambase.com/

products/streambasecep/streambase-studio, accessed: 15/06/2013.

Sybase, 2013. SAP Sybase Event Stream Processor. http:

//www.sybase.com/products/financialservicessolutions/

complex-event-processing, accessed: 15/06/2013.

Tsuchiya, S., Sakamoto, Y., Tsuchimoto, Y., Lee, V., 2012. Big data process-
ing in cloud environments. Fujitsu Scientific and Technical Journal 48 (2),
159–168.

Uhm, Y., Lee, M., Hwang, Z., Kim, Y., Park, S., Sep. 2011. A multi-
resolution agent for service-oriented situations in ubiquitous domains. Ex-
pert Systems with Applications 38 (10), 13291–13300.

Vikhorev, K., Greenough, R., Brown, N., Mar. 2013. An advanced energy
management framework to promote energy awareness. Journal of Cleaner
Production 43, 103–112.

Vincent, P., 2010. The return of the expert system? http://www.

thetibcoblog.com/2010/03/12/the-return-of-the-expert-system,
accessed: 24/06/2013.

WHO, 2013. World health organization. http://www.who.int/en/index.

html, accessed: 15/06/2013.

Yao, W., Chu, C.-H., Li, Z., May 2011. Leveraging complex event process-
ing for smart hospitals using RFID. Journal of Network and Computer
Applications 34 (3), 799–810.

Yuan, S.-T., Lu, M.-R., Mar. 2009. An value-centric event driven model and
architecture: A case study of adaptive complement of SOA for distributed
care service delivery. Expert Systems with Applications 36 (2, Part 2),
3671–3694.

33

