805 research outputs found

    Functional Dynamics I : Articulation Process

    Full text link
    The articulation process of dynamical networks is studied with a functional map, a minimal model for the dynamic change of relationships through iteration. The model is a dynamical system of a function ff, not of variables, having a self-reference term fff \circ f, introduced by recalling that operation in a biological system is often applied to itself, as is typically seen in rules in the natural language or genes. Starting from an inarticulate network, two types of fixed points are formed as an invariant structure with iterations. The function is folded with time, until it has finite or infinite piecewise-flat segments of fixed points, regarded as articulation. For an initial logistic map, attracted functions are classified into step, folded step, fractal, and random phases, according to the degree of folding. Oscillatory dynamics are also found, where function values are mapped to several fixed points periodically. The significance of our results to prototype categorization in language is discussed.Comment: 48 pages, 15 figeres (5 gif files

    A Monte Carlo method for critical systems in infinite volume: the planar Ising model

    Get PDF
    In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three- and four-point functions of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.Comment: 43 pages, 21 figure

    Algebraic description of spacetime foam

    Get PDF
    A mathematical formalism for treating spacetime topology as a quantum observable is provided. We describe spacetime foam entirely in algebraic terms. To implement the correspondence principle we express the classical spacetime manifold of general relativity and the commutative coordinates of its events by means of appropriate limit constructions.Comment: 34 pages, LaTeX2e, the section concerning classical spacetimes in the limit essentially correcte

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Combinatorics of Pisot Substitutions

    Get PDF
    Siirretty Doriast
    corecore