339 research outputs found

    Experimental and computational study of vascular access for hemodialysis

    Get PDF

    CT-based fractional flow reserve: development and expanded application

    Get PDF
    Computations of fractional flow reserve, based on CT coronary angiography and computational fluid dynamics (CT-based FFR) to assess the severity of coronary artery stenosis, was introduced around a decade ago and is now one of the most successful applications of computational fluid dynamic modelling in clinical practice. Although the mathematical modelling framework behind this approach and the clinical operational model vary, its clinical efficacy has been demonstrated well in general. In this review, technical elements behind CT-based FFR computation are summarised with some key assumptions and challenges. Examples of these challenges include the complexity of the model (such as blood viscosity and vessel wall compliance modelling), whose impact has been debated in the research. Efforts made to address the practical challenge of processing time are also reviewed. Then, further application areas – myocardial bridge, renal stenosis and lower limb stenosis – are discussed along with specific challenges expected in these areas

    On the propagation of pressure and flow waves through the patient specific arterial system

    Get PDF
    For pre-operative decision making in cardiovascular surgery, patient-specific physiological data are needed. These data (e.g. pressure, flow and wall shear stress) can be obtained using a computational model of the arterial system. Because of the high computational costs involved with fully three-dimensional models of the total arterial tree, one-dimensional wave propagation models are more suited to provide clinically relevant information. Current models of the arterial system are based on assumptions concerning the frictional and convection forces in the one-dimensional momentum balance that yield an inaccurate representation of the physiological situation. Moreover, the constitutive law, relating the local pressure to the local cross-sectional area, is usually based on purely elastic material properties of the arterial wall, whereas arteries are known to possess viscoelastic properties as well. Furthermore, standard one-dimensional wave propagation methods are based on the assumption of fluid flow through straight or slightly tapered vessels where the velocity component in the radial direction is negligibly small with respect to its axial counterpart. In pathological regions such as stenoses and aneurysms these assumption do not hold. In the current study, a one-dimensional wave propagation model is developed, using an approximate velocity profile function to provide an estimate for the frictional forces and the non-linear term. The resulting wall shear stress and convection forces are compared to the analytical solution for pulsatile flow in a rigid tube showing good agreement. With respect to the arterial wall, a constitutive law, based on the viscoelastic behaviour of the standard linear solid model is introduced, that relates the local cross-sectional area of the vessel lumen to the local blood pressure. The resulting one-dimensional wave propagation model is validated by a comparison to data obtained from an experimental setup, modelling fluid flow through straight and tapered polyurethane vessels. In order to apply the one-dimensional wave propagation model to patient-specific arterial systems, a bifurcation model is implemented to relate the pressure and flow of the parent artery to the pressure and flow of the child arteries. Also, terminal impedances based on a three-element Windkessel model are introduced to obtain appropriate boundary conditions at the truncated ends of the arterial network. Furthermore, to accurately model the fluid dynamics near pathological regions, such as stenoses and aneurysms, relations between the pressure drop and flow characteristics as a function of the local geometry are developed. These relations are based on the results of a computational study of blood flow through two-dimensional axisymmetric stenoses and aneurysm models. The final model is applied to an idealised arterial network known from literature to investigate the influence of the different model assumptions made on the pressure, the flow and on the wall shear stress. The pressure and flow waves computed using the approximate velocity profile function, show only moderate changes with respect to those obtained using Poiseuille profiles. The resulting wall shear stress, however, does differ significantly. The introduced viscoelastic properties of the arterial wall are shown to significantly contribute to the pressure and flow wave attenuation and the influence of a femoral stenoses and an abdominal aortic aneurysms has been demonstrated. In conclusion, the resulting one-dimensional wave propagation model can be used to obtain clinically relevant information that may be crucial in surgical planning

    In Vitro and Computational Analyses of Blood Flow at Aortoiliac Bifurcation for Patients with Atherosclerotic Plaque Treated with Endovascular Procedures

    Get PDF
    This research has developed an appropriate approach allowing for more accurate assessment of haemodynamic changes following implantation of endovascular stent graft to treat patients with occlusive aortoiliac disease. Two different endovascular techniques involving the use of different types of stent grafts were analysed and compared with regard to haemodynamics associated with these techniques. Results improved understanding of the flow characteristics of these endovascular techniques

    Finite element stent design

    Get PDF

    Numerical modelling of the fluid-structure interaction in complex vascular geometries

    Get PDF
    A complex network of vessels is responsible for the transportation of blood throughout the body and back to the heart. Fluid mechanics and solid mechanics play a fundamental role in this transport phenomenon and are particularly suited for computer simulations. The latter may contribute to a better comprehension of the physiological processes and mechanisms leading to cardiovascular diseases, which are currently the leading cause of death in the western world. In case these computational models include patient-specific geometries and/or the interaction between the blood flow and the arterial wall, they become challenging to develop and to solve, increasing both the operator time and the computational time. This is especially true when the domain of interest involves vascular pathologies such as a local narrowing (stenosis) or a local dilatation (aneurysm) of the arterial wall. To overcome these issues of high operator times and high computational times when addressing the bio(fluid)mechanics of complex geometries, this PhD thesis focuses on the development of computational strategies which improve the generation and the accuracy of image-based, fluid-structure interaction (FSI) models. First, a robust procedure is introduced for the generation of hexahedral grids, which allows for local grid refinements and automation. Secondly, a straightforward algorithm is developed to obtain the prestress which is implicitly present in the arterial wall of a – by the blood pressure – loaded geometry at the moment of medical image acquisition. Both techniques are validated, applied to relevant cases, and finally integrated into a fluid-structure interaction model of an abdominal mouse aorta, based on in vivo measurements

    Simulation numérique des interactions fluide-structure dans une fistule artério-veineuse sténosée et des effets de traitements endovasculaires

    Get PDF
    Une fistule artérioveineuse (FAV) est un accès vasculaire permanent créé par voie chirurgicale en connectant une veine et une artère chez le patient en hémodialyse. Cet accès vasculaire permet de mettre en place une circulation extracorporelle partielle afin de remplacer les fonctions exocrines des reins. En France, environ 36000 patients sont atteint d insuffisance rénale chronique en phase terminale, stade de la maladie le plus grave qui nécessite la mise en place d un traitement de suppléance des reins : l hémodialyse. La création et présence de la FAV modifient significativement l hémodynamique dans les vaisseaux sanguins, au niveau local et systémique ainsi qu à court et à plus long terme. Ces modifications de l hémodynamiques peuvent induire différents pathologies vasculaires, comme la formation d anévrysmes et de sténoses. L objectif de cette étude est de mieux comprendre le comportement mécanique et l hémodynamique dans les vaisseaux de la FAV. Nous avons étudié numériquement les interactions fluide-structure (IFS) au sein d une FAV patient-spécifique, dont la géométrie a été reconstruite à partir d images médicales acquises lors d un précédent doctorat. Cette FAV a été créée chez le patient en connectant la veine céphalique du patient à l artère radiale et présente une sténose artérielle réduisant de 80% la lumière du vaisseau. Nous avons imposé le profil de vitesse mesuré sur le patient comme conditions aux limites en entrée et un modèle de Windkessel au niveau des sorties artérielle et veineuse. Nous avons considéré des propriétés mécaniques différentes pour l artère et la veine et pris en compte le comportement non-Newtonien du sang. Les simulations IFS permettent de calculer l évolution temporelle des contraintes hémodynamiques et des contraintes internes à la paroi des vaisseaux. Nous nous sommes demandées aussi si des simulations non couplées des équations fluides et solides permettaient d obtenir des résultats suffisamment précis tout en réduisant significativement le temps de calcul, afin d envisager son utilisation par les chirurgiens. Dans la deuxième partie de l étude, nous nous sommes intéressés à l effet de la présence d une sténose artérielle sur l hémodynamique et en particulier à ses traitements endovasculaires. Nous avons dans un premier temps simulé numériquement le traitement de la sténose par angioplastie. En clinique, les sténoses résiduelles après angioplastie sont considérées comme acceptables si elles obstruent moins de 30% de la lumière du vaisseau. Nous avons donc gonflé le ballonnet pour angioplastie avec différentes pressions de manière à obtenir des degrés de sténoses résiduelles compris entre 0 et 30%. Une autre possibilité pour traiter la sténose est de placer un stent après l angioplastie. Nous avons donc dans un deuxième temps simulé ce traitement numériquement et résolu le problème d IFS dans la fistule après la pose du stent. Dans ces simulations, la présence du stent a été prise en compte en imposant les propriétés mécaniques équivalentes du vaisseau après la pose du stent à une portion de l artère. Dans la dernière partie de l étude nous avons mis en place un dispositif de mesure par PIV (Particle Image Velocimetry). Un moule rigide et transparent de la géométrie a été obtenu par prototypage rapide. Les résultats expérimentaux ont été validés par comparaison avec les résultats des simulations numériques.An arteriovenous fistula (AVF) is a permanent vascular access created surgically connecting a vein onto an artery. It enables to circulate blood extra-corporeally in order to clean it from metabolic waste products and excess of water for patients with end-stage renal disease undergoing hemodialysis. The hemodynamics results to be significantly altered within the arteriovenous fistula compared to the physiological situation. Several studies have been carried out in order to better understand the consequences of AVF creation, maturation and frequent use, but many clinical questions still lie unanswered. The aim of the present study is to better understand the hemodynamics within the AVF, when the compliance of the vascularwall is taken into account. We also propose to quantify the effect of a stenosis at the afferent artery, the incidence of which has been underestimated for many years. The fluid-structure interactions (FSI) within a patient-specific radio-cephalic arteriovenous fistula are investigated numerically. The considered AVF presents an 80% stenosis at the afferent artery. The patient-specific velocity profile is imposed at the boundary inlet, and a Windkessel model is set at the arterial and venous outlets. The mechanical properties of the vein and the artery are differentiated. The non-Newtonian blood behavior has been taken into account. The FSI simulation advantageously provides the time-evolution of both the hemodynamic and structural stresses, and guarantees the equilibrium of the solution at the interface between the fluid and solid domains. The FSI results show the presence of large zones of blood flow recirculation within the cephalic vein, which might promote neointima formation. Large internal stresses are also observed at the venous wall, which may lead to wall remodeling. The fully-coupled FSI simulation results to be costly in computational time, which can so far limit its clinical use. We have investigated whether uncoupled fluid and structure simulations can provide accurate results and significantly reduce the computational time. The uncoupled simulations have the advantage to run 5 times faster than the fully-coupled FSI. We show that an uncoupled fluid simulation provides informative qualitative maps of the hemodynamic conditions in the AVF. Quantitatively, the maximum error on the hemodynamic parameters is 20%. The uncoupled structural simulation with non-uniform wall properties along the vasculature provides the accurate distribution of internal wall stresses, but only at one instant of time within the cardiac cycle. Although partially inaccurate or incomplete, the results of the uncoupled simulations could still be informative enough to guide clinicians in their decision-making. In the second part of the study we have investigated the effects of the arterial stenosis on the hemodynamics, and simulated its treatment by balloon-angioplasty. Clinically, balloon-angioplasty rarely corrects the stenosis fully and a degree of stenosis remains after treatment. Residual degrees of stenosis below 30% are considered as successful. We have inflated the balloon with different pressures to simulate residual stenoses ranging from 0 to 30%. The arterial stenosis has little impact on the blood flow distribution: the venous flow rate remains unchanged before and after the treatment and thus permits hemodialysis. But an increase in the pressure difference across the stenosis is observed, which could cause the heart work load to increase. To guarantee a pressure drop below 5 mmHg, which is considered as the threshold stenosis pressure difference clinically, we find that the residual stenosis degree must be 20% maximum.COMPIEGNE-BU (601592101) / SudocSudocFranceF
    • …
    corecore