
 

On the propagation of pressure and flow waves through the
patient specific arterial system
Citation for published version (APA):
Bessems, D. (2007). On the propagation of pressure and flow waves through the patient specific arterial system.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Biomedical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR629017

DOI:
10.6100/IR629017

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR629017
https://doi.org/10.6100/IR629017
https://research.tue.nl/en/publications/1543b5a5-8a43-4333-8a0c-b9d2a3a8d769


On the propagation of pressure
and flow waves through the

patient-specific arterial system



A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-386-1091-7

Cover design: David Bessems & Bregje Schoffelen, Oranje Vormgevers
Printed by Universiteitsdrukkerij TU Eindhoven, Eindhoven, The Netherlands.

This research was performed in the scope of the hemodyn project, a cooperation be-

tween Philips Medical systems (Healthcare IT - Advanced Development), Best, the

Technische Universiteit Eindhoven (Biomedical Engineering department), Eindhoven
and the Erasmus University (Thoraxcenter, Biomedical Engineering), Rotterdam. The

Hemodyn project is partly funded by SenterNovem (Dutch Ministry of economic af-
fairs).



On the propagation of pressure
and flow waves through the

patient specific arterial system

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Technische Universiteit Eindhoven,
op gezag van de Rector Magnificus, prof.dr.ir. C.J. van Duijn,

voor een commissie aangewezen door het College voor Promoties
in het openbaar te verdedigen op

woensdag 19 september 2007 om 16.00 uur

door

David Bessems

geboren te Maastricht



Dit proefschrift is goedgekeurd door de promotor:

prof.dr.ir. F.N. van de Vosse

Copromotoren:
dr.ir. M.C.M. Rutten

en
dr.ir. M. Breeuwer



Contents

Summary vii

1 General Introduction 1
1.1 Physiology and Pathology . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objective and outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 A wave propagation model of blood flow using an approximate velocity
profile function. 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Conservation of mass and momentum in one dimension . . . . 13

2.2.2 An approximate velocity profile function . . . . . . . . . . . . . 15

2.2.3 Viscous layer thickness . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 General set of equations . . . . . . . . . . . . . . . . . . . . . . 21

2.2.6 Computational method . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Velocity profile function . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A time-domain based wave propagation model of blood flow in viscoelas-
tic vessels 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.2 Solid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

v



vi Contents

4 The pressure drop over arterial stenoses under physiological conditions 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 The pressure drop over aneurysms under physiological conditions 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Application and general discussion 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.2 Stenoses and aneurysms . . . . . . . . . . . . . . . . . . . . . . 87

6.2.3 Computational Method . . . . . . . . . . . . . . . . . . . . . . 88
6.2.4 Physiological data . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.4.1 Model restrictions . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 106

A Derivation of non-linear part 111

B Spatial discretisation 113

C Linearisation of equations 117

Samenvatting 119

Dankwoord 121

curriculum vitae 123



Summary

On the propagation of pressure and flow waves
through the patient-specific arterial system

For pre-operative decision making in cardiovascular surgery, patient-specific physio-

logical data are needed. These data (e.g. pressure, flow and wall shear stress) can
be obtained using a computational model of the arterial system. Because of the high

computational costs involved with fully three-dimensional models of the total arterial

tree, one-dimensional wave propagation models are more suited to provide clinically
relevant information. Current models of the arterial system are based on assumptions

concerning the frictional and convection forces in the one-dimensional momentum
balance that yield an inaccurate representation of the physiological situation. More-

over, the constitutive law, relating the local pressure to the local cross-sectional area,

is usually based on purely elastic material properties of the arterial wall, whereas
arteries are known to possess viscoelastic properties as well. Furthermore, standard

one-dimensional wave propagation methods are based on the assumption of fluid

flow through straight or slightly tapered vessels where the velocity component in the
radial direction is negligibly small with respect to its axial counterpart. In pathologi-

cal regions such as stenoses and aneurysms these assumption do not hold.
In the current study, a one-dimensional wave propagation model is developed, us-

ing an approximate velocity profile function to provide an estimate for the frictional

forces and the non-linear term. The resulting wall shear stress and convection forces
are compared to the analytical solution for pulsatile flow in a rigid tube showing

good agreement. With respect to the arterial wall, a constitutive law, based on the

viscoelastic behaviour of the standard linear solid model is introduced, that relates
the local cross-sectional area of the vessel lumen to the local blood pressure. The

resulting one-dimensional wave propagation model is validated by a comparison to
data obtained from an experimental setup, modelling fluid flow through straight and

tapered polyurethane vessels. In order to apply the one-dimensional wave propaga-

tion model to patient-specific arterial systems, a bifurcation model is implemented to
relate the pressure and flow of the parent artery to the pressure and flow of the child

arteries. Also, terminal impedances based on a three-element Windkessel model are

introduced to obtain appropriate boundary conditions at the truncated ends of the
arterial network. Furthermore, to accurately model the fluid dynamics near patho-

logical regions, such as stenoses and aneurysms, relations between the pressure drop

vii



viii Summary

and flow characteristics as a function of the local geometry are developed. These

relations are based on the results of a computational study of blood flow through
two-dimensional axisymmetric stenoses and aneurysm models. The final model is

applied to an idealised arterial network known from literature to investigate the in-

fluence of the different model assumptions made on the pressure, the flow and on
the wall shear stress. The pressure and flow waves computed using the approximate

velocity profile function, show only moderate changes with respect to those obtained
using Poiseuille profiles. The resulting wall shear stress, however, does differ sig-

nificantly. The introduced viscoelastic properties of the arterial wall are shown to

significantly contribute to the pressure and flow wave attenuation and the influence
of a femoral stenoses and an abdominal aortic aneurysms has been demonstrated. In

conclusion, the resulting one-dimensional wave propagation model can be used to

obtain clinically relevant information that may be crucial in surgical planning.
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General Introduction
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Since ancient times, the detection of the arterial blood pulse has been used to diag-

nose arterial abnormalities and diseases. In ancient Greek civilisation it was believed
that a good physician could diagnose diseases and even detect early pregnancy solely

by palpation of the arterial pulse, without any knowledge of the underlying physio-

logical phenomena. From studying the arterial system of the deceased, they thought
the arterial system was filled with air and the pulsatile sensation was attributed to

an active dilation of the arteries (from the Greek ’aer’ and ’trachea’ which literally
means ’air duct’) to draw vital spirits from the airways (Tortora and Anagnostakos

(1990)). Today, our knowledge of the cardiovascular system is much more elaborate,

but as long as cardiovascular diseases are the number one cause of death in Western
civilisation, still many problems remain to be solved.

In the various disciplines of cardiovascular surgery, patient-specific physiological data

are needed for the diagnosis and treatment of arterial diseases, and also in the under-
standing of the processes responsible for the development of pathological states. Both

the blood pressure and the blood flow through each individual artery are known to be
important physiological parameters related to the condition of the arterial wall, since

the blood pressure regulates the arterial wall thickness through its effect on wall ten-

sion and the flow regulates the lumen diameter by means of the resulting wall shear
stress (Pritchard et al. (1995)). The local blood flow is also important to quantify the

perfusion of each individual organ. The severity of a stenosis, e.g. can be determined

by the blood pressure and flow distal to the obstructed vessel and the risk of rupture
of an aneurysm can be predicted when the vessel wall morphology and the stresses

exerted on this dilated wall are known.
During the last decades, non-invasive imaging techniques such as magnetic resonance

imaging (MRI) and computed tomography (CT) have become an important aid in ob-

taining clinically relevant data. They are used in the diagnosis, qualification and
quantification of arterial diseases and also for post-operative evaluation of a possible

intervention. Some crucial information, such as the blood pressure and the wall shear

stress, however, cannot easily be deduced using imaging techniques. Also, these im-
ages provide information on the current status of a pathological region only, whereas

for pre-operative decision making the surgeon should have access to a predictive tool
to evaluate intervention alternatives.

To obtain clinically relevant information such as the blood pressure, the blood ve-

locity and the wall shear stress from MR images or CT scans, computational models
of blood flow through segmented volumes of these images can be used. By virtually

altering the geometries of the segmentation obtained, also intervention alternatives

can be modelled and thereby evaluated.
In the next sections the physiology and pathologies of the arterial system will briefly

be discussed and an overview will be presented on the computational methods used
in the modelling of the arterial system. From thereon, the objective of this work will

be stated and the outline of this thesis will be presented.
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Figure 1.1: Schematic representation of the human circulatory system. From Tortora
and Anagnostakos (1990)



4 Chapter 1

1.1 Physiology and Pathology

The cardiovascular system as schematically depicted in figure 1.1 consists of the heart
and the vascular system. It takes care of the transport of nutrients, oxygen, carbon ox-

ide and other solutes between organs in the mammalian body using blood as a carrier.
The heart is a four-chambered pump that propels blood around the circulatory sys-

tem by contraction and relaxation of the cardiac muscle. The circulatory or vascular

system can be divided into the systemic and the pulmonary circulation. The systemic
circulation transports oxygenated blood from the left ventricle to all tissues of the

body and transports the deoxygenated blood to the right atrium. The pulmonary

circulation transports the deoxygenated blood from the right ventricle to the lungs
where the blood is fully oxygenated again. It then returns it to the heart’s left atrium

to re-enter the systemic circulation. Although their purposes differ, the physical prin-
cipals of the two circulations are similar. They both consist of a network of arteries,

arterioles, capillaries, venules and veins. The arteries are responsible for the convec-

tive transport of blood to the tissue. The arterioles are the last small branches of the
arterial system and their vascular walls are capable of dilating or (partly) closing the

vessel lumen. Thereby, they can adapt the local blood flow to the needs of the tissue.

The function of the capillaries is to exchange blood constituents with the surrounding
tissue through the very thin capillary wall. Because the total cross-sectional area of

the lumen of the capillaries in any organ is many times larger than the cross-sectional
area of the lumen of the supplying artery, a low blood velocity is established in the

capillaries allowing for enough time for oxygen, nutrients and waste products to be

exchanged. The venules collect the blood from the capillaries to gradually reunite
into progressively larger veins. The veins convey the blood from the tissue back to

the heart. In the arterial system a high blood pressure is needed for the blood that

leaves the arteries to pass through the highly resistive network of capillaries within
each organ. To withstand such high pressures the arterial wall is much thicker than

the walls of the venous system that transports blood under much lower pressures.
Because most pathologies occur in these high pressure regions, focus will be on the

arterial part of the systemic circulation.

The wall of the larger arteries is composed of three main layers, characterised by
their structure and cell types. The internal layer or tunica intima is positioned at the

luminal side of the vessel and is composed of an inner single layer of endothelial cells

and a layer of elastic cells called the internal elastic lamina. The endothelial layer
is in constant contact with blood and can be easily damaged e.g. by excessive shear

stresses. The middle layer of the arteries, the tunica media, is usually the thickest
layer, consisting of elastic fibres and smooth muscle cells. Depending on its region in

the arterial system, the content and orientation of the elastic fibres and the smooth

muscle cells in the tunica media vary to result in dominantly elastic mechanical prop-
erties for the larger arteries to a more viscoelastic behaviour for the smaller arteries.

This viscoelastic behaviour is caused mainly by the smooth muscle cells (Humphrey

(1995)) resulting in typical viscoelastic behaviour such as relaxation and creep. The
outer layer of the arterial wall, the tunica externa (adventitia) is composed primarily

of loose connective tissues and a network of elastic and collagenous fibres oriented in
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a helical architecture around the vessel.

Blood consists mainly of blood plasma with red blood cells (erythrocytes), white
blood cells (leucocytes) and blood platelets (thrombocytes). Its main functions are

the transport of oxygen and other solutes, and the regulation of the body’s pH and

temperature. The erythrocytes, which occupy approximately 45% of the blood vol-
ume, dominate the rheological behaviour of the blood. In a low shear situation, the

erythrocytes are brought in contact with each other which causes them to aggregate
face to face. These aggregations are known as rouleaux and their presence results in

an increase of the blood viscosity. At near zero shear the rouleaux will form three-

dimensional structures, inducing an additional increase of the blood viscosity. At high
shear rates the erythrocytes align with the flow and deform to decrease the viscosity,

which is called shear thinning (Tortora and Anagnostakos (1990)). These complex

properties of the erythrocytes are responsible for the complex macroscopic behaviour
of blood.

As indicated previously, the normal functioning of the systemic circulation can be
disturbed by abnormalities usually referred to as peripheral arterial diseases (PVD).

In an advanced stage such PVD can cause the arterial system to no longer perform

its primary goal, the satisfactory perfusion of each individual organ. The cause of
most types of PVD is atherosclerosis, a common disease of the major blood vessels

characterised by hardening of the arteries as a result of fatty streaks and deposits of

cholesterol and calcium in the vessel walls. Atherosclerosis can lead to the local nar-
rowing of a vessel’s lumen. A significant narrowing of a vessel’s lumen, also referred

to as a stenosis, can result in a decreased blood flow to the arteries, arterioles and
capillaries distal to the stenosis, leading to ischemia of the perfused organ. Another

PVD that can be caused by atherosclerosis is a local dilation of the vessel wall, or

aneurysm. They most frequently occur in the arteries of the circle of Willis and in the
abdominal aorta. Aneurysms are usually asymptomatic, however, the dilated vessel

can burst and lead to death at any time.

Peripheral vascular diseases can often be treated with exercise, a healthy diet and by
quitting smoking. In case of a PVD in a more severe stage surgical intervention is

required to maintain the patient’s quality of life. A possible treatment of a stenosis in
the peripheral arteries is balloon angioplasty, with or without stent placement. Bal-

loon angioplasty is the mechanical widening of a narrowed blood vessel by inflating

a balloon in the vessel lumen at the site of the stenosis. This balloon is positioned in
the obstructed vessel by means of a guiding-catheter and optionally a stent is used

to prevent recoil. An artery that is stenosed for a larger part of the vessel can be

bypassed using either an autologous vein or a synthetic graft. The treatment of a se-
vere aneurysm in the abdominal aorta that has not yet ruptured usually involves the

placement of an artificial graft to exclude the aneurysm sac from the high systemic
pressure, either by open surgery or by endovascular intervention.

In the next section, the computational methods that can be used in the diagnosis and

treatment of the mentioned arterial diseases, will be discussed.
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1.2 Computational aspects

Computational models of blood flow through the arterial system can be used to es-
timate parameters crucial for surgical planning. Much effort has been put into the

development and validation of computational methods for fully three-dimensional
analysis of time-dependent flow in distensible artery segments (see e.g. Taylor et al.

(1998); Gijsen et al. (1999a,b); van de Vosse et al. (2003)). Using these methods,

detailed pressure gradients, velocity fields and corresponding wall shear stresses can
be obtained within the region of interest. As a result of the large amount of computer

resources associated with these computations, however, most three-dimensional com-

putational methods can only be applied to a small segment of the arterial system and
hence appropriate assumptions on the proximal and distal part of the arterial tree

must be provided. Suitable boundary conditions can be obtained by using appropri-
ate simplified models of the total cardiovascular system, such as zero-dimensional

lumped-parameter models (Pater and Berg (1964); Westerhof et al. (1969)) and one-

dimensional wave propagation models in the frequency domain (Womersley (1957);
Cox (1968, 1970)) and time domain (Anliker et al. (1971); Tsou et al. (1971); Hughes

and Lubliner (1973); Stergiopulos et al. (1992); Lagrée (2000); Olufsen and Peskin

(2000); Formaggia et al. (2001); Wan et al. (2002); Sherwin et al. (2003); Wang
and Parker (2004)). Some important phenomena of wave propagation are difficult

to describe with lumped-parameter models, whereas the non-linear characteristics of
the governing equations and the constitutive equations that describe the mechanical

properties of the arterial wall cannot always be described in the frequency domain.

Moreover, as three-dimensional patient-specific computational models are generally
defined in the time domain, time-domain-based one-dimensional models are prefer-

able for the provision of boundary conditions. They have been shown to be a simple

tool in describing the propagation of the pressure and flow waves travelling through
the arterial system (Schaaf (1972); Stergiopulos et al. (1992); Olufsen and Peskin

(2000); Sherwin et al. (2003); Wang and Parker (2004)) or through a segment of
this system (Raines et al. (1974); Balar et al. (1989)). Moreover, using such one-

dimensional wave propagation models, the surgical alternatives in treating an arte-

rial pathology can be evaluated pre-operatively. Also, when appropriate estimates
for the pressure and wall shear stress are obtained using a one-dimensional wave

propagation model, the adaptation of the arterial system to changes in the peripheral

resistance can be predicted. For instance, the adaptation of the arteries and veins
after the introduction of an arteriovenous shunt in the lower arm can be computed

to determine whether the increased flow through this extremity indeed results in the
desired maturation of the concerned vessels.

In the derivation of a one-dimensional wave propagation model of the arterial sys-

tem assumptions need to be made on the velocity profile as a function of the local
flow characteristics, to obtain appropriate estimates for the frictional forces and non-

linear forces in the one-dimensional balance-of-momentum equation. Current models

assume either Poiseuille profiles (Schaaf (1972); Stergiopulos et al. (1992); Wan et al.
(2002); Wang and Parker (2004)) or the velocity profile to be some other function of

the local flow (Hughes and Lubliner (1973); Olufsen and Peskin (2000); Formaggia
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et al. (2001); Sherwin et al. (2003)), all resulting in frictional forces and non-linear

forces that are in-phase with the flow. From a physical point of view, however, it is
known that a phase difference can be present between the velocity in the core of the

vessel and the velocity in a layer close to the vessel wall (Womersley (1957)), result-

ing in an out-of-phase behaviour of both the frictional forces and non-linear effects.
Therefore, the velocity profile functions used today may yield an inaccurate represen-

tation of the pressure and flow wave propagation with respect to the physiological
situation. Also, the wall shear stress obtained using these models may be inaccurate,

resulting in an inappropriate stimulus for possible vessel wall remodelling.

With respect to the vessel wall behaviour, current one-dimensional wave propagation
models of the arterial system in the time domain assume either linear elastic (Schaaf

(1972); Raines et al. (1974); Sherwin et al. (2003); Wang and Parker (2004)) or

non-linear elastic (Balar et al. (1989); Stergiopulos et al. (1992); Olufsen and Peskin
(2000)) material properties, thereby neglecting the viscoelastic properties of the ar-

terial wall. These viscoelastic properties, mainly caused by the smooth muscle cells
present in the tunica media of the arterial wall, are amongst others responsible for the

attenuation of the pressure and flow waves travelling through the arterial tree and

should, therefore, be taken into account in the modelling of the arterial system. Most
one-dimensional wave propagation models in the frequency domain, as reviewed by

Cox (1968), do model the arterial wall to be viscoelastic. In the frequency domain,

however, the non-linear fluid mechanics cannot be incorporated so these methods are
inappropriate in modelling one-dimensional wave propagation in the arterial system.

The equations for one-dimensional wave propagation are derived under the assump-
tion of fully developed flow through straight or slightly tapered vessels where the

fluid velocity in radial direction is negligibly small with respect to its axial compo-

nent. This assumption may well hold in healthy arteries, but in pathological regions
such as stenoses and aneurysms where the lumen radius rapidly changes the flow is

no longer fully developed. In these regions standard one-dimensional wave propaga-

tion theory cannot be applied. In the literature, several publications have appeared
on the (time-dependent) velocity field and resulting wall shear stress in a stenotic

region (Siouffi et al. (1984); Tu et al. (1992); Cavalcanti (1995); Tu and Deville
(1996); Siouffi et al. (1998); Chakravarty and Mandal (2000); Long et al. (2001);

Mandal (2005)). Because of its application in a one-dimensional wave propagation

model, our interest however, is mainly on the axial pressure drop related to this ve-
locity field. Among others, Stergiopulos et al. (1992) introduced a stenosis model

into a one-dimensional wave propagation model of the arterial system to investigate

the effect of such a stenosis on the pressure and flow waves travelling through the
arterial tree. This stenosis model was based on the work of Young (1979) where

an empirical relation between the pressure drop over a PMMA model of a stenosis
and the flow characteristics are determined as a function of the stenosis shape and

its severity. This experimental work was performed in only one type of vessel with

a constant frequency of the flow signal whereas we expect the pressure drop over a
stenosis to depend on the oscillatory behaviour of the flow. For aneurysms, a lot of

research has focussed on the time-dependent velocity field and corresponding stresses

exerted on the dilated vessel wall (Wille (1981); Perktold (1987); Rathish-Kumar and
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Naidu (1996); Egelhoff et al. (1999); Finol et al. (2003); Wolters et al. (2005); De-

plano et al. (2007)). The pressure drop over aneurysms as a function of the flow
characteristics through the dilated vessel, however, has not yet been investigated.

1.3 Objective and outline

As indicated in the previous paragraphs, one-dimensional wave propagation models
of blood flow through the patient-specific arterial system may be an aid in the di-

agnosis and treatment of arterial diseases. The models used today, however, lack

several crucial features with respect to the modelling of the patient-specific arterial
tree. First, a velocity profile function should be incorporated that takes into account

the phase difference between the core velocity and the blood velocity in a layer close
to the vessel wall, to obtain appropriate estimates for the frictional forces and non-

linear term in the one-dimensional momentum balance. Also, a constitutive relation

that models the non-linear viscoelastic arterial wall behaviour should be developed to
properly relate the local instantaneous cross-sectional area of the vessel lumen to the

local instantaneous pressure in one-dimensional wave propagation. Moreover, one-

dimensional models of blood flow through pathological regions such as stenoses and
aneurysms should be developed and incorporated into the one-dimensional model of

blood flow through the patient-specific arterial system. Therefore,

The main objective of this work is to develop a one-dimensional wave propagation
model of the patient-specific arterial system that can be an aid in the diagnosis and
treatment of arterial diseases, based on images obtained by MR or CT scanning.

For this purpose, the one-dimensional wave propagation model as proposed by Hughes
and Lubliner (1973) is taken as a point of departure. Using this model, the propa-

gation of pressure and flow waves through straight or slightly tapered vessels can be
modelled. In chapter 2 (see also Bessems et al. (2007)) the model by Hughes and

Lubliner (1973) is modified by introducing a velocity profile function that depends

on the Womersley parameter α, the local flow and the local pressure gradient. It is
based on the division of the blood flow though a vessel into an inviscid core flow

near the axis of the vessel and a friction-dominated flow layer close to the vessel wall,

allowing for a phase difference between these two regions. It will be shown that the
velocity profile function obtained provides proper estimates for the wall shear stress

and non-linear term and that introducing these into the one-dimensional balance-of-
momentum equation influences the propagation of pressure and flow waves through

the arterial system.

Chapter 3 focuses on the mechanical behaviour of the arterial wall in one-dimensional
wave propagation. A differential equation, based on the viscoelastic behaviour of the

standard linear-solid model is introduced to relate the vessel’s instantaneous local

cross-sectional area to the local instantaneous blood pressure. The resulting one-
dimensional wave propagation model is validated by a comparison to the pressure

and flow waves measured in an experimental setup.
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In chapters 4 and 5 a two-dimensional axisymmetric computational model of blood

flow through stenoses and aneurysms is used to define a relation between the pres-
sure drop over these pathological regions and the local flow characteristics. By as-

suming that this pressure drop occurs linearly over the length of the pathological

region, for both stenoses (chapter 4) and aneurysms (chapter 5) a one-dimensional
balance-of-momentum equation can be derived that can be used in the modelling of

the propagation of pressure and flow waves through such regions.
In chapter 6 the individual components introduced in chapters 2 through 5 will be

combined into a model of the total arterial system. To this end, an interface relation

is introduced that couples the individual arterial segments at their bifurcations. More-
over, appropriate boundary conditions at the proximal inlet and the truncated ends

of the region of interest are proposed. Using the arterial tree as tabulated in Ster-

giopulos et al. (1992), the influence of the different model parameters introduced in
previous chapters is shown. Also, computations based on a patient-specific arterial

system obtained from MR-images are performed and different alternatives of surgical
intervention are evaluated.

At the end of this chapter, the main results of the present thesis are summarised and

discussed, and recommendations are provided for further improvement of the current
model. The content of the second and the third chapter are based on published and

submitted articles respectively, which has resulted in recurrence and overlap between

these chapters.





Chapter 2

A wave propagation model of

blood flow using an

approximate velocity profile

function.

This chapter is based on: D. Bessems, M.C.M. Rutten and F.N. van de Vosse, A wave propagation

model of blood flow in large vessels using an approximate velocity profile function, J. Fluid.

Mech., 580, 2007, 145–168.

11
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2.1 Introduction

Propagation of pressure and flow waves in the arterial system and especially its influence on

the development of stenotic regions, aneurysms and other vascular diseases has been subject

of many studies (Anliker et al. (1971); Hughes and Lubliner (1973); Young and Tsai (1973b);

Stergiopulos et al. (1992); Olufsen and Peskin (2000); Lagrée (2000); Formaggia et al. (2001);

Wan et al. (2002); Sherwin et al. (2003); Wang and Parker (2004)). Hemodynamic factors such

as blood pressure and flow have received much attention as intraluminal pressure is found to

regulate the arterial wall thickness through its effects on wall tension (Fung (1993)), whereas

blood flow regulates the lumen diameter through changes in wall shear stress (Fung (1993)).

To obtain detailed information on these crucial parameters in the development of atheroscle-

rosis, much effort has been put into the development and validation of computational methods

for fully three-dimensional analysis of time-dependent flow in distensible artery segments (see

e.g. Taylor et al. (1998); Gijsen et al. (1999a,b); van de Vosse et al. (2003)). Using these

methods, detailed velocity fields and pressure gradients can be obtained within the region of

interest. As a result of the large amount of computer resources associated with these com-

putations, however, most three-dimensional computational methods can only be applied to

a small segment of the arterial system and hence appropriate assumptions on the proximal

and distal part of the arterial tree must be provided. Suitable boundary conditions can be

obtained by using appropriate simplified models of the total cardiovascular system, such as

zero-dimensional lumped-parameter models (Pater and Berg (1964); Westerhof et al. (1969))

and one-dimensional wave propagation models in the frequency domain (Womersley (1957);

Cox (1968, 1970)) and time domain (Tsou et al. (1971); Hughes and Lubliner (1973); Ster-

giopulos et al. (1992); Olufsen and Peskin (2000); Formaggia et al. (2001); Wan et al. (2002);

Sherwin et al. (2003); Wang and Parker (2004)).

Some important phenomena of wave propagation in the arterial system are difficult to de-

scribe with lumped-parameter models, whereas the non-linear characteristics of the governing

equations and the constitutive equations that describe the mechanical properties of the arte-

rial wall cannot always be described in the frequency domain. Moreover, as three-dimensional

patient-specific computational models are generally defined in the time-domain, time domain-

based one-dimensional models are preferable in the provision of boundary conditions. They

have been shown to be a simple tool in describing the propagation of the pressure and flow

waves travelling through the arterial system or through a segment of this system. When deal-

ing with one-dimensional wave propagation formulations, assumptions need to be made on

local velocity profiles in order to obtain proper estimates for the non-linear and friction term in

the momentum equation integrated over the local cross-sectional area. The papers mentioned

previously assume either a Poiseuille profile (Stergiopulos et al. (1992); Wan et al. (2002);

Wang and Parker (2004)) or the velocity profile to be some other function of the local flow

(Hughes and Lubliner (1973); Olufsen and Peskin (2000); Formaggia et al. (2001); Sherwin

et al. (2003)), both resulting in friction forces in phase with the flow. When interest is in the

attenuation of the pressure wave and in the wall shear stress, however, these assumptions are

insufficient as from a fluid dynamical point of view a phase difference between the wall shear

stress and the local flow may occur as a result of a time-dependent phase difference between

the velocity in the central core of the vessel and the velocity near the vessel wall.

In this chapter an approximate velocity profile function will be introduced, providing proper

estimates for the non-linear and friction terms. In section 2.2, a mathematical formulation of

the one-dimensional wave propagation theory for flow in large vessels according to Hughes

and Lubliner (1973) will briefly be described. Then this theory will be extended by introducing

a velocity profile function that depends on the Womersley parameter α, the local flow and the
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pressure gradient. This model is different from the model proposed by Olufsen (1999) where

a linear boundary layer profile was introduced, again not allowing for a phase difference be-

tween the boundary layer flow and the flow in the inviscid core of the vessel. The model is also

different from the approach of Tsou et al. (1971) where the velocity profile is represented by

a third-degree polynomial expansion where the coefficients depend on time and axial position.

In that case an extra equation has to be solved to obtain the coefficients of the expansion and

no distinction between the viscous layer and the inviscid core can be made. In the work of

Zagzoule et al. (1991) an asymptotic expression, relating the wall shear stress to the instan-

taneous flow, was deduced. The use of this expression in one-dimensional wave propagation,

however, restricts the model to low Womersley number regions (α < 6) so it cannot be used in

the total physiological range of α. Lagrée (2000) closes the system of one-dimensional equa-

tions by defining a set of coefficients dependent solely on α, derived from Womersley’s theory

and based on the fundamental mode of the flow pulse. The resulting wall shear stress and non-

linear term for single harmonic flow pulses closely approximate their analytical counterparts

based on the Womersley theory. For multi-harmonic flow pulses at high values of α, however,

the closure used by Lagrée no longer provides accurate estimates for the wall shear stress and

the non-linear term, even for the case where the Womersley solution should be retained.

In this study approximate profiles are derived by assuming inertia-dominated flow in the cen-

tral core of the tube and friction-dominated flow near the vessel wall. Solutions in these areas

are coupled using cross-sectional mass conservation, allowing for profiles different from Wom-

ersley profiles based on a single harmonic. This approach allows the possibility of extending the

method to constitutive models for which no analytical solution is available and non-harmonic

input, provided that a reasonable distinction between the central core and the viscous layer

can be modelled.

In section 2.3, the friction term obtained from the theory proposed in this study is compared

to the one presented in Young and Tsai (1973b) based on Womersley’s solution in the fre-

quency domain (Womersley (1957)). The non-linear term is compared to the one obtained

directly from velocity profiles derived from Womersley’s theory. Finally, the effect of the friction

term on wave propagation is illustrated by comparing the pressure gradient and flow resulting

from wave propagation using our velocity profile approximation with wave propagation using

Poiseuille friction, in a physiological range.

2.2 Theory

2.2.1 Conservation of mass and momentum in one dimension

The derivation of the governing equations for one-dimensional wave propagation in incom-

pressible fluids, including outflow due to branching, is taken from Hughes and Lubliner (1973).

Based on the Reynolds transport theorem, the differential equations for conservation of mass

and momentum balance are derived for a geometry such as depicted in figure 2.1. The inte-

grated continuity equation in area-velocity (A, vz)-formulation is written as

∂A

∂t
+

∂

∂z
(Avz) + Ψ = 0, (2.1)

with t being the time, z the axial coordinate, A the local cross-sectional area and Ψ the vol-

umetric outflow per unit length. The fluid velocity v = (vx, vy , vz) in the axial direction is

denoted by vz and an overbar indicates the cross-sectional mean. The physiologically more

relevant pressure-flow (p, q)-formulation can be obtained by introducing a constitutive relation
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A(z, t)A1(t)
A2(t)

z1
z2

V (t)
S(t)

x

y

z

l(z, t)

n
m

Figure 2.1: The geometry of part of a vessel along the z-axis, bound by cross-sectional
surfaces A1(z=z1) and A2(z=z2) and circumferential surface S. The total volume is
denoted by the symbol V , an arbitrary cross-section perpendicular to the z-axis by A
and its boundary by l.

expressing the response of the vessel wall to pressure variations. For reasons of simplicity, here

an A = A(p(t)) relation is chosen according to

∂A

∂t
=

∂A

∂p

∂p

∂t
≡ C

∂p

∂t
, (2.2)

but more complicated and viscoelastic properties can also be modelled. Here C(z, t) is the

compliance of the vessel which can be obtained either from experimental data or from a consti-

tutive model of the arterial wall. A more detailed description of the constitutive model used in

this chapter is presented in section 2.3. After introducing volume flow q ≡ Avz , the following

(p, q)-formulation can be derived:

C
∂p

∂t
+

∂q

∂z
+ Ψ = 0. (2.3)

When assuming a no-slip condition for the local velocity profile, the momentum balance from

Hughes and Lubliner (1973) can be written as:

∂q

∂t
+

∂Av2
z

∂z
+

A

ρ

∂p

∂z
= Afz +

I

l

“η

ρ

∂vz

∂m

”

dl + A
η

ρ

∂2vz

∂z2
. (2.4)

Here, fz are the body forces acting on the fluid in axial direction and m = (mx, my, 0) is the

outward normal to l. The fluid density and viscosity are referred to as ρ and η respectively.

The last term on the right of (2.4) is obtained by retaining the diffusion forces in the derivation

from Hughes and Lubliner (1973). We choose to keep this term for reasons of numerical

stability. Equation (2.4) is the one-dimensional momentum balance in an (A, q)-formulation.

For a more thorough derivation of the above equations, see Hughes and Lubliner (1973). On

using the approximation of a perfectly circular lumen

I

l

η

ρ

∂vz

∂m
dl ≈ 2πa

ρ
τw (2.5)



A wave propagation model of blood flow using an approximate velocity profile function. 15

with τw as the wall shear stress and a the lumen radius, and the definition

γ ≡ Av2
z =

Z

A

v2
zdA, (2.6)

equation (2.4) becomes

∂q

∂t
+

∂γ

∂z
+

A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ

∂2q

∂z2
, (2.7)

where the last term on the right-hand side has been derived using the Leibniz theorem in

combination with boundary conditions vz |r=a = 0 and ∂vz/∂z|r=0 = 0. Note that (2.5) is

exact for circular cross-sections A but can be generalised for non-circular cross-sections using

a =
p

A/π. The term γ will be referred to as the (non-linear) convection term. To solve (2.7)

with respect to the pressure p and the flow q in combination with the one-dimensional mass

conservation equation (2.2) and a constitutive relation between p and A, more information

about the local velocity profile vz is needed to provide proper estimates for the convection

term γ (2.6) and the wall shear stress τw (2.5), expressed in terms of p and q. Note that,

for this, we do not need an exact description of the velocity profile as long as we have good

approximations for the integral of its square and its derivative at the wall. Whereas previous

work in the time domain used mainly flat or Poiseuille profiles, in this work an alternative

profile function will be derived to approximate the above terms, as will be presented next.

2.2.2 An approximate velocity profile function

Here a relation for v(x, t) expressed in terms of p(z, t) and q(z, t) is derived to provide proper

estimates for the convection term γ and the friction term τw. Hughes and Lubliner (1973)

provide the following expression:

vA = 0 and vz(xA, t) = φ(x, y)vz(z, t) (2.8)

with φ such that the axial velocity at the wall is zero (and so φ|l = 0) and the mean cross-

sectional velocity equals vz(z, t). This formulation implies that in all cases the shape of the

profile is both constant over time and constant along the axis of the vessel. From a mathe-

matical point of view this is a convenient choice that will simplify the momentum equation

(2.4) significantly. From a physical perspective, however, the choice presented in (2.8) is less

obvious. As the velocity in the core of the vessel does not need to be in-phase with the velocity

in the outer layer, a velocity profile that changes its shape in time must be chosen.

Here we consider the Navier-Stokes equations for fully developed flow in straight tubes driven

by a given pressure gradient

ρ
∂vz

∂t
= −∂p

∂z
+ η

1

r

∂

∂r

“

r
∂vz

∂r

”

(2.9)

with r =
p

x2 + y2 as the radial coordinate. We will consider the situation as depicted on the

left in figure 2.2. To obtain a good approximation of the solution of (2.9) close to the wall, we

take the limit as r approaches a

lim
r→a

“

ρ
∂vz

∂t

”

= lim
r→a

“

− ∂p

∂z
+ η

1

r

∂

∂r

“

r
∂vz

∂r

””

(2.10)

Owing to the no-slip condition at the wall, the left-hand side of (2.10) will be zero. As the

pressure gradient is constant over the cross-sectional area, we have

0 = −∂p

∂z
+ lim

r→a

“

η
1

r

∂

∂r

“

r
∂vz

∂r

””

(2.11)
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∂z
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∂

∂r

`

r
∂vz

∂r

´

ρ
∂vz

∂t
= −∂p

∂z
+

1

r

∂

∂r

`

r
∂vz

∂r

´

model assumptions
∂p

∂z
= −ρ

∂vz

∂t

∂p

∂z
=

1

r

∂

∂r

`

r
∂vz

∂r

´

ρ
∂vz

∂t
≈ −1

r

∂

∂r

`

r
∂vz

∂r

´

a ac

δs

Figure 2.2: The geometry of part of a vessel with local radius a. The present fluid
dynamical forces are shown on the left and on the right our approximation, where
ac is the core radius and δs = a − ac the viscous layer. The solid curve on the left
represents an exact velocity profile and the solid curve on the right the approximation
according to our method.

close to the wall. In the central core viscous forces are assumed to be negligible, so

ρ
∂vz

∂t
= −∂p

∂z
, (2.12)

which implies a flat profile in this region. In the region between these two limiting cases

the grey area is defined (see figure 2.2) where all three terms should balance according to

equation (2.9). In this area the velocity profile will be continuous and bounded both by the

velocity near the wall and the velocity in the central core. Exact solutions of (2.9), providing

exact velocity profiles, can only be derived in the frequency domain (Womersley (1957)). As

our only interest is in providing reasonable approximations for the non-linear term γ =
R

v2
zdA

and the friction term ∂vz/∂r|r=a any other velocity profile doing so is admissible, as long as

mass conservation
R

vzdA is satisfied. We chose to model the limiting case where the grey

area of figure 2.2 becomes infinitesimally small, leaving only the inviscid area in the central

core and the purely viscous layer near the vessel wall as depicted on the right in figure 2.2. At

the transition between these two areas we connect the velocity vz in the viscous layer to the

velocity in the central core vc, which is still unknown but can be eliminated (written in terms of

q) using cross-sectional mass conservation. A first-order estimate of the thickness of the viscous

layer δs for fully developed flow in straight rigid tubes is derived from the equilibrium between

inertia forces ρ ∂vz/∂t and viscous forces η ∂2vz/∂r2 at the transition from the viscous layer

to the inviscid core. This yields δs = O
“

p

η/ρω
”

= O(a/α), with α being the Womersley

parameter and ω representing the angular frequency. Consequently, the central core is related

to the Womersley parameter according to

ac

a
= max

h

0,
“

1 − k

α

”i

with α = a

r

ρω

η
and k = O(1) , (2.13)

where the exact value of k will be defined later in this section. For blood flow a rough estima-

tion yields: η/ρ ≈ 6 · 10−6 [m2/s] (Gijsen et al. (1999a)) and ω = 2π/T ≈ 6 [s−1] resulting in

δs ≈ 1 [mm] (specifically, δs ≈ min [a,1 mm]) for all arteries. To incorporate the above into

the velocity profile function the governing equations in the viscous layer will be solved for the

axisymmetric case. This shall be done using proper boundary conditions to connect the velocity

profile in this layer to the velocity in the central core. In this central core (2.12) results in a flat

profile according to

vz(r, z, t) = vc(z, t) for r < ac, (2.14)
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where vc is left undetermined. In the viscous layer, equilibrium between the pressure gradient

and the friction forces is assumed according to (2.11)

0 = −∂p

∂z
+ η

1

r

∂

∂r
(r

∂vz

∂r
) for ac ≤ r < a. (2.15)

After integration of (2.15) with respect to the radius r twice, together with the boundary

conditions vz|r=ac = vc and vz |r=a = 0 the following profile is obtained:

vz = − a2

4η

∂p

∂z

`

1 − ξ2´

+
ln ξ

ln ξc

»

vc +
a2

4η

∂p

∂z

`

1 − ξ2
c

´

–

for ac ≤ r < a, (2.16)

with ξ = r/a the dimensionless radius, and ξc = ac/a the dimensionless core diameter. Inte-

gration of (2.14) and (2.16) over the cross-sectional area A results in a relation between the

core velocity vc(z, t) and the cross-sectional mean velocity vz ≡ q/A dependent on the radius

of the core ac and the pressure gradient ∂p/∂z, according to

vc =

»

ln ζc

ζc − 1

–

vz +
a2

4η

»

1 − ζc +
1

2

“

ζc + 1
´

ln ζc

–

∂p

∂z
, (2.17)

with ζc = ξ2
c .

Substitution of this relation in (2.16) yields an expression for the total velocity profile vz(x, t):

vz =
− ln ζ̂

1 − ζc
vz − a2

4η

h

1 − ζ̂ + 1
2

“

ζc + 1
´

ln ζ̂
i ∂p

∂z
, (2.18)

with

ζ = ξ2
and ζ̂ = max [ζ, ζc]. (2.19)

The simple relation (2.8) of Hughes and Lubliner (1973) is now replaced by the more complex

one

vz(x, t) = φ1(ζ, ζc) vz(z, t) − φ2(ζ, ζc)
a2

4η

∂p(z, t)

∂z
(2.20)

with φ1 and φ2 defined by:

φ1(ζ, ζc) =
− ln ζ̂

1 − ζc
and φ2(ζ, ζc) = 1 − ζ̂ + 1

2
(ζc + 1) ln ζ̂ (2.21)

Note that, in cylindrical coordinates

1
Z

0

φ1ξdξ = 1
2

and

1
Z

0

φ2ξdξ = 0 (2.22)

and, consequently, the mean velocity does not depend on the second term on the right-hand

side of (2.20). For the axisymmetric case the wall shear stress τw can be computed as

τw

“∂p

∂z
, q, A, ξc

”

= η
∂vz

∂r

˛

˛

˛

r=a
= − 2η

(1 − ζc)a

q

A
+

a

4
(1 − ζc)

∂p

∂z
. (2.23)
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A detailed derivation of the non-linear term γ = Av2
z is presented in Appendix A, leading to

the expression

γ
“∂p

∂z
, q, A, ξc

”

= δ1
q2

A
+ δ2q

a2

4η

∂p

∂z
+ δ3A

„

a2

4η

∂p

∂z

«2

, (2.24)

where δ1, δ2 and δ3 are functions dependent solely on the dimensionless core thickness ζc

according to:

δ1(ζc) =

1
Z

0

φ2
1dζ =

2 − 2ζc(1 − ln ζc)

(1 − ζc)2

δ2(ζc) = −2

1
Z

0

φ1φ2dζ =
1 + 4ζc(1 + ln ζc) − ζ2

c (5 − 2 ln ζc)

1 − ζc

δ3(ζc) =

1
Z

0

φ2
2dζ = 1

3
+ ζc(3 + 2 ln ζc) − ζ2

c (3 − 2 ln ζc) − 1
3
ζ3

c .

9
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>

>
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;

(2.25)

The resulting velocity profiles, corresponding wall shear stresses and non-linear forces at dif-

ferent Womersley numbers α will be compared to Womersley’s theory in section 2.3.1.

2.2.3 Viscous layer thickness

The only parameter yet to be determined in order for the velocity profile function (and thus

the wall shear stresses and non-linear forces) to be known, is the viscous layer thickness. A

physically relevant value for this parameter must be provided as a function of the local geom-

etry and the local fluid dynamical parameters. For friction-dominated flow (α < k) Poiseuille

friction can be recovered by substitution of

∂p

∂z
= −R0q =

−8η

πa4
q (2.26)

into equation (2.23) and setting ζc = 0. For inertia-dominated flow (α ≫ 1) (2.13) gives

1 − ζc = 1 − ξ2
c ≈ 2k

α
. (2.27)

Moreover,

∂q

∂t
≈ −A

ρ

∂p

∂z
(2.28)

or, on introducing the harmonic solutions q = q̂ eiωt and p = p̂ eiωt

q̂ ≈ iA

ρω

∂p̂

∂z
, (2.29)

with p̂ and q̂ respectively the complex amplitude of p and q for each harmonic of the pressure.

In this case, by substitution of (2.29), (2.27) and (2.13) into (2.23), the corresponding complex

amplitude of the wall shear stress τ̂w becomes

τ̂w =
1

α

“

k − i
2

k

”

τ̂p
w, (2.30)
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Figure 2.3: Parameters δ1, δ2, and δ3 as a function of the core radius ξc.

with τp
w equal to the Poiseuille wall shear stress. As our main interest is in providing the

proper wall shear stress, (2.30) is compared to Womersley’s theory and for k =
√

2 they are

fully equivalent. Consequently, for relatively cylindrical parts of the vessel (for ∂A/∂z ≪ a)

and sufficiently far from geometrical discontinuities, the following approximation for ξc can be

used:

ξc = max [0, 1 −
√

2/α]. (2.31)

2.2.4 Wave propagation

In addition to the (1 + δ)q2/A term in the original equation of Hughes and Lubliner (1973)

extra non-linear terms now appear in γ(p, q), given in (2.24). Since the multiplication factors

corresponding to δi are of the same order of magnitude, the importance of the terms on the

right-hand side of equation (2.24) depends on the magnitude of the functions δ1, δ2 and δ3.

These are plotted against the dimensionless core radius ξc in figure 2.3. The case of a Poiseuille

flow, where ζc → 0 and ∂p/∂z = −(8η/a2)vz , yields 1+δ = δ1−δ2+δ3 = 4/3. For a flat profile,

ζc → 1, which results in 1 + δ = δ1 = 1, so both limiting cases are in complete correspondence

with the original method. Since the influence of the non-linear term is important mainly for

large arteries at high Womersley numbers (α ≫ 1 and so ξc → 1), in the remainder of this

work the contributions of δ2 and δ3 will be neglected (see figure 2.3), resulting in a non-linear

term similar to the ones presented in the literature, e.g. Hughes and Lubliner (1973). The set

of equations that follows from mass conservation, the momentum balance and a constitutive
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law for the wall material, together with the profile function and the wall shear stress, is

∂A

∂t
+

∂q

∂z
+ Ψ = 0,

∂q

∂t
+

∂

∂z

„

δ1
q2

A

«

+
A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ
,
∂2q

∂z2

p(z, t) = p̃(A(z, t); z, t),

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(2.32)

and

vz = − ln ζ̂

1 − ζc

q

A
− a2

4η

h

1 − ζ̂ + 1
2
(ζc + 1) ln ζ̂

i ∂p

∂z
,

τw = − 2η

(1 − ζc)a

q

A
+

a

4
(1 − ζc)

∂p

∂z
,

9

>

>

>

>

=

>

>

>

>

;

(2.33)

with γ, τw, ζ̂ and ζc from (2.24), (2.23), and (2.19) respectively. The constitutive law expresses

a relation between the local instantaneous pressure p(z, t) and the local instantaneous cross-

sectional area A(z, t) for which a linear approach will be proposed in the next section.

For a comparison with results from Young and Tsai (1973b) later on, the friction term in (2.33)

will now be revised into a comparable format. Introducing the coefficients cp and cq as

cp = 1 + 1
2

“

1 − ζc

´

, cq = 1
2

“

1 − ζc

´−1
, (2.34)

yields

τw = −a

2

»

cqR0q − (cp − 1)
∂p

∂z

–

(2.35)

for the wall shear stress with the resistance R0 per unit of length defined according to

R0 =
8η

πa4
. (2.36)

Using equation (2.13) with k =
√

2 gives

cq =
α

4k

„

1 −
√

2

2α

«−1

, cp = 1 +

√
2

α

„

1 −
√

2

2α

«

for α >
√

2. (2.37)

For shear dominated flow in small arteries (quasi-static Poiseuille flow) a similar derivation

gives cp + cq = 2 and since this is also the case for α =
√

2, use of (2.37) gives

cq =
1

2
, cp =

3

2
for α ≤

√
2. (2.38)

Substitution of (2.35) into the momentum equation of (2.32) without external forces and ne-

glecting the non-linear and diffusion terms gives

∂p

∂z
= −

»

cq

2 − cp

–

R0q −
»

1

2 − cp

–

L
∂q

∂t
(2.39)

with L = ρ/A [kg/m5] the inertance per unit of length.
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2.2.5 General set of equations

To simplify the resulting set of equations for the general case a (p, q)-formulation with the

pressure and the flow as parameters is proposed as this may be the best option with respect

to linearisation in A(z, t). The cross-sectional area can be derived from the pressure using the

linearised constitutive relation:

A
“

z, t
´

= Ã
`

p
“

z, t
´

, z
´

= A0

“

z
´

+ C0

“

p − p0

´

(2.40)

with the compliance per unit length C0, based on thin walled cylinder theory for a linear elastic

material, defined as

C0 =
∂A

∂p

˛

˛

˛

p=p0

=
2π

“

1 − µ2
´

a3
0

hE
. (2.41)

Here, µ is Poisson’s ratio, E is Young’s modulus and a0 is the vessel radius at p = p0. Using the

p, q-formulation yields

∂

∂t

»

p
q

–

+ N
∂

∂z

»

p
q

–

− D
∂2

∂z2

»

p
q

–

+ H

»

p
q

–

= f (2.42)

with

N =

2

4

0 C−1
0

(2 − cp)
A

ρ
− δ1

q2

A2
C0 δ1

2q

A

3

5 , D =

"

0 0

0
η

ρ

#

, (2.43)

H =

2

4

0 0

0 cq
A

ρ
R0 +

q

A

„

∂δ1

∂z
− δ1

A

∂A

∂z

«

3

5 , f =

»

−ΨC−1
0

Afz

–

(2.44)

and in terms of the original theory by Hughes and Lubliner (1973) (see Wan et al. (2002)):

Wan et al. (2002) this study

δ1 = 1 + δ =
2 + n

1 + n
δ1 =

2 − 2ζc(1 − ln ζc)

(1 − ζc)2

cp = 1 cp = 1 + 1
2
(1 − ζc)

cq = − Nρ

R0A2
=

n + 2

4
cq = 1

2
(1 − ζc)

−1

with N = −2(n + 2)πν with ζc =
“ac

a

”2

≈
„

1 − k

α

«2

where n is a free parameter

(2.45)

Note that, in (2.42) for stability reasons, the term (η/ρ)(∂2q)/(∂z2) is kept, although it is small

compared to the friction term (2πτwa)/ρ.

2.2.6 Computational method

To analyze wave propagation using the approximate velocity profile function, a spectral ele-

ment method is employed to solve the above sets of equations by discretisation of the spatial

domain using sixth-order one-dimensional spectral elements. A Galerkin weighted residuals

method is used to transform the set of partial differential equations into a spectral element
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space. This transformation is presented in Appendix B. The time derivatives are treated us-

ing a second-order backward differencing scheme and at each time step ∆t = 0.001 [s] a

Newton-Raphson iterative scheme is deployed to handle the non-linear terms. This results in

the following scheme:

ˆ

3
2
M– + ∆tS–

n+1
i

˜

u
n+1
i+1 = 2M– u

n − 1
2
M– u

n−1 + ∆tM– f
n+1
i , (2.46)

where ∆t is the time step used, u = [u
˜
1 u

˜
2]

T = [ p
˜

q
˜

]T and

S–
n+1
i = S–(un+1

i ) , S–
n+1
0 = S–(un) , S– = N– + D– + H– . (2.47)

M , N , D and H are defined in (B.15). Furthermore,

f
n+1
i = f (un+1

i ) , f
n+1
0 = f (un) , (2.48)

where f = [f
˜

1
f
˜

2
]T . The method yields reliable and stable solutions without the use of any

kind of upwinding or stabilisation scheme. For a more detailed derivation of the final set of

linear equations the reader is referred to Appendix B.

2.3 Results

2.3.1 Velocity profile function

Using k =
√

2 as defined in the previous section, the approximations made for parameters cp

and cq as defined by equations (2.37) and (2.38), can be evaluated and compared to results

found in the literature. Young and Tsai (1973b) gave an expression balancing the pressure

gradient with the friction term and inertia forces, according to

∂p

∂z
= −cv

„

8η

πa4

«

q − cu
ρ

A

∂q

∂t
(2.49)

with coefficients cv and cu calculated from the exact solution as a function of the Womersley

parameter α (Womersley (1957)). In this work, equation (2.39) was obtained to compare

coefficients cq/(2 − cp) and 1/(2 − cp) to the values of cv and cu from Young & Tsai respec-

tively in a physiological range of α. Their values, when using equations (2.37) and (2.38) with

k =
√

2 are plotted as solid lines in figure 2.4. For large values of α coefficients cq/(2 − cp)
and 1/(2− cp) are in good agreement with the values for cu and cv from Young & Tsai and for

low values of α (α < k) the combination of our coefficients as well as cv and cu correspond

to Poiseuille friction since in this range the pressure gradient and the flow are directly related.

Owing to the assumptions made when using the approximate velocity profile function, the in-

termediate values of α show some differences with respect to Womersley’s theory.

The same observation can be made when comparing the non-linear term γ =
R

v2
zdA derived

from the approximate velocity profile function to γ derived from Womersley profiles. A sin-

gle harmonic flow with radial frequency ωq = 2π [s−1] is prescribed and using values of the

Womersley parameter in the range of 0 < α ≤ 16 the corresponding pressure gradient ∂p/∂z
is computed from Womersley’s theory for flow in rigid tubes (Womersley (1957)). Using this

combination of q and ∂p/∂z the velocity profiles and the integral of their square root (γ) for

both theories can be determined as a function of α and time t. It can easily be shown that for

all α, γ(t) is a single harmonic signal with radial frequency ωγ = 2ωq. This harmonic signal

is evaluated for both the approximate profiles (γAP ) and the Womersley profiles (γWP ) in the
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Figure 2.4: Coefficients cq/(2−cp) and 1/(2−cp) (dashed and solid lines respectively)
as a function of α together with the values of cv (◦) and cu (⊲) of Young & Tsai (1973).
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range of given α. Figure 2.5 shows the normalised (with γWP (α = 0)) difference in the ampli-

tude and the phase difference between both methods. Both the relative difference in amplitude

and the phase difference approach 0 when α approaches 0. For large α, although more slowly,

the differences also go to 0. Intermediate values of α show some differences in γAP and γWP

as a result of the assumptions made when deriving the approximate velocity profile function.

The behaviour of τw and γ as a function of time is illustrated, along with the corresponding

velocity profiles, for α = 0, 2, 4, 8, 16 and ∞ in the 6 panels of figure 2.6. Each panel rep-

resents a different Womersley number. The left-hand side of each panel shows the normalised

flow and pressure gradient as function of the dimensionless time, followed (below) by the wall

shear stress τw and non-linear term γ from both methods. The illustration on the right-hand

side of each panel shows the velocity profiles for both theories at 8 equidistant time steps within

one cycle. For low values of the Womersley parameter (α <
√

2) the approximate velocity pro-

file function exactly reproduces the expected Poiseuille profiles. For intermediate values of the

Womersley parameter (α = 2, 4, 8, 16) the profiles found using the approximate velocity pro-

file method are more flat, however, an appropriate wall shear stress and convection parameter

γ are found. Also, the phase shift between the pressure gradient and the wall shear stress as

predicted by Womersley’s theory is accurately described by the approximation. Note that in the

case of a velocity profile proportional only to the flow, as in Hughes and Lubliner (1973) and

Olufsen (1999), the wall shear stress would be in phase with the flow also. At higher values

of the Womersley parameter (α → ∞) profiles are flat and well-predicted, resulting in good

approximations for the wall shear stress and γ.

To demonstrate the possibility of determining τw and γ when imposing a physiological flow

signal, multi-harmonic flow pulses from a coronary artery and the aorta (based on the first 10

harmonics of this signal) are used as an input for the previous computations. Figure 2.7 shows

the result with α = 2 for the left coronary artery and α = 12 for the aorta. Although the esti-

mates of α (and so δs) are based on the first harmonic of the flow signal, good approximations

for the velocity profiles are obtained. The wall shear stress and the convection term result-

ing from the approximate velocity profiles also show good correspondence with Womersley’s

theory when imposing a multi-harmonic flow signal.

2.3.2 Wave propagation

The theory introduced in this study has already shown improvements over other assumed ve-

locity profiles in approximating the wall shear stress and the convection term obtained by

Womersley’s theory. Whereas the new convection term yields only small changes in the one-

dimensional equation (δ2 and δ3 are small with respect to δ1), the expression for the friction

term is significantly altered when compared to the friction term when assuming a Poiseuille

profile. To determine whether the improved friction term influences the modelling of the

waves travelling through the arterial system, a comparison in a physiological range is made

between the friction term as defined by the velocity profile function and the friction defined by

a Poiseuille profile (Hughes and Lubliner (1973)). Using data from Olufsen and Peskin (2000),

two compliant tubes are modelled both using six (sixth-order) spectral elements. One is an

aorta-like vessel and the other is based on the femoral artery (FA) to include inertia-dominated

flow (α ≈ 12) as well as flow where friction is more important (α ≈ 4). The geometric data

(the radius a and the wall thickness h) of these vessels are given in table 2.3.2.

Note that in our situation the aorta is modelled using less tapering than in Olufsen and Peskin

(2000) because in this work no side branches are modelled to subtract fluid from the vessel.

The wall behaviour is assumed to be linear elastic according to (2.41) and the corresponding

Young’s modulus (E = 4.0 · 105 [N/m]) and Poisson’s ratio (ν = 0.3 [–]) for both vessels are
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Figure 2.6: Each of the 6 panels represents velocity profiles vz(r, t) at 8 equidistant
time steps (right) for both our approximation (AP) and Womersley theory (WP) as
a result of single-harmonic flow pulse q and pressure gradient ∂p/∂z (left-top) for
α = 0, 2, 4, 8, 16, and ∞. Resulting wall shear stress τw(t) and convection parameter
γ(t) from the approximate velocity profile function (o) and Womersley theory (−) are
depicted in the left-bottom 2 plots.
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Figure 2.7: both panels represents velocity profiles vz(r, t) at 8 equidistant time steps
(right) for both our approximation (AP) and Womersley theory (WP) as a result of
multi-harmonic physiological flow pulse q and pressure gradient ∂p/∂z (left-top) ob-
tained from the left coronary artery (left panel) and the aorta (right panel). Resulting
wall shear stress τw(t) and convection parameter γ(t) from Womersley theory (−)
and the approximate velocity profile function (o) are depicted in the left-bottom 2
plots.

Vessel Length local radius wall thickness wave speed
type L [mm] a0 [mm] h/a0 [ – ] c0 [m/s]

Aorta 400 12.5 - 9.0 0.125 5.1

FA 400 4.3 - 3.4 0.3 8.0

Table 2.1: Data of vessels used in numerical experiments.

Vessel R1 R2 CT
type [Ns/m5] [Ns/m5] [m5/N]

Aorta 2.31 · 107 7.69 · 107 1.95 · 10−8

FA 2.05 · 108 1.21 · 109 1.20 · 10−9

Table 2.2: Windkessel parameters used in numerical experiments.
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obtained from Westerhof et al. (1969). Blood properties are set at η = 4.5 · 10−3 [kg/m·s] and

ρ = 1.04 · 103 [kg/m3] for the viscosity and the density respectively, according to Porenta et al.

(1986). From the above data the constant wave speed c0 for the two vessels, as given in table

2.3.2, is found using c0 =
p

A0/ρ C0, where A0 and C0 are the cross-sectional area and the

compliance at the initial pressure p0 respectively. At the inlet of the aortic and the femoral tube

flow pulses q(z = 0, t) as measured by Olufsen and Peskin (2000) are prescribed as depicted in

figure 2.8 and 2.9 respectively, whereas at the distal end of the vessels a three-element Wind-

kessel is defined to relate the outlet pressure to the outlet flow (Stergiopulos et al. (1999)).

Parameters R1, R2 and CT are the corresponding terminal resistance, peripheral resistance and

compliance respectively, as defined in table 2.3.2. The values of R1 were obtained by modelling

minimal reflections at the outlets according to

R1 ∼ Z0 =

r

L0

C0
=

s

ρ h E

2π2(1 − ν2)a5
0

(2.50)

with L0 = ρ/A0 representing the local inertance, C0 the local compliance as defined by (2.41)

and Z0 the local impedance at the distal end of the vessel. To obtain pressures in the physio-

logical range, R2 was derived using the total resistance RT as

RT = R1 + R2 = p/q and CT = τ/R2, (2.51)

with p = 10 [kPa] the desired mean pressure and q the mean flow prescribed at the inlet. By

first-order approximation, the time constant τ = 1.5 s was found to result in a physiological

pressure drop in the pressure signal comparable to that demonstrated in the data of Olufsen

and Peskin (2000)). Note that, similar to the literature, in Poiseuille-friction computations the

friction term was altered by replacing the second equation of (2.33) by

τp
w = −a

2
R0q = − 4η

πa3
q (2.52)

and thus changing only the second term on the right-hand side of the momentum equation

in (2.32). The volumetric outflow per unit of length was set to Ψ = 0 [m2/s]. Since friction

is dependent, as well as on flow q, on the pressure gradient ∂p/∂z and because we are also

interested in the wall shear stress τw, these two quantities are depicted along with the flow q as

a function of time at four equidistant positions in the aorta-like and femoral-like vessel (figures

2.8 and 2.9 respectively). Results are captured in the 9th to 10th period when time-periodic

pressure and flow was found. All quantities are normalised by dividing them by the mean

(over time) of the Poiseuille friction as defined by (2.52). In the aorta-like vessel the two

different velocity profiles yield very distinctive wall shear stresses. Friction as approximated by

the Poiseuille profile shows the expected in-phase behaviour with the flow and is much smaller

than the friction according to the approximate velocity profile function. Looking at the resulting

pressure gradient and flow waves in the aorta, however, the effect of the friction approximation

used appears negligible, as expected from inertia-dominated flow. In the femoral artery the

wall shear stress based on the approximate velocity profile function is of the same order of

magnitude as friction approximated by assuming a Poiseuille profile. As a result of the in-phase

behaviour of the Poiseuille wall shear stress with the flow, however, it is different from the wall

shear stress calculated here, which is dependent on pressure gradient as well as flow. Since in

medium-sized and smaller arteries friction influences the wave propagation, this also results

in differences in the pressure gradient. Hence, a suitable friction model is crucial in predicting

the pressure and the flow waves propagating through the arterial system, especially for the

medium-sized arteries where Poiseuille friction is not appropriate. The reason why the flow is
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Figure 2.8: Analysis of the friction term in an aorta-like vessel, showing normalised
pressure gradient ∂p/∂z (top), flow q (middle) and wall shear stress τw (bottom) as a
function of time at four equidistant positions in the modelled vessel. Solid lines show
results using our approximate velocity profile function whereas dashed lines show
results using Poiseuille friction.

not influenced by the friction term used can be explained by the fact that the flow pulse, as

depicted at z = 0, is prescribed as an essential boundary condition.

2.4 Discussion

The theory proposed in this chapter uses the division of fluid inside a vessel lumen into a vis-

cous layer close to the wall connected to an inviscid core to obtain first-order approximations

for the friction forces and the non-linear term in one-dimensional wave propagation in the time

domain. The local thickness of the viscous layer is determined as a function of the Womersley

parameter α, where the definition of α is based on the first harmonic of the flow signal. The

method proposed here yields wall shear stresses and convection forces in good agreement with

Womersley’s theory for time-dependent flow in rigid tubes when a single-harmonic flow pulse

is imposed. In the limiting cases (α = 0 and α → ∞) Womersley’s theory is exactly reproduced

by the approximation proposed in this study. For intermediate values of α, both the wall shear

stresses and the convection forces show good agreement with Womersley’s theory where the ve-

locity profiles obtained show the expected phase difference between the flow in the Stokes layer

and the core flow. When comparing velocity profiles, the wall shear stress and the non-linear

term based on the approximate velocity profile function with Womersley’s solutions, using a

more physiological flow pulse based on measurements in the aorta and coronary artery, results
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Figure 2.9: As figure 2.8 but for a femoral-like vessel.

similar to Womersley’s theory are obtained. So, even though the estimation of the Womersley

parameter α is based on only the first harmonic of the flow signal, good approximations for the

thickness of the viscous layer for a multi-harmonic flow signal are still obtained, provided the

first harmonic is dominant over the higher frequencies involved and not negligibly small com-

pared to the mean level. Since the estimation of the thickness of the Stokes layer was derived

for straight vessels with gradual changes in the cross-section area, more sophisticated analy-

sis will be needed to model geometric discontinuities like stenoses and bifurcations. Theories

from Schlichting (1960) and Pedley (1980) as well as three-dimensional computational fluid

dynamics results and experimental data could be used to derive estimates for the thickness of

the Stokes layer in these regions.

The effect of the wall shear stress derived from the velocity profile approximation in one-

dimensional wave propagation was examined by comparing its results to the one-dimensional

theory based on Poiseuille friction in an aorta-like and a femoral-like tapered vessel. From these

simulations the conclusion could be drawn that in large, inertia-dominated vessels friction is

largely over-estimated by assuming Poiseuille profiles, although the influence of an appropri-

ate friction model on the wave propagation phenomena is insignificant. In smaller vessels,

however, the choice of an appropriate friction model is important for obtaining reliable wall

shear stresses as well as physiological pressure and flow wave propagation characteristics. This

implies that using an explicit method to determine the wall shear stress, i.e. no proper friction

approximation in the one-dimensional wave propagation equations, will not yield reliable re-

sults.

The spectral element framework used for discretisation enables simple connection of tubes by

adding continuity of pressure and flow in bifurcations. This, together with appropriate proxi-

mal and distal boundary conditions may lead to the modelling of the total arterial tree, where
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further improvements may be obtained by introducing an appropriate model to predict the lo-

cal blood viscosity.

In this work, a constant fluid viscosity was assumed whereas it is known that blood viscos-

ity is dependent on the local shear rate through, for example, the aggregation of erythrocytes

present in the plasma. Such behaviour may change local velocity profiles resulting in differ-

ent wall shear stresses. Furthermore, a viscoelasticity model may be incorporated to model

the arterial wall behaviour, giving the model more physiological characteristics. This may be

achieved by, instead of substituting the constitutive equation into the mass balance, explicitly

defining a differential equation describing the wall behaviour (e.g. the standard linear-solid

model) and building a system of equations with three variables (A,q,p) instead of two (p,q).

Proper evaluation of the model proposed, apart from a comparison to Womersley’s theory,

could be accomplished by coupling the one-dimensional solutions to a three-dimensional fluid-

structure interaction (FSI) model and comparing the predicted wall shear stresses of both the-

ories, or by a comparison of the pressure and flow wave propagation to data sets obtained from

experiments.

The model proposed may be used to simulate pressure and flow wave propagation in the time

domain to determine the effect of a local arterial pathology on the total arterial system. Bypass

surgery alternatives may be evaluated and, combining the pressure and wall shear stress data

obtained from this work with a suitable adaptation law for the arterial wall, remodelling of

the total arterial system may be studied. As the centre-line velocity, corresponding to vc in

the model proposed, can be assessed in-vivo by ultrasound systems (Brands et al. (1996)), this

model can also serve as a first-order method to derive the wall shear stress from ultra-sound

measurements as an alternative to extrapolation of velocity profiles.

2.5 Conclusion

A wave propagation model in the time domain is developed where assumptions concerning

the velocity profiles are based on a newly developed velocity profile function, dependent not

only on the main velocity, but also on the pressure gradient. Using this method, a phase differ-

ence between the wall shear stress and the mean velocity similar to that found in physiological

situations and by Womersley’s theory in the frequency domain is obtained. Also, the approxi-

mation of the non-linear term based on the approximate velocity profile function shows good

agreement with Womersley’s theory. Implications of the friction term for one-dimensional wave

propagation characteristics are illustrated and shown to be significant.
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3.1 Introduction

Wave propagation models of blood flow in the arterial system have been subject of many stud-

ies throughout the last century. From apparently the first author to publish the results on wave

propagation in distensible tubes (Witzig (1914)) until the early seventies these models were

mainly based on analytical solutions of the equations of axisymmetric motion of viscous, in-

compressible fluid in cylindrical coordinates in the frequency domain. An overview of these

methods is presented by Cox (1968), showing several models describing the propagation of

pressure and flow waves through elastic and viscoelastic tubes. The most prominent shortcom-

ing of these methods is their lack of describing the non-linear fluid behaviour that has shown to

be crucial in the alternation of the pressure pulse shape while propagating through the larger

or tapered arteries (Anliker et al. (1968)). From 1970 onwards, with the introduction of faster

digital computers, space-time numerical methods became increasingly important in describing

blood flow in the arterial system. Descriptions from Hughes and Lubliner (1973) and Anliker

et al. (1971) showed that one-dimensional wave propagation models in the time domain are

well capable of describing the non-linear behaviour of the convection forces in blood flow

through larger elastic vessels.

The mechanical behaviour of the arterial wall is usually modelled as purely elastic. While ex-

amining the blood flow in the aorta, this assumption may well hold. In the smaller arteries,

however, the composition of the arterial wall results in a non-linear and viscoelastic response

to cyclic pressure loads that yields the typical hysteresis and attenuation in wave propagation

(Learoyd and Taylor (1966)). With respect to the non-linear behaviour, an incremental effec-

tive Young modulus E(z, p) depending on the pressure can be used to obtaining a first-order

appropriate model from linear theory. With respect to the viscoelastic behaviour of arteries,

the viscous contribution varies between the 10 and 60%, depending on the mechanical prop-

erties of the artery that vary with the distance of the artery to the heart (Learoyd and Taylor

(1966)). Since current one-dimensional time-domain-based wave propagation models of blood

flow in the arterial system consider the arterial wall to be purely elastic, the importance of its

viscoelastic characteristics on the attenuation of pressure and flow waves is neglected.

In this chapter, a constitutive law describing a linear viscoelastic relation between the local

pressure and the cross-sectional area, suitable for implementation in time domain based wave

propagation models, is proposed. This law is based on the standard linear-solid model, or

Kelvin body (Fung (1993)), and was also used by Cox (1968) in the frequency domain. In

section 3.2.1 the differential equation governing this model will be solved along with the con-

servation of mass and the momentum balance from chapter 2 describing one-dimensional wave

propagation.

To validate the model, the pressure and flow obtained from the numerical simulations are com-

pared to their measured counterpart, as obtained from Giannopapa (2004). The setup used in

this work is described in section 3.2.3 and in section 3.3 the results are presented. In section

3.4, the methods used and the results obtained are discussed.

3.2 Methods

3.2.1 Numerical methods

The derivation of the governing equations for one-dimensional wave propagation of incom-

pressible fluids in distensible tubes was taken from Hughes and Lubliner (1973). A proper

velocity profile function that provides approximations for the frictional forces and non-linear
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term present in these equations is presented in chapter 2, where the final set of equations

defined in terms of the cross-sectional area A, flow q and pressure p is derived as

∂A

∂t
+

∂q

∂z
= 0

∂q

∂t
+

∂

∂z

„

δ1
q2

A

«

+
A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ

∂2q

∂z2

p(z, t) = p̃(A(z, t); z, t).

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(3.1)

The first equation of (3.1) describes conservation of mass with t the time and z the axial

coordinate. The second equation represents the momentum balance where η and ρ are the

fluid viscosity and density respectively, fz is a body force acting on the fluid in axial direction

and a is the local lumen radius. Following chapter 2, the wall shear stress τw is given by

τw = − 2η

(1 − ζc)a

q

A
+

a

4
(1 − ζc)

∂p

∂z
(3.2)

with ζc =
`

max [0, (1 −
√

2/α)]
´2

where α is the Womersley parameter. The parameter δ1 in

equation (3.1) can be derived as

δ1 =
2 − 2ζc(1 − ln ζc)

(1 − ζc)2
. (3.3)

The third equation in (3.1) represents the constitutive law relating the local instantaneous

pressure to the local instantaneous cross-sectional area. In chapter 2 a linear elastic material

law based on thin walled cylinder theory is proposed, resulting in

∂A

∂t
= C0

∂p

∂t
with C0 =

2π(1 − µ2)a3
0

hE
, (3.4)

with C0 the compliance per unit of length of the vessel and h its local wall thickness. The

parameters µ and E are Poisson’s ratio and Young’s modulus of the wall material respectively.

Subscript 0 indicates the reference state at the initial pressure p = p0. In this approach, the

constitutive relation can be directly substituted into the conservation of mass equation resulting

in a (p,q)-system with only 2 equations. Since the assumption of linear elastic behaviour ignores

the viscoelastic properties of the arterial wall, in the next section a more physiological wall

model including viscoelasticity will be introduced.

3.2.2 Solid model

Neglecting the inertia and body forces, the momentum equation for a solid material in the

time-space domain reads:

∇ · σ = 0, (3.5)

with σ the Cauchy stress tensor. In cylindrical coordinates (see figure 3.1), because of geomet-

rical and constitutive symmetry, the only non-trivial component of the momentum equations

is:

∂σrr

∂r
+

σrr − σθθ

r
= 0. (3.6)
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σzz

σzz + dz ∂σzz

∂z

σθθ

σθθ

σrr
p
τw

dzdθ

h

r

Figure 3.1: Infinitesimal arterial wall volume showing the forces acting on it.

From this equation and boundary condition σrr|r=a+h = 0 on the outer surface of the tube,

the radial Cauchy stress σrr is:

σrr(ξ) =

a+h
Z

ξ

σrr − σθθ

r
dr, a ≤ ξ ≤ a + h. (3.7)

The internal pressure p = −σrr|r=a is then defined as:

p =

a+h
Z

a

σθθ − σrr

r
dr (3.8)

Since for thin walled cylindrical tubes (h ≪ a) the radial stresses are negligibly small (σrr ≪
σθθ), this leads to an internal pressure p equal to

p − pe ≈ h

a
σθθ (3.9)

with h the wall thickness, a the radius of the deformed tube and pe the external pressure.

In addition, the momentum balance in axial direction of a thin walled tube undergoing small

deformations is given by

ǫzz =
∂uz

∂z
=

1

E

`

σzz − µσθθ − µσrr

´

(3.10)

with µ the Poisson ratio, E Young’s modulus and uz the wall displacement in axial direction.

Here we assume linear elastic behaviour in axial direction. Since this axial displacement of the

vessel is assumed to be constrained by surrounding organs (ǫzz = 0) and again σrr << σθθ,

the axial stress equals

σzz = µσθθ . (3.11)

To relate the circumferential stress σθθ to the circumferential strain ǫθθ a three parameter

description based on the Kelvin model as depicted in figure 3.2 is used. Both springs are

assumed to behave linearly elastic and the dashpot provides a linear relation between the

stress and strain rate, so

σe =
Ee

(1 − µ2)
ǫ and σv =

Ev

(1 − µ2)
ǫe = ηw ǫ̇v. (3.12)
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Ee
Ev σσ

ηw

ǫ

ǫe ǫv

Figure 3.2: Standard linear-solid model representing an elastic part and a viscous
part with Young’s moduli Ee and Ev respectively. The dashpot has a constant co-
efficient of viscosity ηw. The stress σ and the strain ǫ are related through relation
(3.13).

Here, Ee and Ev are Young’s moduli of the springs of the elastic and viscous part of the model

respectively and ηw is the dashpot’s coefficient of viscosity. The strains ǫ, ǫe and ǫv are the

strains of the individual components of the Kelvin body as shown in figure 3.2. The corre-

sponding differential equation relating the total strain ǫ to the total stress σ = σe + σv reads

(Fung (1993))

σ +
ηw

Ev
σ̇ =

Ee

1 − µ2
ǫ +

ηw

1 − µ2

`

1 +
Ee

Ev

´

ǫ̇ (3.13)

Positioning this model in circumferential direction of a vessel according to figure 3.1 (so σ =
σθθ and ǫ = ǫθθ), and introducing the relaxation time for constant strain τǫ and the relaxation

time for constant stress τσ according to

τǫ =
ηw

Ev
and τσ =

ηw

Ee

`

1 +
Ee

Ev

´

(3.14)

respectively, yields

σθθ + τǫσ̇θθ =
Ee

1 − µ2

`

ǫθθ + τσ ǫ̇θθ

´

. (3.15)

For the remainder of this chapter, subscripts θθ will be omitted. Using (3.9) and ǫθθ = (a −
a0)/a0 ≈ (A − A0)/2A0, (3.13) can be expressed in terms of p and A. This gives the final set

of equations as

∂A

∂t
+

∂q

∂z
= 0

∂q

∂t
+

∂

∂z

„

δ1
q2

A

«

+
A

ρ

∂p

∂z
= Afz +

2πa

ρ
τw +

η

ρ

∂2q

∂z2

a

h
p + τǫ

∂

∂t

“ a

h
p

”

=
Ee

1 − µ2

“A − A0

2A0
+

τσ

2A0

∂A

∂t

”

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(3.16)

In an (A,q,p)-formulation this yields the following general set of equations:

M
∂

∂t

2

4

A
q
p

3

5 + N
∂

∂z

2

4

A
q
p

3

5 − D
∂2

∂z2

2

4

A
q
p

3

5 + H

2

4

A
q
p

3

5 = f (3.17)
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with

M =

2

6

4

1 0 0
0 1 0

− τσ

2A0
0 τǫ

a

h

3

7

5
, N =

2

6

6

4

0 1 0

−δ1
q2

A2
δ1

2q

A

A

2ρ
(1 + ζc)

0 0 0

3

7

7

5

,

H =

2

6

6

6

4

0 0 0

−fz
A

ρ(1 − ζc)
R +

q

A

∂δ1

∂z
0

− Ee

2A0
0

1

h

`

a + τǫ
∂a

∂t
− a

h

∂h

∂t

´

3

7

7

7

5

, (3.18)

D =

2

6

4

0 0 0

0
η

ρ
0

0 0 0

3

7

5
, f =

2

6

4

0
0

−1

2
Ee

3

7

5
.

The linearisation of this set of equations is presented in Appendix C. To solve it, a spectral

element method is employed by discretisation of the spatial domain using sixth-order one-

dimensional spectral elements. A Galerkin weighted residuals method is used to transform

the set of partial differential equations into a spectral element space. The time derivatives

are treated using a second-order backward differencing scheme and at each time step ∆t a

Newton-Raphson iterative scheme is applied to handle the non-linear terms. This results in the

following scheme:

ˆ

3
2
M– + ∆tS–

n+1
i

˜

u
n+1
i+1 = 2M– u

n − 1
2
M– u

n−1 + ∆tM– f
n+1
i , (3.19)

where u = [u
˜

1 u
˜
2 u

˜
3]

T = [A
˜

q
˜

p
˜

]T and

S–
n+1
i = S–(un+1

i ) , S–
n+1
0 = S–(un) , S– = N– + D– + H– . (3.20)

The matrices M , N , D and H are the discretised versions of N , D, H and f respectively

from (3.18). Furthermore,

f
n+1
i = f (un+1

i ) , f
n+1
0 = f (un) , (3.21)

where f = [f
˜
1

f
˜

2
f
˜
3
]T . Essential boundary conditions are prescribed by imposing uj(z, t) =

uj,in(t) at Γin and uj(z, t) = uj,out(t) at Γout where uj represents either the flow (j = 2) or

the pressure (j = 3). u0(z, t = 0) = [u0
1(z), u0

2(z), u0
3(z)] is used as an initial condition over

the total spatial domain. The method yields reliable and stable solutions without the use of any

kind of upwinding or other stabilisation method.

3.2.3 Experimental setup

To validate the computational model described in the previous section, a comparison is made

between the pressure and the flow as obtained from the numerical model and the pressure and

flow from the experimental setup of Giannopapa (2004). This experimental setup is depicted in

figure 3.3. The device consists of a polyurethane vessel marked as D constrained in horizontal

position inside an open water filled container C. The water column above the tube prescribes

the pressure outside the vessel, which is assumed constant over the height of the vessel. The

vessel was pre-strained axially to 3% to keep it straight after being pressurised. One end of the



A time-domain based wave propagation model of blood flow in viscoelastic vessels 37

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������

��
��
��

��
��
��
������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��

��
��
��
������
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���������
���������
���������
���������

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
������
������
������
������

���
���
���
���

���
���
���
���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

A

B

container C
2

w
a
y

v
a
lv

e
3 way solenoid valve

PC

vessel D

pressure-wire

flow metre

+ 1 bar

Figure 3.3: Schematic representation of the experimental setup filled with water. A:
closed container at constant pressure. B: open container. C: open container. D:
polyurethane tube. The three-way solenoid valve is operated by a PC and the two-
way valve is manually operated. The pressure and the flow are measured using a flow
metre and a pressure wire.

tube is connected to a three-way solenoid valve controlled by a PC and the other end is closed.

The three-way valve connects to either the closed tank A or via a two-way manually operated

valve to the open tank B. Closed tank A is constantly pressurised at 100 [kPa]. When the

solenoid valve is not engaged, the water column inside tank B imposes the (initial) pressure

inside the polyurethane tube. By engaging the solenoid valve, it opens for a short period of

time (50 [ms]) and generates a pressure pulse that will travel up and down the polyurethane

vessel. According to Giannopapa (2004), the duration of the opening of the valve was cho-

sen to be as short as possible because the wavelength of the waves should be small enough

to distinguish between forward and backward travelling waves. The flow through the vessel

is measured with a perivascular flow sensor (type MC28AX, Transonic, the Netherlands). A

pressure sensor inside the vessel (pressurewireXT, Radi Medical Systems, Uppsala, Sweden) is

used to simultaneously measure the pressure.

Two polyurethane vessels (from HemoLab, www.hemolab.nl) with lumen radius and wall thick-

ness as shown in figure 3.4 were used. Vessel S (serie PUt25.450) is a straight vessel with con-

stant wall thickness and vessel T (serie PUt25.450.t) is tapered with a varying wall thickness to

obtain a constant wave velocity similar to the wave speed of vessel S. This pulse-wave velocity,

based on the Moens-Korteweg definition

c0 =

s

E h

2ρ(1 − µ2)a
(3.22)

was estimated to be c0 ≈ 8 [m/s] when assuming an effective Young modulus of Ee ≈ 13
[MPa]. The way the parameters Ee, Ev and ηw used in the computational model were deter-

mined will be described in the next section.

The vessels used by Giannopapa (2004) were pre-loaded by container B at 3 [kPa] relative

to the pressure outside the vessels and before each measurement the pressure wires were cal-

ibrated to zero. During measurements the two-way valve was closed to preserve the volume
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Figure 3.4: Schematic representation of the two polyurethane tubes. Tube S (serie
PUt25.450) is straight with constant wall thickness and vessel T (serie PUt25.450t)
is tapered with a varying wall thickness to obtain a constant wave speed. Dimensions
are in [mm].

of water in the tube and the duration of the opening of the solenoid valve which initiated the

pulse was set to be 50 [ms]. Measurements were performed at ten positions along the 460

[mm] length (3 % stretched) of the vessel, i.e. at z=[29 50 100 150 200 250 300 350 400

450] [mm]. Measurements at each position were repeated sixteen times per position, the mean

of which was taken for further processing.

3.2.4 Parameter estimation

The parameters used in the description of the constitutive relation (3.13) are obtained directly

from the wave propagation experiments. The Young modulus of the parallel spring Ee can be

derived from the total pressure difference between the start and the end of the wave prop-

agation experiment ∆p, in combination with the volume increase during the opening of the

solenoid valve ∆V . Assuming that the material is completely relaxed at the end of the experi-

ment, the wall behaviour can be modelled as purely elastic according to equation (3.4), so Ee

can be determined using the static compliance as

Ee =
2π(1 − µ2)La3

0

h

∆p

∆V
(3.23)

where L is the length of the polyurethane vessel and a0 should now be interpreted as the

static radius of the vessel after the waves have attenuated. Note that for the tapered vessel this

radius should be determined by assuming a quadratic decay of the compliance with respect to

z, because

C ∝ a3

h
with h ∝ a and a ∝ z so C ∝ z2. (3.24)
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The values of Ev and ηw are estimated using wave analysis in the frequency domain. By as-

suming that the contribution of non-linear and frictional forces can be neglected in our model.

The governing equations for wave propagation in straight vessels without leakage can then be

derived as

C
∂p

∂t
+

∂q

∂z
= 0

∂q

∂t
+

A

ρ

∂p

∂z
= 0

9

>

>

>

=

>

>

>

;

(3.25)

with C the compliance as defined in (3.4). Due to the linearity assumed, this set of equations

can be solved in the frequency domain by introducing harmonic solutions

p(ω, z, t) = p̂(ω, 0)ei(ωt−kz)
(3.26)

q(ω, z, t) = q̂(ω, 0)ei(ωt−kz) (3.27)

where p̂(ω, 0) and q̂(ω, 0) are the complex amplitudes of p and q respectively measured at

z = 0, and k is the complex wave number. By substituting these harmonic solutions into (3.25)

an expression for k can be derived as

k(ω) = ±
r

ρC

A
ω. (3.28)

For viscoelastic tubes, a complex Young’s modulus can be defined as E∗ = Er(1 + ifv) with

fv = Ei/Er, where Er and Ei are the real and the imaginary part of the modulus respectively.

Substituting this relation in equation (3.4) for thin-walled vessels and inserting the expression

obtained for C in (3.28) yields

k =
ω

c0

1√
1 + ifv

. (3.29)

For small values of fv this expression can be approximated by

k ≈ ω

c0

`

1 +
1

2
ifv

´

. (3.30)

For the standard linear-solid model, the expressions for Er and Ei can be derived by introduc-

ing harmonic solutions

σ(ω, z, t) = σ̂(ω, 0)ei(ωt)
(3.31)

ǫ(ω, z, t) = ǫ̂(ω, 0)ei(ωt)
(3.32)

into equation (3.15). Its complex modulus E∗(ω) is then defined as

E∗(ω) =
σ̂

ǫ̂
=

Ee

1 − µ2

1 + iωτσ

1 + iωτǫ
(3.33)

or

E∗ =
Ee

1 − µ2

h1 + τστǫω
2

1 + τ 2
ǫ ω2

+ i
(τσ − τǫ)ω

1 + τ 2
ǫ ω2

i

. (3.34)

Fraction fv of the standard linear-solid model can thus be written as

fv =
Ei

Er
=

(τσ − τǫ)ω

1 + τστǫω2
(3.35)
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By determining the imaginary part of wave number k from the experiments, using equation

(3.30) an estimate for fraction fv can be obtained. This imaginary part of k represents the

attenuation of the measured waves so it can be estimated by determining the attenuation

constant of the pressure pulse. To do so, the pressure as a function of time measured at

z = 0.25 [m] is used because at this position the forward and backward travelling waves

can be separated on sight. By determining the maximum value of each pressure pulse and

the corresponding travelled distance of each pulse (after all, the distance of z = 0.25 [m] to

the reflection points is known) an attenuation constant can be found by fitting an exponential

function according to

p = X3 + X2 e−X1z
(3.36)

through these maxima. The value of X1, found by a least squares fitting procedure, is an

approximation of the attenuation rate and can be compared to the imaginary part of wave

number k. Introducing X1 in equation (3.30) gives

fv = 2
c0

ω
X1. (3.37)

where wave speed c0 can easily be found by dividing the travelled distance of each reflected

wave peaks through the elapsed time. ω can be estimated from the length (in time) of the flow

pulse at the inlet as derived in the previous section. Knowing now the value of fv , co, ω and Ee

from the experiment data, in combination with the analytical expression for fv from (3.35) a

relation between Ev and ηw can be obtained. In conclusion, the value of Ev is varied to obtain

a proper wave speed, changing the value of ηw accordingly. For the tapered tube, the same

value of fv is adopted as defined for the straight tube. The values of Ev and ηw for the tapered

vessel are also obtained by fitting the computational wave speed to the experimental data. To

illustrate the sensitivity of the computational results to these parameters, computations were

executed with a 30% variation on each of them. The choice of a 30% variation on all three

parameters is based on the expectation that it should be possible to measure these parameters

in vivo with an accuracy of at least 30%.

3.3 Results

Parts of the results shown in this section are obtained from Giannopapa (2004), under the

courtesy of the author. To ensure that the vessels undergo small deformations during the ex-

periment the vessel was inflated incrementally by repeatedly adding a known amount of fluid

to the closed vessel. The resulting pressure as a function of the radius (a) is presented in figure

3.5, showing a linear relation regardless of the pressure level. The corresponding strains are

less than 3% and may be considered small.

To assess the reliability and reproducibility of the results for each of the measured variables

their standard deviations σ were determined. Typical values of σ for the pressure and flow

signal are presented in figure 3.6 and are in range of the noise of the signal.

With respect to the estimation of the parameter Ee used in the standard linear-solid model,

total pressure changes ∆p of 1.0 [kPa] and 2.2 [kPa] were found for vessels S and T respec-

tively. The volume increase was 2.57 [ml] in both cases, resulting in values for Ee as given in

table 3.1 for both tubes. Figure 3.7 shows the maximum values of each pressure pulse pass-

ing through z = 0.25 [m] of the straight vessel as a function of the travelled distance, along

with an exponential fit through these points according to equation (3.36). This exponential

decay resulted in X1 = 1.27. The wave speed c0 and radial frequency ω were determined to
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Figure 3.5: Initial diameter versus static pressure measured in the straight vessel S

(dots). The straight line is a linear fit through the measured data and shows the linear
relation between the diameter and the pressure.
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Figure 3.7: Attenuation of the pressure wave in vessel S. At the top a schematic
representation of the polyurethane vessel, indicating the measuring position at z =
0.25 [m]. On the left the pressure as a function of time measured at z = 0.25 [m]
where the ∗’s indicate the pressure peaks. Z1 and Z2 refer to the distances travelled by
the pulse between each pulse crossing z = 0.25 [m]. The right plot shows the pressure
peaks as a function of the accumulated travelled distance including an exponential
fit through these points according to equation (3.36). The errorbars indicate the
standard deviation of the measurements for each peak.

be 9.8 [m/s] and 126 [s−1] respectively in the straight vessel and so, according to (3.37) an

imaginary fraction of fv = 0.15. This is in range of the viscous fraction observed in arterial

walls, according to Learoyd and Taylor (1966). The corresponding values of Ev and ηw for

both vessel types (based on fv from the straight vessel) are presented in table 3.1.

The simulations are performed using the fluid and solid parameters as given in table 3.1 for

both vessels. The geometrical input for the computations is obtained by first stretching the

length of the vessel as taken from figure 3.4 by the 3% axial pre-strain and next increasing its

radius to a0 based on the pre-load of 3 [kPa]. The thus obtained geometry and pressure are

referred to as the initial state and will be indicated with a subscript 0. The one-dimensional

spatial domain is discretised using eleven sixth-order spectral elements whose edge nodes are

positioned at either the edge of the total domain or at positions corresponding to the mea-

parameter vessel S vessel T units

ρ 9.98·102 9.98·102 kg m−3

η 1.04·10−3 1.04·10−3 kg m−1 s−1

µ 0.5 0.5 -

Ee 1.7·107 2.1·107 kg m−1 s−2

Ev 7.6·106 7.4·106 kg m−1 s−2

ηw 5.0·104 5.1·104 kg m−1 s−1

Table 3.1: parameters used for the simulations.
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Figure 3.8: The pressure (left) and the flow (right) as a function of time measured at
five positions in the straight vessel S (solid lines), along with the corresponding pres-
sure and the flow from numerical simulations (dashed lines). The top figures show
the numerical solutions based on purely elastic wall properties whereas the bottom
pictures show the solutions from computations with viscoelastic wall properties

surement sites. As temporal discretisation a constant time step size is chosen at ∆t = T/50
[s], with T = 0.05 [s] the pulse duration. The boundary conditions for the simulation at the

inlet and the end of the vessels are taken from the experimental setup. The end is closed (i.e.

q|z=L = 0) and at the inlet (z = 0) a flow pulse is prescribed, based on a linear transformation

of the experimental flow data from the measured positions to the inlet. Apart from the simu-

lations using the viscoelastic model for the arterial wall, also computations with linear elastic

wall properties are performed by setting the Young’s modulus of the serial spring to Ev = 0
and increasing Ee to match the experimental wave speed. In figure 3.8 the computed pressure

and flow of these two simulations at 5 positions in tube S are plotted against time, together

with their measured counterparts from Giannopapa (2004). From the experimental results,

the propagation of both the pressure and the flow waves through the polyurethane vessel can

be clearly identified by the time difference between the arrival of the first pulse at z = 0.05
[m] and the arrival of this pulse at z = 0.35 [m]. Furthermore, at z = 0.45 [m] the pressure

pulse has almost doubled in height because of a positive reflection at the closed end. The flow
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pulse at this position is reflected negatively and becomes positive again after a negative reflect-

ing at the now closed solenoid valve. The pressure wave remains positive due to exclusively

positive reflection. During the travelling of both the pressure and the flow waves through the

polyurethane vessel, the waves clearly attenuate to finally result in zero flow and a constant

pressure, in equilibrium with the circumferential stress within the vessel wall. When consid-

ering the numerical results obtained by the model using a linear elastic constitutive relation,

a good prediction of the reflection characteristics is found. However, since the attenuation of

the waves in the experiment is mainly caused by the viscoelastic properties of the vessel wall,

the attenuation of the waves obtained from the computational model using linear elastic wall

properties is insufficient. The wave propagation model using viscoelastic wall properties on the

other hand, provides an accurate prediction of the propagation of the pressure and flow wave

and its attenuation (see figure 3.8). A deviation of the Young modulus Ee of 30%, as illustrated

in the 2 plots at the top of figure 3.9, shows a significant change in the wave characteristics. A

decrease in Ee leads to a decrease of the wave speed and the pressure amplitude of about 16%

and an the expected decrease of the static pressure of 30%. An increase of Ee shows the oppo-

site effect. A 30% variation of parameters Ev and ηw shows no significant change in the wave

speed and static pressure, and only small changes of less than 5% in the wave attenuation.

Considering the results corresponding to the tapered vessel T as visualised in figure 3.10, the

same observations can be made with respect to the comparison between experimental and nu-

merical data. The model using a linear elastic material law underestimates the damping of

the system whereas the model based on the standard linear-solid model properly describes the

attenuation of both the pressure and flow waves. In figure 3.11 a comparison is made between

wave propagation in the straight and in the tapered vessel according to the computational

model. The tapering of vessel T causes an expected increase in pressure amplitude towards

the distal end (pressure pulse steepening) due to continuous reflections. We also see that the

wave velocity in the tapered vessel is higher than the wave velocity in the straight vessel owing

to the difference in Young’s modulus Ee. The difference in the attenuated pressure is a result

of the difference in Young’s modulus as well as a difference in the initial volume contained by

both vessels.

3.4 Discussion

The wave propagation model of chapter 2 is extended with a constitutive equation based on

the viscoelastic behaviour of the standard linear-solid model. The resulting model is validated

by a comparison of the pressure and flow obtained from the numerical model to the pressure

and flow measured in an experimental setup in which wave propagation through viscoelastic

polyurethane tubes, constrained in a water filled tank, was monitored (Giannopapa (2004)).

The pressure and flow data measured in two tubes were used, one being a straight vessel with

constant wall thickness and the second being tapered with a varying wall thickness to obtain

a constant wave speed. The pressure and the flow measured in these two tubes were shown

to be reproducible with a standard deviation in range of the signal noise. Also, in the relevant

pressure range, a linear relation between the stress and strain of the polyurethane vessels was

found, with strains of less than 3% for the pressure pulses produced.

The estimation of the parameters used in modelling the vessel wall behaviour (Ee, Ev, ηw) was

based on the wave characteristics of the measurement data from the experimental setup. Ee

was obtained from the static compliance after the waves were fully attenuated and a relation

between Ev and ηw was obtained from the attenuation constant of the pressure pulse. Their

final values were chosen to fit the experimental wave speed. With this method, the standard



A time-domain based wave propagation model of blood flow in viscoelastic vessels 45

time [s]time [s]

3
0
%

v
a
ri

a
ti

o
n

o
f
E

e
3
0
%

v
a
ri

a
ti

o
n

o
f
E

v
3
0
%

v
a
ri

a
ti

o
n

o
f
η w

0 0 11

pressure flow
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in Ee (top), Ev (centre) and ηw (bottom). The solid lines indicate the solutions
when using the parameters as estimated, the dashed lines show the pressure and flow
when increasing one parameter with 30% and the dash-dot lines are produced by
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Figure 3.10: The same as figure 3.8 but now for the tapered vessel T.
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linear-solid model using the estimated parameters describes the mechanical behaviour of the

polyurethane vessel wall in combination with its surrounding medium, without the knowledge

of the mechanical properties of the individual components. In the physiological situation, when

the propagation of pressure and flow waves through the arterial system is modelled, the param-

eters Ee, Ev and ηw should also describe the behaviour of the local arterial wall in combination

with its surrounding tissues. They can be obtained by simultaneously measuring the local wave

speed and the arterial wall distension.

A variation of parameters Ee, Ev and ηw of 30% shows that the system is sensitive to errors

made in the determination of Ee, but only weakly sensitive to errors made in the estimation

of the attenuation constant. A comparison between the experimental and the computational

pressure p(z, t) and flow q(z, t) using the estimated parameters showed good agreement in

the pressure and the flow wave propagation. The wave speed and wave attenuation are well

described by the 1D model as well as the pressure pulse steepening due to the geometric non-

linearity of the tapered vessel. The small pressure increase before the arrival of the first pulse

in the measurement data of the tapered vessel, as clearly seen at z = 0.45 [m], is probably

caused by a vibration of the setup caused by the closing of the solenoid valve.

Although the proposed model has shown to be able to accurately predict the propagation of

pressure and flow waves through the laboratory setup, its applicability to assess wave propa-

gation through the arterial system still needs further research. Primarily, the arterial system is

far from ideal with respect to the assumption made in one-dimensional modelling. Blood flow

through geometric discontinuities such as bends, bifurcations and arterial pathologies (e.g.

stenoses and dilation) may not be categorised as one-dimensional since the radial components

of the velocity field can no longer be neglected. The propagation of pressure and flow waves

through such segments needs to be examined more thoroughly before wave propagation in the

total arterial tree can be accurately predicted. Furthermore, the local material properties of

the arterial wall and its surrounding organs need to be determined to obtain reliable values

for its compliance and attenuation characteristics. With respect to the blood viscosity η, the

influence of shear thinning on the wall shear stress must be evaluated to determine whether

the assumption of purely Newtonian behaviour is valid in estimating the frictional forces in

one-dimensional wave propagation.

3.5 Conclusion

A time-domain based wave propagation model is developed where the constitutive relation is

based on the mechanical behaviour of a Kelvin body. The model is validated by a comparison to

data from an experimental setup of fluid flow through viscoelastic straight and tapered vessels.

Using the developed wave propagation model, the propagation and attenuations of pressure

and flow waves through viscoelastic vessels such as arteries can be accurately predicted.
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4.1 Introduction

Research on one-dimensional wave propagation in distensible tubes is often motivated by it’s

applicability to the human arterial system. An appropriate one-dimensional model may pro-

vide realistic and clinically relevant information on the pressure and the blood flow through the

arterial tree. In the derivation of the one-dimensional equations of mass conservation and mo-

mentum balance, however, assumptions on the local lumen geometry and the resulting velocity

profiles are made that may not always hold in patient-specific arterial systems. Primarily, the

axial change in lumen radius is assumed to be gradual so that the blood velocity in radial direc-

tion of the blood vessel is negligibly small with respect to its axial component. This assumption

is used in the derivation of the one-dimensional equations from the fully three-dimensional

Navier-Stokes equation, but also in the adoption of a velocity profile function to obtain realistic

contributions of the friction and convection forces in the one-dimensional momentum balance

(chapter 2). It may well hold when modelling wave propagation through straight or slightly

tapered vessels, but when modelling a patient-specific arterial tree, pathological regions such

as stenoses can no longer be realistically modelled using one-dimensional theory only. The

velocity components in the radial direction are no longer negligibly small with respect to their

axial counterpart and the velocity profiles can no longer be based on the theory of fully de-

veloped flow in straight vessels. So, to obtain a wave propagation method that is suited to

model the propagation of pressure and flow waves travelling through patient-specific arterial

systems, a one-dimensional model of stenoses is needed. Such a model can be derived when a

relation between the pressure drop as a result of the stenosis and the local flow characteristics

is known.

In literature, much attention has been paid to the (time-dependent) blood flow near stenoses

(Siouffi et al. (1984); Tu et al. (1992); Cavalcanti (1995); Tu and Deville (1996); Siouffi et al.

(1998); Chakravarty and Mandal (2000); Long et al. (2001); Mandal (2005)), with a focus on

the local velocity field and the wall shear stress. Our interest, however, is mainly on the axial

pressure drop as a result of the presence of a stenosis, regardless of the corresponding velocity

field. Other work in one-dimensional wave propagation that included stenotic regions (Rooz

et al. (1982); Porenta et al. (1986); Stergiopulos et al. (1992, 1996); Steele et al. (2003);

Bakirtas and Antar (2005)) model them either using the assumption of inviscid fluid, or based

on the work of Young (1979). This work provides an overview of research on the pressure drop

over stenoses as a function of the stenosis geometry and the local flow characteristics expressed

in the Reynolds number and the Womersley parameter. This relation is obtained from experi-

mental research on steady (Young and Tsai (1973a)) and unsteady (Young and Tsai (1973b))

flow through rigid stenoses models. A geometry dependent relation between the flow q through

a stenosis and the pressure drop ∆ps over the stenosis is found, composed of a viscous term, a

non-linear ’turbulence’ term and an unsteadiness term, according to

∆ps =
ηKv

2πa3
0

q +
ρKt

2A2
0

“A0

As
− 1

”2

|q|q +
ρKuLs

A0

∂q

∂t
. (4.1)

Here, a0 and A0 are the radius and cross-sectional area respectively of the vessel lumen proxi-

mal to the stenosis and As is the cross-sectional area of the lumen at the neck of the stenosis. Ls

represents the stenosis length and ρ and η are the blood density and viscosity. The coefficients

Kv, Kt and Ku are empirically determined constants defined as

Kv = 16
La

a0

“A0

As

”2

Kt = 1.0 (steady flow) Kt = 1.52 (unsteady flow) (4.2)

Ku = 1.2
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Figure 4.1: Scaled representation of the stenosed vessel, indicating its measures and
the boundaries used for the computations.

The expression for Kv is dependent on the stenosis shape and for axisymmetric stenoses with

a constant radius As over its total length, the expression for La is

La = 0.83Ls + 32.8as, (4.3)

with as the inside radius of the hollow plug (see also figure 4.1). For more complex stenosis

shapes, Young suggests that Kv may be estimated by assuming parabolic velocity profiles at

each cross-section of the stenosis and integrating the resulting wall shear stress over the steno-

sis length.

When applying equation (4.1) to unsteady flow in an unobstructed rigid tube (As = A0), the

non-linear part vanishes and the viscous contribution is independent of the Womersley param-

eter α. From the analytical solution for instationary flow through straight pipes, however, the

viscous contribution (and so Kv) is expected to depend on the frequency (see chapter 2).

In this research a finite element method in a two-dimensional axisymmetric Eulerian domain

is used to investigate the effect of stenoses on the pressure gradient in a rigid tube. By simu-

lating steady flow situations at low Reynolds numbers (0.33 < Re < 10), we will investigate

whether the viscous coefficient Kv can indeed be determined by assuming parabolic velocity

profiles throughout the stenosis. Next, by simulating unsteady flow at various frequencies,

the frequency dependency of both the viscous term Kv and the unsteadiness term Ku will be

investigated. To also validate the turbulence coefficient Kt, computations of both steady and

unsteady flow situations at higher Reynolds numbers (10 < Re < 1000) will be performed.

Finally, the pressure drop over a stenosis when prescribing a physiological flow pulse through

the stenosis is simulated to validate the final relation between ∆ps and the flow characteris-

tics. The methods used are discussed and the final stenosis relation is compared to the relation

defined by Young (1979).

4.2 Methods

To investigate the pressure drop over a stenosis a two-dimensional axisymmetric finite element

method based on the Navier-Stokes equations in cylindrical coordinates is used. A representa-

tion of the domain used is shown in figure 4.1. The radius of the healthy part of the stenosed

vessel is chosen to be a0 and the stenosis geometry is described according to

a = a0 − as

2

ˆ

1 − cos
“

2π
z − Lm − Ls/2

Ls
)
i

for Lm − Ls/2 < z < Lm + Ls/2 (4.4)

where as is the maximum constriction in the centre of the stenosis, Lm = 50a0 dictates the

axial location of this centre and z is the axial position. The length of the stenosis is set at
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Ls = 25a0 based on physiological date from chapter 6. It will not be varied in the derivation of

the relation between the pressure drop over the stenosis and the flow, but it will be introduced

as a variable in this relation. The vessel has a total length of L = 250a0 to provide sufficient

length distal to the stenosis for the velocity field to develop. The stenosis severity S (defined

as S = (1 − As/A0) · 100%) is varied between 0, 65, 75 and 85% by setting as to 4.00, 2.37,

2.00 and 1.55 [10−4 m]. The spatial domain is discretised using 960 bi-quadratic quadrilateral

elements of the Crouzeix-Raviart type. In axial direction 120 elements are used, 20 elements

of which are between 0 ≤ z < Lm and 100 elements are between Lm ≤ z ≤ L. The mesh

is refined towards the stenosis with a ratio 1:3 between the length of the elements near the

stenosis and the ends of the fluid domain. In radial direction 8 elements are used with a

similar mesh refinement towards the vessel wall.

The fluid within the domain is modelled as Newtonian with density ρ = 1.05 · 103 [kg/m3] and

dynamic viscosity η = 5 · 10−3 [Pa·s]. At the inlet Γi a velocity profile is prescribed, the outlet

Γo is left stress free and the vessel wall Γw is endowed with no slip conditions. At the axis of

symmetry Γs the radial velocity is constrained.

8

>

>

<

>

>

:

vz = vz(α, t, r), vr = 0 at Γi

vz = 0, vr = 0 at Γw

vr = 0 at Γs

σ · n = 0 at Γo

(4.5)

with vz and vr the fluid velocities in axial and radial direction respectively, σ the Cauchy stress

tensor and n the vector normal to the outflow plane Γo. Simulations are performed using steady

flow conditions at the inlet Γi by providing Poiseuille profiles with a flow q of 0.01, 0.02, 0.04,

0.08, 1, 2, 4, 8, 10, 12, 14, 18, 20, 22, 24, 28 and 30 [10−6 m3/s]. The corresponding Reynolds

numbers Re, according to

Re =
2ρ

πηa0
q, (4.6)

are in a range of Re = [0.33 − 1000]. The results of these computations are divided into two

regions, i.e. low Reynolds numbers (0.33< Re <10) and high Reynolds numbers (10 ≤ Re <
1000).

Next, computations are performed by prescribing oscillatory flow according to

q(t) = q̄
ˆ

1 − cos(2πft)
˜

(4.7)

at the inlet Γi, where t is the time and q̄ is the time average of the flow signal. Simulations with

frequencies f of 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8 and 10 [Hz] are performed and for each frequency

five cycles are simulated the last of which is monitored. The resulting Womersley parameter α,

defined by

α = a0

s

2πρf

η
(4.8)

varies between α = 1.45 and α = 14.5. The temporal discretisation ∆t for each frequency is

∆t = T/100 with T the cycle period of T = 1/f . The time-dependent velocity profiles that

are prescribed at the inlet Γi, corresponding to each frequency, are based on the Womersley

solution. For each frequency a wide range of Reynolds numbers (Re = [0.33 − 1000]) is again

addressed with average flows q̄ of 0.005, 0.01, 0.02, 0.04, 0.05, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12,

14 and 15 [10−6 m3/s] and a similar division into low and high Reynolds numbers is made.
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Finally, a multi-harmonic physiological flow pulse through the stenosed (S = 75%) femoral

artery is prescribed, based on the shape of the flow pulse in the femoral artery by Olufsen and

Peskin (2000). The shape of these stenoses is chosen equal to that of the other simulations but

next to the standard length Ls = 25a0 now also length of Ls = 5a0 and Ls = 50a0 are chosen

to evaluate the influence of this variable.

The axial pressure distribution from each computation is obtained by taking the mean of the

pressure over the discretised cross-sections. The pressure drop over the stenosis ∆ps is obtained

by subtracting the pressure drop over the straight (’healthy’) part of the vessel (which has a

length of Lh = L − Ls), based on the analytical solution for fully developed flow in a straight

pipe by Womersley (1957), from the total pressure drop over the tube. This analytical pressure

drop ∆pa can be derived by Womersley’s theory using

∆pa = ZLLhq with ZL = 2iπf
ρ

πa4
0

1

1 − F10(α)
. (4.9)

Here, F10(α) is the Womersley function according to

F10(α) =
2J1(s)

sJ0(s)
, with s = i3/2α (4.10)

and J0 and J1 are Bessel functions of the first kind of order 0 and 1. For steady flow (α = 0)

this results in

∆pa = R0∆Lhq (4.11)

where R0 = 8η/(πa4) represents the friction coefficient per unit of length for steady flow in a

straight tube. Notice that the pressure drop is defined to be positive when the pressure gradient

is negative, e.g. ∆p = p(Γi) − p(Γo).
Before performing the computations described above, the numerical method is tested by sim-

ulating fully developed flow through a straight pipe (S = 0) at Reynolds number Re = 100
for Womersley parameters α = 0, 5 and 10 and comparing the computed local pressure to

the pressure obtained from equation (4.9). The maximum deviation of the computed pres-

sure to the analytical pressure was less then 2% of the analytical pressure. Also, for the mesh

of the S = 75% stenosis, a mesh convergence test was performed for a steady computation

at Re = 100. The pressure drop of the final mesh showed no significant improvement with

further mesh refinement.

4.3 Results

Figure 4.2 shows the pressure as a function of the axial position for the steady flow simulation

in the 75% stenosed vessel with flows of 1, 10 and 20 [10−6 m3/s] (Re = 33, 334 and 668)

along with the analytical pressure in case of a straight tube without a stenosis. The presence

of the stenosis at higher Reynolds numbers can be identified by a sudden pressure drop at the

stenosis site and a slow pressure recovery distal to the stenosis. The sudden pressure drop

at the entrance of the stenosis and the (partial) pressure recovery distal to the stenosis neck

are a result of the change in cross-sectional area of the vessel lumen, according to Bernoulli’s

law. The recovery of the pressure distal to the stenosis is retarded because of the presence

of a recirculation zone that locally influences the effective cross-sectional area as can be seen

in figure 4.3 for steady flow with q = 10−5 [m3/s]. Proximal to the stenosis and far enough

distal to the stenosis the pressure gradient ∂p/∂z is similar to that for fully developed flow in
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Figure 4.2: The pressure divided by the flow as a function of the axial position in
the vessel, obtained from steady flow computations with flows of 1, 10 and 20 [10−6

m3/s]. The dotted line shows the pressure based on Poiseuille flow in a straight tube.

Figure 4.3: Scaled velocity field around the 75% stenosed vessel including a single
vortex in a steady flow situation of q =1·10−5 [m3/s].
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The dotted lines show the linear relation between ∆ps and q according to equation
(4.14).

a straight pipe. When considering steady flow at low Reynolds numbers, the unsteadiness and

non-linear part can be neglected from (4.1) and so only the viscous part ∆pv of the pressure

drop remains, according to

∆ps = ∆pv = Ivq. (4.12)

Looking at the pressure drop over the stenosis as a function of the flow for low Reynolds num-

bers obtained from the steady flow simulations (figure 4.4), for each stenosis indeed a constant

friction coefficient Iv exists. The values of Iv are listed in table 4.3 for each stenosis severity.

As expected, these values are identical to the analytical friction coefficient when assuming fully

developed flow (Poiseuille profiles) at each position across the stenosis, according to

Iv = Rs =

Ls
Z

0

R(z)dz = R0

Ls
Z

0

a4
0

a4(z)
dz (4.13)

So, for steady flow at low Reynolds numbers, the pressure drop over a stenosis can be written

as

∆ps = Rsq with Rs = R0

Ls
Z

0

a4
0

a4(z)
dz. (4.14)

At higher Reynolds numbers, recirculation zones will develop and the non-linear term becomes

increasingly important so, according to Young and Tsai (1973a):

∆ps = Rsq + ∆pt = Rsq +
ρKt

2A2
0

“A0

As
− 1

”2

|q|q. (4.15)

To estimate the value of Kt for each stenosis, the viscous pressure drop ∆pv = Rsq as computed

before was subtracted from the total pressure drop over the stenosis ∆ps, so the non-linear part
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severity 0% 65% 75% 85%

Iv 0.005 0.173 0.277 0.593

It - 0.0727 0.0171 0.0632

Table 4.1: values of Iv and It for steady flow.

∆pt remains,

∆pt = It|q|q. (4.16)

A clear quadratic relation between ∆pt and q exists as shown in figure 4.5, dependent on the

stenosis severity S. The values of It are listed in table 4.3 for each stenosis severity. It can be

written as

It =
ρKt

2A2
0

“A0

As
− 1

”2

(4.17)

which means, that for our computations the value of Kt varies between 0.91 and 1.02, depen-

dent on the stenosis severity. For steady flow, Young and Tsai (1973a) found values of Kt in

the same range, so the pressure drop over a stenosis for stationary flow can be computed using

equation (4.15).

Next, time-dependent flow through the stenosed vessel is investigated to determine the contri-

bution of the unsteadiness to the pressure drop. Only the results for the 75% stenosed vessel

are presented, except when mentioned otherwise. The flow signal with a frequency of f = 1
[Hz] and a time average flow q̄ =0.5·10−6 [m3/s] is presented in figure 4.6 as a function of

time, along with the corresponding pressure drop over the stenosis ∆ps and the pressure drop

∆pa over a length equal to the length of the stenosis Ls for the case no stenosis is present
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tory flow with a frequency of f=1 [Hz] and a mean flow q̄ of 0.5·10−6 [m3/s]. The
dashed line indicates the pressure drop as a results of a stenosis of 75% and the solid
line shows the pressure drop over a length of Ls when no stenosis is present.

(As = A0). According to Young and Tsai (1973b) the pressure drop ∆pv and ∆pt for the un-

steady flow situation can be approximated by their expressions obtained from the steady flow

simulations. An extra term, representing the contribution of the unsteadiness of the flow on

the pressure drop over the stenosis can be added to this viscous and non-linear part obtained

from steady flow computations, so

∆ps = Rsq +
ρKt

2A2
0

hA0

As
− 1

i2

|q|q +
ρKuLs

A0

∂q

∂t
(4.18)

The pressure drop over the stenosis for oscillating flow at varying frequencies is again first in-

vestigated for low Reynolds numbers, so we can neglect the influence of the non-linear term.

By subtracting the known contribution of the friction term obtained from the steady flow sim-

ulations from the total pressure drop, the pressure drop ∆pu caused by the unsteadiness of

the flow remains. For f = 1 [Hz] and q̄ =0.5·10−6 [m3/s] this results in a relation between

∆pu and q as is illustrated in figure 4.7. The dashed line on the right-hand side of this figure

shows that the relation between ∆pu and ∂q/∂t is not one-to-one. By multiplying the friction

coefficient Rs with an ’optimisation’ constant Kv, however, a linear relation between ∆pu and

∂q/∂t can be found as is shown in figure 4.8. Notice that for ∂q/∂t = 0 the value of ∆pu is not

equal to 0, so for low Reynolds numbers

∆ps = KvRsq +
ρKuLs

A0

∂q

∂t
+ ∆pc (4.19)

where ∆pc represents this offset. The procedure of optimising Rs to obtain a linear relation

between ∆pu and ∂q/∂t is done for all unsteady computations on all stenosis geometries.

Neither Kv nor the unsteadiness coefficient Ku seem to depend on q̄ but they do change with

the Womersley parameter α. The relation between α and Kv is approximated using a quadratic

fit according to

Kv = 1 + 0.053
As

A0
α2. (4.20)
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Figure 4.9: The viscous coefficient Kv (left) and the unsteadiness coefficient Ku

(right) as a function of the frequency f for stenosis with severities of S = 0, 65, 75
and 85%. The values for Ku are obtained from equation (4.19).

and is depicted on the left in figure 4.9. Notice that, as the frequency approaches zero, the

values of Kv(α) approach Kv = 1. Based on our simulations, the values of Ku vary in a range

of Ku = [1 − 4] (see figure 4.9, right), which is higher than the empirically determined value

from Young of Ku =1.2. When altering the 2nd term on the right hand side of equation (4.19)

by taking into account the shape of the stenosis, so

∆pu = KuLu
∂q

∂t
with Lu =

ρ

A0

Ls
Z

0

a2
0

a2(z)
dz, (4.21)

the values for Ku are now in the range of Ku = [1.05 − 1.35] with a mean value of Ku = 1.2
(figure 4.10). The dashed lines show the approximations for Kv according to equation (4.20).

Note, that in relation (4.21) coefficient Lu is not a length scale but the local inertance of the

fluid inside the stenosis. The offset ∆pc is caused by the phase difference between the flow

signal and the pressure drop, similar to flow through straight vessels (Womersley (1957)) and

so it depends on both q̄ and the frequency parameter α. Using a least squares fitting procedure

provided by Matlab (The Mathworks, Inc) a linear relation is found between ∆pc and q̄ and a

quadratic relation is found between ∆pc and α (Figure 4.11), so

∆pc = KcRsq̄ with Kc = 0.0018α2 . (4.22)

Introducing this relation into equation (4.19), the pressure drop over a stenosis for low Reynolds

numbers becomes

∆ps = Kv(α)Rsq + KuLu
∂q

∂t
+ KcRs(α)q̄. (4.23)

Similar to the steady flow situation, at higher Reynolds numbers the pressure drop due to the

non-linear term ∆pt can no longer be neglected. The contribution of the non-linear term is now
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estimated by subtracting the known viscous and unsteady part from the pressure drop over the

stenosis. The remaining pressure drop ∆pt is shown against the square of the flow in figure

4.12 and an almost linear relation between the two can be established for the case of f=1

[Hz] and q̄ =5·10−6 [m3/s]. This procedure is repeated for all frequencies addressed and for

frequencies below f = 4 [Hz] a linear relation between the remaining pressure drop and the

square of the flow was found. For each severity a slight dependency of Kt on the frequency is

observed (figure 4.13). The largest differences, however, occur between the different stenosis

severities. Introducing the shape of the stenosis into the expression for the non-linear term,

similar as was done for the viscous and unsteadiness term, does not result in a decrease of this

severity dependency of Kt. For now, Kt will be assumed constant at the value of Kt = 0.95
obtained from the steady flow simulations. For frequencies above f = 4 [Hz], no linear relation

between ∆pt and q2 was found. The final relation between the pressure drop as a result of the

presence of a stenosis and the flow characteristics is now given by

∆ps = Kv(α)Rsq +
ρKt

2A2
0

hA0

As
− 1

i2

|q|q + KuLu
∂q

∂t
+ Kc(α)Rsq̄ (4.24)

with

Kv = 1 + 0.053
As

A0
α2, Kt = 0.95, Ku = 1.2 and Kc = 0.0018α2 . (4.25)

In conclusion, expression (4.24) is used to predict the pressure drop over stenoses (S = 75%)

when imposing a multi-harmonic flow pulse based on the flow through the femoral artery

according to Olufsen and Peskin (2000). The frequency dependent parameters are based on
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the fundamental harmonic of this flow signal, which has a frequency of f = 1/T = 1 [Hz].

The resulting pressure drop over each stenosis, computed using equation (4.24) and based on

the work by Young and Tsai (1973b), is confronted with the pressure drop obtained from the

computational study in figure 4.14 for the stenosis with a length of Ls = 25a0. For the stenoses

with a length of Ls = 5a0 and Ls = 50a0, relation (4.24) also shows to be an improvement

over the relation found by Young and Tsai (1973b), as demonstrated in figure 4.15.

4.4 Discussion

A finite element method in a rigid 2D axisymmetric domain has been employed to investigate

the effect of the presence of a stenosis on the pressure drop over this stenosed vessel. Steady

as well as unsteady flow situations with varying frequencies have been simulated over a broad

range of Reynolds numbers. Also, several stenosis severities were addressed. For the steady

flow simulations, a relation between the pressure drop over the stenosis ∆ps and the flow q
was found according to

∆ps = Rsq +
ρKt

2A2
0

“A0

As
− 1

”2

|q|q (4.26)

where, as hypothesised, Rs can be derived analytically by assuming a developed flow situation

(Poiseuille profile) at each position across the stenosis. Values of Kt based on the computa-

tional model are in the range of Kt = 0.95 ± 0.05 which is in the same range as the values of

Kt found by Young and Tsai (1973a) for steady flow over a stenosis. For the oscillatory flow

simulation, an extra unsteadiness term and and offset is added to equation 4.26, resulting in a

pressure drop over the stenosis according to

∆ps = Kv(α)Rsq +
ρKt

2A2
0

“A0

As
− 1

”2

|q|q + KuLu
∂q

∂t
+ Kc(α)Rsq̄, (4.27)
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In contrast to the assumption of Young and Tsai (1973b) that the value of Kv remains equal

to 1 for unsteady flow situations, here Kv depends on Womersley parameter α. This can be

explained by considering flow through a straight vessel, where the friction forces are also a

function of the frequency, caused by the changing velocity profiles. The values of the constant

Kt obtained from the unsteady flow simulations vary in the same range as they do for steady

flow situations, whereas according to Young and Tsai (1973b) this value is altered to Kt=1.52

in oscillatory flow through stenoses.

The expression concerning the instationary term is also different from the relation of Young

and Tsai (1973b). Although a minor frequency dependency of the unsteadiness coefficient Ku

was observed, it can be assumed constant at Ku = 1.2 in the physiological range of Womersley

numbers. This is similar to the value for Ku found by Young et al. Their expression for the

contribution of the unsteadiness of the flow to the pressure drop (∆pu), however, has now

changed from

∆pu =
KuρLs

A0

∂q

∂t
(4.28)

to

∆pu = KuLu
∂q

∂t
with Lu =

Ls
Z

0

ρ

πa2(z)
dz, (4.29)

and with Lu the local inertance of the stenosis.

The offset ∆pc = Kc(α)Rsq̄ in equation (4.27) can be explained by flow through a straight

tube, where due to a phase shift between the pressure gradient and the flow, a pressure gradi-

ent is present when both the flow and the flow change are zero. The magnitude of ∆pc depends

on both the Womersley number and the mean flow through the stenosis. For a more detailed

description of these dependencies even more simulating can be used with a larger variety of

flow signals. The influence of the relation between the mean flow q̄ and the maximum of the

flow signal on ∆pc should be determined and also flow signals including a negative flow region

should be included.

Also, only 1 shape of stenoses is addressed in this work. Although this shape may well represent

some of the stenoses present in the human arterial system, other shapes could be investigated

as well. The results from the computations with different length of stenoses in a physiological

flow situation already show that the model is applicable for stenoses with a large variety of

length. Preliminary results on other stenoses shapes indicate that the expression for Kv de-

pends, although not strongly, on the shape of the stenosis.

The pressure drop over the stenosis, when imposing a multi-harmonic physiological flow pulse

illustrates an evident improvement in predicting the pressure drop over the stenosis when using

frequency dependent parameters for the viscous and unsteadiness term. For this computation,

the parameters Kv(α) and Kc(α) are taken from the computations with oscillatory flow of f=1

[Hz], based on the fundamental harmonic of the flow signal.

The computational method used to determine the pressure drop over a stenosed vessel pro-

vided stable solutions for Reynolds numbers over Re=700 for all stenosis severities addressed.

The solutions in this range are laminar without instabilities indicating the onset to turbulence.

In their work Young and Tsai (1973b), however, observed turbulence at Reynolds numbers be-

low Re=500 for all their stenoses. This cannot be described with the finite element method

used in this study. Nevertheless, the turbulence term found by Young is unaltered in our re-

lation, indicating that the contribution of this term is not turbulence related but should be

interpreted as an expansion term based on Bernoulli’s law.
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The assumption of an axisymmetrical stenosis geometry falls short of describing the physi-

ological situation. Amongst others, Long et al. (2001) showed that the velocity field near

asymmetrical stenoses are markedly different from those near axisymmetrical stenoses. Seeley

and Young (1976) found, however, that for a severity of 90%, the eccentricity of the stenosis

lumen did not significantly influence the pressure drop over the stenosis. Because of these

findings, and because taking into account asymmetry would significantly increase the number

of variables, the influence of the eccentricity on the pressure drop was not investigated.

The pressure drop over the stenosis as investigated in this work, is the absolute value of the

pressure drop over the total tube as a result of the stenosed region. This means, as can be

observed in figure 4.2, that the pressure drop ∆ps does not necessarily occur at the stenotic

site. The local pressure gradient throughout the axial direction of the vessel, however, has not

been investigated because we are only interested in the global effect of the presence of a steno-

sis when modelling the arterial system using a one-dimensional wave propagation method.

When implementing a stenosis element into one-dimensional theory, as was done by Rooz

et al. (1982); Porenta et al. (1986); Stergiopulos et al. (1992); Steele et al. (2003) using the

relation by Young (1979), a constant pressure gradient is assumed over the length of the steno-

sis that represents the total pressure drop as a result of the stenosis. This implies that surely an

incorrect representation of the pressure just after the stenosis will be obtained. The differential

equation describing the pressure drop as a result of the stenosis, based on a linear decay of the

pressure within the stenosis region, is given by

∂q

∂t
+

Iv

Iu
q +

It

Iu
|q|q +

Ls

Iu

∂p

∂z
+

Ic

Iu
q̄ = 0 (4.30)

with the coefficients Iv, It, Iu and Ic defined as

Iv = Kv(α)Rs, It =
ρKt

2A2
0

hA0

As
− 1

i2

, Iu = KuLu, and Ic = Kc(α)Rs (4.31)

This momentum balance, together with the continuity equation

∂A

∂t
+

∂q

∂z
= 0 (4.32)

and a constitutive law, relation the change in cross-sectional area to the change in pressure,

yields a set of equations describing the propagation of pressure and flow waves through a

stenosis.

In the numerical simulations the blood is modelled to behave purely Newtonian whereas it

is known that blood is a shear thinning fluid (Chien and Jan (1973)). Among others, Tu and

Deville (1996), Ishikawa et al. (1998) and Mandal (2005) investigated the influence of the non-

Newtonian behaviour of blood on the velocity profiles across stenoses. They concluded that at

low Reynolds numbers, the choice of the rheological properties of blood significantly affects

the flow phenomena and so the pressure drop over the stenosis. So, although the Reynolds

numbers in physiological situations in which we are interested is usually high enough for the

effect of shear-thinning to be neglected, it may significantly influence the pressure drop over

a stenosis in the stagnant period of the flow pulse. More research is needed to quantify this

influence of non-Newtonian blood rheology.

The choice of using a rigid domain instead of a more physiological compliant vessel wall, is

based on the intention to compare our results to the experimentally obtained data from Young

and Tsai (1973a,b), who used solid geometries to mimic the stenoses. Moreover, Moayeri and

Zendehbudi (2003) already showed that the influence of the deformability of the vessel wall

on the pressure drop over the stenosis is small.
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4.5 Conclusion

Based on the results of numerical computations of blood flow through an axisymmetric stenosis,

a relation between the pressure drop as a result of the presence of the stenosis and the local

flow characteristics is developed. In comparison to the relation presented in Young (1979), now

the viscous and unsteadiness contribution to the pressure drop are dependent on the oscillatory

behaviour of the flow through the stenosis. When comparing the pressure drop based on the

relation from Young to the pressure drop obtained from the numerical simulations, differences

of op to 80% can be found, against differences of only about 10% when comparing the pressure

drop from our relation to the numerical results.
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5.1 Introduction

One-dimensional wave propagation models of fluid flow in distensible tubes may be used to

model blood flow through the human arterial system. An appropriate one-dimensional model

can provide realistic and clinically relevant information on the pressure and the blood flow

through the arterial tree. In the derivation of the one-dimensional balance-of-momentum,

however, assumptions are made on the local lumen geometry and the resulting velocity pro-

files, that may not always hold in patient-specific arterial systems. Primarily, the axial change

in lumen radius is assumed to be gradual so that the blood velocity in radial direction of the

blood vessel is negligibly small with respect to its axial component. This assumption is used in

the derivation of the one-dimensional equations from the fully three-dimensional Navier-Stokes

equation, but also in the adoption of a velocity profile function to obtain realistic contributions

of the friction and convection forces in the one-dimensional momentum balance (Bessems

et al. (2007) and also chapter 2). It may well hold when modelling wave propagation through

straight or slightly tapered vessels, but when modelling a patient-specific arterial tree, patho-

logical regions such as stenoses and aneurysms can no longer be realistically modelled using

one-dimensional theory. The velocity components in the radial direction are no longer negli-

gibly small with respect to their axial counterpart and the velocity profiles can no longer be

based on the theory of fully developed flow in straight vessels. So, to obtain a wave propa-

gation method that is suited to model the propagation of pressure and flow waves travelling

through patient-specific arterial systems, one-dimensional models of stenoses and aneurysms

are needed. For the equation of mass conservation this means that an appropriate estimate for

the local vessel compliance must be obtained by estimating the local lumen radius, the wall

thickness and the mechanical properties of the vessel wall. For the equation of momentum

balance, a relation between the pressure drop as a result of the presence of a stenosis or an

aneurysm and the local flow characteristics must be obtained.

For stenoses, such a relation, based on experimental data, was introduced by Young (1979).

In chapter 4 of this thesis, this relation was modified with respect to the dependency on the

oscillatory behaviour of the viscous forces, based on the outcome of a computational study

in a two-dimensional axisymmetric Navier-Stokes domain. For aneurysms, in the literature a

lot of attention has been focussed on the time-dependent velocity field near its cavity (Wille

(1981); Perktold (1987); Rathish-Kumar and Naidu (1996); Egelhoff et al. (1999); Finol et al.

(2003); Wolters et al. (2005); Deplano et al. (2007)), with a focus on the stresses exerted on

the aneurysm wall by the blood. Our interest, however, is mainly on the axial pressure drop as a

result of the presence of the aneurysm, regardless of the corresponding velocity field. Although

from a fluid dynamical perspective, we expect this pressure drop to be small in comparison to

the physiological pressure level, still a detailed description of the pressure drop as a result of

a vessel dilation is needed to support this expectation. The axial gradient in the flow q(z, t)
through the aneurysm, as a result of the compliance of its wall, is accounted for using the con-

tinuity equation in one-dimensional wave propagation.

In this research, a finite element method in a two-dimensional axisymmetric Eulerian domain,

similar to the one used in chapter 4, is used to investigate the effect of the presence of an

aneurysm on the pressure gradient in an otherwise straight tube. A relation between the flow

characteristics and the pressure drop is sought, depending on the severity of the aneurysm.

For low Reynolds numbers, we expect that the pressure drop ∆pa over the aneurysm can be

predicted by assuming a fully developed flow situation (Poiseuille profiles) throughout the

aneurysm, which results in a linear relation between the pressure drop and the flow q. For

higher Reynolds numbers, this relation is expected to change. After all, near the wall of the

aneurysm cavity, a boundary layer exists with a thickness that changes linearly with the char-
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Figure 5.1: Scaled representation of the dilated vessel, indicating its measures and
the boundaries used for the computations.

acteristic velocity in the cavity vortex. Because this vortex is driven by the mean flow in the

straight part of the vessel and because the wall shear stress depends linearly on the character-

istic velocity and on the boundary layer thickness, a quadratic relation between the wall shear

stress and the flow is expected. Also, a boundary layer exists distal to the vessel dilation for the

velocity profiles to re-develop. The thickness of this boundary layer is also linearly dependent

on the characteristic velocity, so again a quadratic relation between the wall shear stress and

the flow is expected. Therefore, also the pressure drop ∆pa is expected to depend quadratically

on the flow q in the range of Reynolds numbers where a vortex is present in the cavity. For

instationary flow, the addition of an extra term that depends on the flow change ∂q/∂t is ex-

pected. Similar to the relation for the pressure drop over a stenosis from chapter 4, we expect

the viscous contribution to be dependent on the aneurysm geometry and on the frequency of

the oscillatory flow through the aneurysm.

First, a steady flow situation is simulated to obtain a relation between the pressure and the

flow at low (0.2 ≤ Re < 10) and high (10 ≤ Re <1000) Reynolds numbers. Next, oscilla-

tory flow of several frequencies is prescribed for low and high Reynolds numbers to quantify

the contribution of the unsteadiness of the flow and the frequency dependency of the pressure

drop. In conclusion, the relation obtained from these computations is validated by predicting

the pressure drop over aneurysms of several different length when prescribing a physiological

flow pulse and comparing the outcome to the pressure drop obtained from the numerical com-

putation. The methods used as well as the final relation between the pressure drop and the

flow characteristics are discussed.

5.2 Methods

To investigate the pressure drop over an aneurysm a two-dimensional axisymmetric finite ele-

ment method based on the Navier-Stokes equations in cylindrical coordinates is used, identical

to the one used in chapter 4. A representation of the Eulerian grid used is shown in figure

5.1. The radius of the healthy part of the dilated vessel is chosen to be a0 =7·10−3 [m]. The

aneurysm geometry is described according to

a = a0 +
1 + S

2

h

1− cos
`

2π
z − Lm − La/2

La

´

i

for Lm −La/2 < z < Lm +La/2 (5.1)

where S represents the severity of the aneurysm, defined as S = aa/a0 − 1 with aa the maxi-

mum radius in the centre of the aneurysm. Lm = 30a0 dictates the axial location of this centre
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and z is the current axial position. The length of the aneurysm is set at La = 15a0 based on

a realistic representation of an abdominal aortic aneurysm (AAA). It will not be varied in the

derivation of the relation between the pressure drop over the aneurysm and the flow, but it

will be introduced as a variable in this relation. The vessel has a total length of L = 150a0 to

provide sufficient length distal to the aneurysm for the velocity field to develop. The spatial

domain is discretised using 960 bi-quadratic quadrilateral Crouzeix-Raviart elements. In axial

direction 120 elements are used, 20 element of which are between 0 ≤ z < Lm and 100 are

elements between Lm ≤ z ≤ L. The mesh is refined towards the aneurysm with a ratio of 1:3

between the length of the elements near the aneurysm and the ends of the fluid domain.

The fluid within the domain is modelled as Newtonian with density ρ =1.05·103 [kg/m3] and

dynamic viscosity η =5·10−3 [Pa·s]. At the inlet Γi a velocity profile is prescribed based on

the Womersley solution corresponding to the investigated Womersley parameter α (Womersley

(1957)). The vessel wall Γw is endowed with no slip conditions and the outlet Γo is left stress

free. At the axis of symmetry Γs the radial velocity is constrained.

8

>

>

<

>

>

:

vz = vz(α, t, r), vr = 0 at Γi

vz = 0, vr = 0 at Γw

vr = 0 at Γs

σ · n = 0 at Γo

(5.2)

with vz and vr the fluid velocities in axial and radial direction respectively, σ the Cauchy stress

tensor and n the vector normal to the outflow plane Γo. Aneurysms with severities S of 0.1,

0.2, 0.5, 1, 2, 3 and 4 are modelled, resulting in maximum radii of 0.77, 0.84, 1.05, 1.40, 2.10,

2.80 and 3.50 [10−2 m]. First, simulations are performed using steady flow conditions at the

inlet Γi by providing Poiseuille profiles with a flow q of 0.01, 0.02, 0.04, 0.08, 1, 2, 4, 8, 10, 12,

14, 18, 20, 30, 40 and 50 [10−6 m3/s]. The corresponding Reynolds numbers Re, according to

Re =
2ρ

πηa0
q, (5.3)

are in a range of Re = [0.2− 1000]. The results of the computations are divided into 2 regions,

i.e. low Reynolds numbers (0.2 ≤ Re < 10) and high Reynolds numbers (10 ≤ Re ≤1000).

Next, computations are performed by prescribing oscillatory flow according to

q(t) = q̄
ˆ

1 − cos(2πft)
˜

(5.4)

at the inlet Γi, where t is the time and q̄ is the time average of the flow. Simulations with

frequencies of f = 0.1, 0.2, 0.4, 0.8, 1, 2, 4, 8 and 10 [Hz] are performed and for each

frequency 5 cycles are simulated, the last of which is monitored. The resulting Womersley

parameter α, defined by

α = a0

s

2πρf

η
(5.5)

varies between α = 2.5 and α = 25. The temporal discretisation ∆t for each frequency is

∆t = T/(100) with T the cycle period of T = 1/f . The time-dependent velocity profiles that

are prescribed at the inlet Γi, corresponding to each frequency, are based on the Womersley

solution. For each frequency a broad range of Reynolds numbers (Re = [0.2 − 1000]) is again

addressed with average flows q̄ of 0.005, 0.01, 0.02, 0.04, 0.05, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12,

14 and 15 [10−6 m3/s]. A similar division is made into low and high Reynolds numbers.

Finally, a multi-harmonic physiological flow pulse through aneurysms with S = 2 is prescribed,
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based on the shape of the flow pulse in the abdominal aorta as given by Olufsen and Peskin

(2000). The shape of these aneurysms is chosen equal to that of the other simulations but next

to the standard length La = 15a0 now also length of La = 7.5a0 and La = 30a0 are chosen to

evaluate the influence of this variable representing the length of the aneurysm.

The axial pressure distribution from each computations is obtained by taking the mean of

the pressure over the discretised cross-sections. The pressure drop over the aneurysm ∆pa is

obtained by subtracting the pressure drop over the straight (’healthy’) part of the vessel (which

has a length of Lh = L − Ls), based on the analytical solution for fully developed flow in a

straight pipe by Womersley (1957), from the total pressure drop over the tube. This analytical

pressure drop ∆pw can be derived by Womersley’s theory using

∆pw = ZLLhq with ZL = 2iπf
ρ

πa4
0

1

1 − F10(α)
. (5.6)

Here, F10(α) is the Womersley function according to

F10(α) =
2J1(s)

sJ0(s)
, with s = i3/2α (5.7)

and J0 and J1 are Bessel functions of the first kind of order 0 and 1 (see Abramowitz and

Stegun (1964)). For steady flow (α=0) this results in

∆pw = R0∆Lhq (5.8)

where R0 = 8η/(πa4
0) represents the friction coefficient per unit of length for steady flow in a

straight tube. Notice that the pressure drop is defined to be positive when the pressure gradient

is negative, e.g. ∆p = p(Γi) − p(Γo).

5.3 Results

At low Reynolds numbers, the pressure gradient in the aneurysm is negligibly small with re-

spect to the pressure gradient in the remainder of the tube, resulting in the plateau in the

pressure development as can be seen for an aneurysm with S = 2 in figure 5.2. At higher

Reynolds numbers, two peaks appear at the entrance (reduced pressure) and the exit of the

aneurysm (increased pressure), caused by the sudden expansion and reduction respectively of

the lumen’s cross-sectional area. Distal to the aneurysm the velocity field slowly (depending

on the Reynolds number) recovers to fully developed flow in a straight tube, which is visible in

the pressure slowly returning to the pressure obtained from Poiseuille’s law (figure 5.2). The

streamlines corresponding to the steady flow situation through the aneurysm of S = 1, with a

flow of q =50·10−6 [m3/s] are illustrated in figure 5.3.

When considering steady flow at low Reynolds numbers, local velocity profiles are expected to

approach the shape of the velocity profiles for fully developed flow, based on the local lumen

radius. This means a linear relation is expected between the pressure drop over the aneurysm

and the flow. For each aneurysm severity a linear relation between ∆pa and q is indeed found,

according to

∆pa = Ivq. (5.9)

where Iv (see figure 5.4) corresponds to the analytically derived friction coefficient when as-

suming a developed flow situation (Poiseuille profile) at each position across the aneurysm,
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Figure 5.2: The pressure divided by the flow as a function of the axial position in
the vessel, obtained from steady flow computations over the aneurysm with S = 2
and flows of 1, 10 and 50 [10−6 m3/s]. The dotted line shows the pressure based on
Poiseuille flow in a straight tube

Figure 5.3: The velocity field near the aneurysm (S = 1), obtained from the steady
flow computation with a flow of q =50·10−6 [m3/s].
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Figure 5.4: the pressure drop as a result of the aneurysm versus the flow, for the
steady flow simulations through aneurysms with severities of S = 1, 2 ,3 and 4. The
dashed lines show linear relations between ∆pa and q according to equation (5.9)
with values for Iv as defined by (5.10).

following

Iv = Ra =

Z

La

R(z)dz = R0

Z

La

a4
0

a4(z)
dz with R0 =

8η

πa4
0

. (5.10)

So, for steady flow at low Reynolds numbers, the pressure drop over an aneurysm can be

described as

∆pa = Raq with Ra = R0

Z

La

a4
0

a4(z)
dz. (5.11)

When increasing the flow, due to the vortex in the aneurysm sac and the flow development

distal to the aneurysm, a quadratic relation between the pressure drop ∆pa and the flow is

expected. ∆pa − ∆pw is shown as a function of q for aneurysms with severities S of 0.1, 0.2,

0.5, 1, 2, 3 and 4 in figure 5.5 where ∆pw is the pressure drop over a length equal to the length

of the aneurysm for the case no aneurysm is present (S = 0). For small aneurysms (S < 0.5)

a clear severity dependency of the pressure drop is observed. In this range, even for larger

Reynolds numbers, the pressure drop may be approximated by using relation (5.11). For more

severe lumen dilations, the influence of the severity on the pressure drop over the aneurysm

becomes small, and the differences in the pressure drop between the different aneurysms are

negligible with respect to the total pressure drop of each of the aneurysms addressed. Fig-

ure 5.5 also indicates that, even for more severe aneurysms, the expected quadratic relation

between ∆pa and q is small in comparison to its linear relation. This linear relation, how-

ever, is not similar to the linear relation from the computations at low Reynolds numbers. At
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Figure 5.5: The pressure drop (∆pa−∆pw) at higher Reynolds numbers as a function
of the flow in case of steady flow through aneurysms with severities of S = 0.1, 0.2,
0.5, 1, 2 ,3 and 4. The dashed line is described by equation (5.12)

higher Reynolds numbers, the pressure drop over aneurysms with severities of S ≥ 0.5 can be

approximated using

∆pa = KvR0Laq − ∆pc with Kv = 0.75 (5.12)

indicated with the dashed line in figure 5.5. Here, ∆pc = 1.0 [Pa] is the offset at an instan-

taneous flow of q = 0. Equation (5.12) accurately describes ∆pa at higher Reynolds numbers

but it obviously falls short, and even gives negative values for ∆pa, in the case of low flow

without vortex formation. Since aneurysms develop mainly in larger arteries with moderate to

high Reynolds numbers, it is suggested that for steady flow situations the pressure drop over

an aneurysm is described using

∆pa = 0.75R0Laq with R0 =
8η

πa4
0

. (5.13)

Next, time-dependent flow through the locally dilated vessel is investigated to determine the

contribution of the unsteadiness term to the pressure drop over the aneurysm. Here, only the

results for the aneurysm with severity S = 2 are presented, except when mentioned otherwise.

The flow signal with a frequency of f = 1 [Hz] and q̄ =5·10−7 [m3/s] is presented as a

function of time in figure 5.6, along with the corresponding pressure drop over the aneurysm

∆pa and the pressure drop ∆pw over the length of the aneurysm La when no aneurysm is

present (S = 0). To relate the pressure drop over the aneurysm to the local flow characteristics

at low Reynolds numbers, an extra unsteadiness term is introduced into equation (5.11).

∆pa = Raq + Iu
∂q

∂t
, (5.14)

with Iu the unsteadiness coefficient. By subtracting the known contribution of the friction
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q̄ =5·10−8 [m3/s]. The solid line represents the pressure drop over the aneurysm
(S = 2), the dotted line shows the viscous contribution to this pressure drop based
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∆pa − ∆pv. (right) ∆pv as a function of the flow change ∂q/∂t.
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viscous contribution ∆pv = Ivq to the pressure drop. The remaining pressure drop
∆pu now shows a linear relation with ∂q/∂t.

term obtained from the steady flow simulations from ∆pa, the pressure drop ∆pu caused by

the unsteadiness of the flow remains, as is illustrated in figure 5.7. It also shows ∆pu as a

function of ∂q/∂t and clearly no one-to-one relation between the two is found. By adjusting

coefficient Ra, however, a linear relation between ∆pu and ∂q/∂t can be found as is shown in

figure 5.8. Notice that for ∂q/∂t = 0 the value of ∆pu is not equal to zero, so relation (5.14)

becomes

∆pa = Iv(α)q + Iu(α)
∂q

∂t
+ ∆pc (5.15)

where Iv is no longer equal to Ra but is dependent on the Womersley number. The procedure

of optimising Iv to obtain a linear relation between ∆pu and ∂q/∂t is done for all unsteady

computations. Neither the viscous contribution nor the unsteadiness term depend on q̄, but

they do change with the frequency. The viscous contribution to the pressure drop shows to be

independent of the aneurysm severity (figure 5.9) and can be approximated by

Iv = KvR0La with Kv = 0.75 + 0.12α2
(5.16)

as depicted with a dashed line. In the limiting case of α → 0 for each aneurysm severity the

relation between ∆pv and q approaches relation (5.11). For the unsteadiness term, a useful

relation between Iu and α over the full range of α cannot be found (figure 5.9) but for larger

α’s the constant value of Iu can be approximated using

Iu = Lu with Lu =
ρ

A0

Z

La

a2
0

a(z)2
. (5.17)

The offset ∆pc depends on both q̄ and the frequency as is shown in figure 5.10 and can be

approximated using

∆pc = KcR0Laq̄ with Kc = 0.06α2
(5.18)
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(S = 2) and the dashed line shows the contribution of the unsteadiness term to this
pressure drop. The remaining pressure drop (∆pa−∆pu) is indicated with the dotted
line. (right) The remaining pressure drop ∆pv (dotted) as a function of the flow,
along with a linear approximation (solid).

for all aneurysm severities. Equation 5.15 now becomes

∆pa = Kv(α)R0Laq + Lu
∂q

∂t
+ Kc(α)R0Laq̄. (5.19)

Similar to the steady flow situation, at higher Reynolds numbers a different relation between

∆pa and q is expected. Figure 5.11 shows ∆pa as a function of the flow through the aneurysm

(S = 2) for the case of f = 1 [Hz] and q̄ =5·10−5 [m3/s]. Because in the case of steady flow a

linear relation between the pressure drop and the flow was found, also here a linear relation is

expected. The contribution of the unsteadiness term and the offset ∆pc as obtained earlier are

subtracted from the pressure drop over the aneurysm to obtain the remaining pressure drop

as shown in figure 5.11. Although the relation between this remaining pressure drop ∆pv and

the flow is not a purely linear one, for all flow signals addressed, a linear approximation is

found that fairly describes the pressure drop over the aneurysm. The values for Iv obtained are

independent of q̄ but do change with the frequency as is shown in figure 5.12. Again, Iv does

not change significantly with the aneurysm severity and again it depends on the Womersley

parameter according to equation (5.16) as indicated with the dashed line. The pressure drop

in oscillatory flow as a result of the presence of an aneurysm can now be approximated by

∆pa = Kv(α)R0Laq + Lu
∂q

∂t
+ Kc(α)R0Laq̄. (5.20)

with

Kv = 0.75 + 0.12α2
and Kc = 0.06α2

(5.21)

Finally, expression (5.20) is used to predict the pressure drop over the aneurysm (S = 3)

when imposing a multi-harmonic flow pulse based on the flow through the abdominal aorta
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Figure 5.12: (left) The value of the friction coefficient Iv as a function of the Wom-
ersley parameter for aneurysms with severities of S = 1, 2, 3 and 4. The dashed line
indicates a quadratic fit through these data according to equation (5.16).

according to Olufsen and Peskin (2000). The frequency dependent parameters Kv and Kc are

based on the fundamental harmonic of this flow signal, which has a frequency of f = 1/T = 1
[Hz]. Figure 5.13 shows the flow signal and the pressure drop over the aneurysm, based on the

simulation and computed using equation (5.20) for the aneurysm with a length of La = 15a0.

For the aneurysms with a length of La = 7.5a0 and La = 30a0, the pressure drop obtained

using relation (5.20) is demonstrated in figure 5.14, along with the pressure drop from the

numerical computation.

5.4 Discussion

A finite element method in a rigid two-dimensional axisymmetric domain has been employed

to investigate the effect of the presence of an aneurysm on the pressure drop over the dilated

vessel. Steady as well as unsteady flow situations with varying frequencies have been simulated

over a large range over Reynolds numbers. Also, several aneurysm severities were addressed.

From this computational study, a relation between the pressure drop over the aneurysm and

the flow was found according to

∆pa = Kv(α)R0Laq + Lu
∂q

∂t
+ Kc(α)R0Laq̄, with

R0 =
8η

πa4
0

, Lu =
ρ

A0

Z

La

a2
0

a(z)2
, (5.22)

Kv = 0.12α2 + 0.75 and Kc = 0.06α2.

An important observation is that this relation is independent of the aneurysm severity.

When imposing a multi-harmonic physiological flow pulse, the pressure drop as computed by
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Figure 5.13: The pressure drop ∆pa as a function of the flow (left) and as a function
of time (right) when imposing a physiological flow pulse through an aneurysms with
severity S = 3. The solid line represents ∆pa obtained from the computation and the
dashed line is computed by equation (5.20).
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Figure 5.14: On the left the scaled velocity fields at t = 0.4 [s] around the aneurysm
(S = 2) with a length of La = 7.5a0 (top) and a length of Ls = 30a0 (bottom)
when imposing the physiological flow signal from figure 5.13, and on the right the
pressure drop over these aneurysms as a function of time. The solid line represents
the pressure drop obtained from the numerical simulation and the dashed line from
our relation.
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equation (5.22) fairly describes the pressure drop as obtained from the computational method.

The coefficients Kv and Kc for this comparison were based on the fundamental harmonic of

the flow signal. This illustrates that using equation (5.22), the pressure drop over an aneurysm

can be predicted, regardless of the aneurysm severity in the pathological range.

The model of the aneurysm is based on an axisymmetric geometry whereas aneurysms in the

abdominal aorta usually dilate in the ventral direction since in the dorsal direction the dilation

is limited by the spine. Moreover, the presence of the aortic bifurcation just below the aneurysm

is also neglected in the computational model. These geometrical shortcomings will influence

the velocity field of the blood through the aneurysm, but a large influence on the pressure drop

over the aneurysm is not expected as was also concluded by Finol et al. (2003). The pressure

drop over the aneurysm as investigated in this work, is the absolute value of the pressure

drop over the total tube as a result of the dilated region. This means that the pressure drop

∆pa does not necessarily occur at the dilation, as can be observed in figure 5.2. The precise

pressure decay as a function of the axial position through the vessel, however, has not been

investigated because we are only interested in the global effect of the presence of an aneurysm

when modelling the arterial system using a 1D wave propagation method. The differential

equation describing the pressure drop as a result of the aneurysm, based on a linear decay of

the pressure within the aneurysm region, is given by

∂q

∂t
+

Iv

Iu
q +

Ls

Iu

∂p

∂z
+

Ic

Iu
q̄ = 0 (5.23)

with the coefficients Iv, Iu and Ic defined by

Iv = Kv(α)R0La, Iu = Lu and Ic = Kc(α)R0La (5.24)

This momentum balance, together with the continuity equation

∂A

∂t
+

∂q

∂z
= 0 (5.25)

and a constitutive law, defining the compliance of the aneurysm, yields a set of equations de-

scribing the propagation of pressure and flow waves through a locally dilated vessel. This does

imply, however, that an incorrect representation of the pressure just after the aneurysm will be

obtained.

Also, in the aneurysm model the vessel lumen is assumed to contain flowing blood whereas

the aneurysm sac is usually partially filled with thrombus. This will influence the velocity field

within the aneurysm cavity and so the pressure drop over the aneurysm. For the application of

the aneurysm model developed here, the cross-sectional area of the lumen without thrombus

should be used. For the estimation of the compliance of the dilated vessel wall, next to the lu-

men radius, information is needed on the local wall thickness and the effective Young modulus

of the vessel wall. In the literature, several studies (e.g.Lanne et al. (1992); Long et al. (2005))

have shown that the increased lumen radius does not necessarily result in an increased local

compliance. The decrease in elastin content in the pathological wall results in an increased

effective Young modulus and because of arterial wall adaptation the wall thickness is usually

higher as well. For an appropriate estimate of the compliance, information on these quantities

is needed. For reasons of simplicity, here the arterial wall is assumed to be rigid instead of

being a more physiological compliant vessel wall. From Deplano et al. (2007) and Scotti and

Finol (2007) we know that taking into account the compliance of the aneurysm significantly

changes the velocity field and wall shear stress within the aneurysm. Since the main pressure

drop over the aneurysm occurs distal to the aneurysm cavity, however, we believe that this

pressure drop will not significantly change when modelling a compliant vessel wall. In the
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numerical simulations the blood is modelled as a purely Newtonian fluid whereas it is known

that blood is a shear thinning fluid (Chien and Jan (1973)). For blood flow in the abdominal

aorta, however, the assumption of Newtonian behaviour is reasonable since the blood viscosity

is relatively constant at the high shear rates found in this region (Milnor (1989)).

5.5 Conclusion

Based on the results of numerical computations of blood flow through a two-dimensional ax-

isymmetric aneurysm, a relation between the pressure drop as a result of the presence of this

aneurysm and the local flow characteristics is developed. This relation was expected to depend

on the aneurysm shape, but for severe aneurysms (S ≥ 1) the pressure drop no longer changed

with increasing aneurysm severity. When comparing the pressure drop based on our relation

to the pressure drop obtained from the numerical simulations when prescribing a physiological

flow pulse, our relation showed suitable in predicting the pressure drop over a vessel with an

aneurysm.
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6.1 Introduction

Computational models describing the propagation of pressure and flow waves through patient-

specific arterial systems can be an aid in diagnosis and treatment of arterial pathologies. Be-

cause of the high computational costs involved in fully three-dimensional fluid structure in-

teraction computations of the total arterial tree, one-dimensional wave propagation models

may be more suited to provide clinically relevant information. In chapter 2 (see also Bessems

et al. (2007)) a time domain based one-dimensional wave propagation model was described

that can accurately predict the propagation of pressure and flow waves through straight or

slightly tapered vessels. The velocity profile function used in this model provides first order

approximations for the wall shear stress, an important parameter in the development of car-

diovascular diseases and in the adaptation process of the vessel wall to changing rheological

conditions. In chapter 3 a constitutive law, based on the behaviour of a Kelvin body (standard

linear solid model) was developed to model the viscoelastic properties of the arterial wall in

one-dimensional wave propagation. These viscoelastic properties may significantly influence

the attenuation characteristics of the pressure and flow waves travelling through the arterial

system. Since the one-dimensional wave propagation model holds only in straight or slightly

tapered vessels, in chapters 4 and 5 additional models were developed for stenoses and for

aneurysms. Based on finite element computations in two-dimensional axisymmetrical fluid

domains, the pressure drop over rigid stenoses and aneurysms is related to the flow character-

istics through these pathologies, as a function of the local vessel geometry. By assuming that

this pressure drop occurred by a linear decay of the pressure over the length of the pathologi-

cal region, a one-dimensional differential equation similar to the one-dimensional momentum

balance from chapter 2, was derived.

In this chapter, a one-dimensional wave propagation model of the total arterial system is pre-

sented, based on the findings from the previous chapters. Using this model, the influence

of the model parameters introduced in these previous chapters are investigated to determine

their contribution in the full physiological range. In section 6.2, the various components of the

model will be briefly repeated, including the non-linear fluid mechanics, the viscoelastic arte-

rial wall properties and the pathological regions such as stenoses and aneurysms. To connect

the models of the individual arterial segments into a model of the arterial tree, in section 6.2

also appropriate boundary and interface conditions will be introduced. Moreover, a synthetic

arterial tree, based on the table of Westerhof et al. (1969) is presented and the acquisition of

a patient-specific arterial tree based on MR images is briefly presented. Using the synthetic

arterial tree, in section 6.3 the effect of some of the model assumptions made in the previous

chapters on the wave characteristics will be investigated. The influence of the assumed velocity

profile on the pressure and flow waves will be illustrated, the wave attenuation as a result of

the constitutive law will be addressed and the influence of the presence of a pathological region

on the wave phenomena will be dealt with. Next, the applicability of the model will be demon-

strated by showing the resulting pressure and flow obtained from several computations based

on the patient-specific arterial tree. Finally, in the general discussion, the methods used and

the various results of the present thesis will be discussed, recommendations for future work

will be proposed and some possible applications of the developed model will be presented.

6.2 Methods

The propagation of pressure and flow waves through straight or slightly tapered compliant ves-

sels is described using three equations: mass balance, momentum balance and the constitutive
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equation for the vessels compliance. From chapter 2 the following set of equations is taken:
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Here, q(z, t) is the flow, Ψ represents the leakage of fluid per unit of length as a result of side

branches, symbol a indicates the local instantaneous lumen radius and with fz body forces

acting on the fluid are included. The blood is modelled as a homogeneous and Newtonian fluid

with density ρ and dynamic viscosity η. Furthermore, R0 is the friction coefficient in a straight

pipe according to Poiseuille’s law.

R0 =
8η

πa4
(6.4)

The parameters cp, cq and δ1 are a function of the Womersley parameter α. A detailed descrip-

tion of these parameters and the derivation of equations (6.1) can be found in chapter 2. The

corresponding wall shear stress is written as

τw = −a

2

h

cqR0q − (cp − 1)
∂p

∂z

i

. (6.5)

The constitutive relation is based on thin walled cylinder theory using either linear elastic

material properties, or linear viscoelastic material properties. In case of purely elastic material

properties, the constitutive relation can be written as

∂A

∂t
=

∂A

∂p

∂p

∂t
≡ C0

∂p

∂t
, (6.6)

with C0 the compliance per unit of length of the vessel according to

C0 =
2π(1 − µ2)a3

0

hE
. (6.7)

Here, h is the wall thickness, µ the Poisson ratio, E represents Young’s modulus and a0 is

the lumen radius at p = p0. By a substitution of equation (6.6) into the equation of mass

conservation from (6.1), we obtain
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Figure 6.1: Representation of the standard linear solid model used to model the
viscoelastic behaviour of the arterial wall in circumferential direction

For the model using viscoelastic material properties, the constitutive relation is based on the

viscoelastic behaviour of the standard linear solid model (figure 6.1). The governing differen-

tial equation is given by

a

h
p + τǫ

∂

∂t

“ a

h
p

”

=
Ee

1 − µ2

“A − A0

2A0
+

τσ

2A0

∂A

∂t

”

(6.9)

with τǫ and τσ the relaxation times for constant strain and constant stress respectively, defined

as

τǫ =
ηw

Ev
and τσ =

ηw

Ee

“

1 +
Ee

Ev

”

. (6.10)

Here Ee is the stiffness of the parallel spring, Ev is the stiffness of the serial spring and ηw is

the dashpot’s coefficient of viscosity.

6.2.1 Boundary conditions

At the proximal site of the arterial tree, either the pressure p(t) or the flow q(t) can be pre-

scribed, mimicking the behaviour of the heart. In this work, the flow as obtained from Olufsen

and Peskin (2000) will be prescribed at the aortic root. A network of vessels is constructed by

coupling the individual arterial segments using interface conditions at each bifurcation. As a

first condition, conservation of mass can be applied by assuming that there is no fluid leakage

at the bifurcations, so the outflow from the parent artery (p) must be equal to the inflow of the

2 child arteries (c1 and c2) added.

qp = qc1 + qc2 (6.11)

Furthermore, we assume that the pressure loss due to vortices and secondary flow patterns

created at the bifurcation can be cancelled out by the pressure that is gained by the increase

in total cross-sectional area (and so a decrease in the mean velocity) that usually occurs over

bifurcations. Therefore, as a second condition we assume pressure continuity at the bifurcation,

according to

pp = pc1 = pc2, (6.12)

When a structure such as the circle of Willis, a collateral network around a stenosis or an

artificial bypass occurs in the arterial network, also a merging relation is used according to

qp1 + qp2 = qc and pp1 = pp2 = pc. (6.13)

Now the summed flow of the two joining parent arteries should be equal to the flow in the

child artery. At the distal end of each truncated artery a terminal impedance is prescribed
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using a three-element Windkessel model, consisting of a resistance Rc in series with a parallel

combination of a capacitor Ct and another resistance Rp. In a formula this means

∂q

∂t
=

1

Rt

∂p

∂t
+

p

RcRpCt
−

` Rc

Rp
+ 1

´ q

RcCt
(6.14)

where Rt = Rc + Rp is the total peripheral resistance of the truncated branch. For each

terminal branch, the parameters Rc, Rp and Ct must be provided. The characteristic resistance

Rc is chosen equal to the characteristic impedance Z0 of the truncated artery, as

Rc ≡ Z0 =

s

ρhE

2π2(1 − µ2)a5
0

(6.15)

to result in minimal reflection at each transition from the 1D to the 0D domain. To determine

the total resistances Rt, a division of the flow over the truncated branches must be defined.

Here, a flow division proportional to a3
0 for each truncated artery is assumed, based on the

principle of minimum work for quasi-steady flow (see Murray (1926)). The total resistances

Rt is then computed by

Rt =
p̄ a3

0

q̄ a3
t

with a3
t =

Nt
X

i=1

a3
0,i (6.16)

Here, p̄ is the mean (over time) systemic pressure, q̄ is the mean (over time) flow entering

the system through the inlet and Nt is the total number of truncated branches. The terminal

compliance Ct for each truncated branch is estimated using

Ct = τ/Rp (6.17)

with τ = 1.5 the time constant defining the decay of the pressure signal (see Stergiopulos et al.

(1999)). Values of Rc, Rp and Ct for each truncated branch are listed in table 6.2.

6.2.2 Stenoses and aneurysms

Since blood flow through vessels with sudden changes in cross-sectional area, such as stenoses

and aneurysms, does not obey the 1D momentum balance from equation (6.1), two alternative

relations are introduced, based on the work in chapters 4 and 5. For a stenosis of length Ls, a

relation between the pressure drop and the flow was found according to

∆ps = Kv(α)Rsq +
ρKt

2A2
0

“A0

As
− 1

”2

|q|q + Ku(α)Lu
∂q

∂t
+ Kc(α, q̄). (6.18)

Here, A0 is the cross-sectional area of the vessel proximal to the stenosis and As is the cross-

sectional area at the neck of the stenosis. Expressions for Kv, Kt, Ku and Kc are empirically

determined by means of finite element computations in a 2D axisymmetrical Navier-Stokes

domain as presented in chapter 4. Note that this relation is different from the relation by Young

(1979) because here the coefficients Kv and Ku are dependent on the fundamental harmonic

of the local flow signal and an extra constant Kc(α, q̄) is added. Also, the stenosis shape

dependency of the viscous and unsteadiness term are not included in Kv and Ku respectively

but is expressed by Rs and Lu, according to

Rs =
8η

πa4
0

Z

Ls

a4
0

a4
s(z)

dz and Lu =
ρ

πa2
0

Z

Ls

a2
0

a2
s(z)

dz (6.19)
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where as(z) is the local radius of the vessel lumen in the stenosis and a0 is the radius of the

vessel proximal to the stenosis. By assuming that the pressure drop as a result of the stenosis

occurs linearly over the length of the stenosis, equation (6.18) can be transformed into the

following differential equation:

∂q

∂t
+

KvRs

KuLu
q +

ρKt

2A2
0KuLu

“A0

As
− 1

”2

q2 +
Ls

KuLu

∂p

∂z
+

KcRs

KuLu
= 0. (6.20)

For the equation of mass conservation, the compliance C0 per unit of length is based on the

assumption that the local Young’s modulus does not change with respect to the healthy vessel

and the outer radius of the vessel wall is constant.

According to chapter 5 the pressure drop over an aneurysm with a length of La can be ex-

pressed as

∆pa = Kv(α)R0Laq + Lu
∂q

∂t
+ Kc(α)R0Laq̄ (6.21)

Here, the friction coefficient R0 is based on the radius of the vessel distal to the aneurysm.

Equation (6.21) does not include any severity dependency because in chapter 5 we saw that

for severe aneurysms (the dilated part has a lumen radius that is at least 1.5 times the radius

of the vessel lumen proximal to the aneurysm) the pressure drop over the aneurysm did not

depend significantly on its severity. By assuming that the pressure drop over the aneurysm

occurs linearly over the length of the aneurysm La, equation (6.21) can be transformed into

the following differential equation:

∂q

∂t
+

KvR0La

Lu
q +

Ls

Lu

∂p

∂z
+

KcR0La

Lu
q̄ = 0. (6.22)

The estimation of the aneurysm compliance is not straight-forward. Although, according to

equation 6.7, the increase of the radius would yield a cubic increase in the compliance, liter-

ature shows that the compliance of a dilated vessel is not necessarily different from healthy

abdominal arteries (Lanne et al. (1992); Long et al. (2005)). The aneurysm cavity is often

filled with thrombus that decreases the lumen radius and increases the wall thickness, thereby

reducing the increase of the aneurysm compliance. Moreover, adaptation of the arterial vessel

wall can result in a higher effective Young Modulus which also decreases the compliance. Here,

we will model the aneurysm compliance to be 1, 5 and 10 times the compliance of the healthy

abdominal aorta as computed from table 6.1 using equation (6.7).

6.2.3 Computational Method

A spectral element method is employed to solve the above sets of equations in a (p, q)-formulation

and in a (A, q, p)-formulation by a discretisation of the spatial domain using sixth order one-

dimensional spectral elements. A Galerkin weighted residuals method is used to transform the

set of partial differential equations into a spectral element space as demonstrated in chapter

1. The time derivatives are treated using a second order backward differencing scheme and

at each time step ∆t = T/1000 [s] a Newton-Raphson iterative scheme is deployed to handle

the non-linear terms. For each computation, ten cardiac cycles are simulated, the last two of

which are used for visualisation. The coupling relations at the bifurcations are included by

introducing equations (6.11) and (6.12) into the total assembled stiffness matrix. To ensure

they are sufficiently accounted for, they should be of similar order of magnitude as the other

components in the matrix. Based on estimates of these components in the physiological situa-

tion a multiplication factor of λ = 104 is introduced by which equations (6.11) and (6.12) are
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multiplied when being inserted into the stiffness matrix. In the range of λ = 102 to λ = 106

identical results are obtained, showing that the solution is insensitive to this parameter.

6.2.4 Physiological data

The system of large arteries is based on the geometrical data from Stergiopulos et al. (1992),

resulting in an arterial network consisting of the 51 arterial segments of table 6.1 as visualised

in figure 6.2. This figure also shows that each segment is again divided into a number of

elements as given by N in table 6.1. For each segment, a proximal and distal radius (ap

and ad) is given and within the segment a linear decay of the radius is assumed. The wall

thickness h and the elastic Young’s modulus E as given in table 6.1 are assumed constant over

the segment length. The circled points indicated with characters A through H in figure 6.2

are the monitoring positions used in the next section. The terminal resistances Rc and Rp and

compliance Ct, computed as discussed earlier, are listed in table 6.2. For computations using

viscoelastic material properties of the vessel wall, the segments of the arterial tree are divided

into three groups. The first group exists of the arteries with an elastic modulus of E = 4 · 105

[Pa] according to table 6.1. These arteries are the most proximal to the heart and the least

viscoelastic. Based on data from Learoyd and Taylor (1966) a viscous fraction of fv = 0.2 has

been assumed for these arteries. For the standard linear solid model, this viscous fraction is

defined as

fv =
(τσ − τǫ)ω

1 + τστǫω2
. (6.23)

where for ω = 2πf a frequency of f = 1 [Hz] has been assumed. The arteries with an elastic

modulus of E = 8 ·105 [Pa] according to table 6.1 obtain a viscous fraction of fv = 0.4 and the

most distal arteries with E = 1.6 · 106 [Pa] have an assumed viscous fraction of fv = 0.6. The

corresponding values for parameters Ee, Ev and ηw are listed in table 6.3. The Poisson ratio

for all computations is set to µ = 0.5 to model incompressible material. The blood is assumed

to be a Newtonian fluid with a constant dynamic viscosity of η = 4.5 · 10−3 [Pa·s] and density

ρ = 1.05 · 103 [kg/m3].

Using the current model of the arterial tree, simulations are performed to demonstrate the

influence of the model parameters. First, the influence of the velocity profile function used is

demonstrated by performing simulations (referred to as profile) using frictional forces and the

non-linear term according to the approximate velocity profile function of chapter 2, according

to Poiseuille’s law and by assuming frictionless flow (flat profiles). Table 6.4 gives the values of

cp, cq and δ1 for each of these cases. Here, parameters cp(α) and cq(α) are computed at each

cross-sectional area by equations (6.2) and (6.3).

Next, to determine the influence of the viscoelasticity of the arterial wall, in simulations called

constitutive both the purely elastic material properties and the material properties based on the

standard linear solid model with the model parameters as defined in table 6.3 are used. The

influence of the presence of a stenosis in the left femoral artery is illustrated by the simulations

referred to as stenosed. Here, a stenosis with varying severities S of 70%, 80% and 90% is

added in the third element of this artery. In the simulations aneurysm, a computation with

a severe abdominal aortic aneurysm is performed by inserting an aneurysm element into the

abdominal aorta part D.

Finally, simulations (referred to as patient) based on a geometry obtained from MR images are

performed. To obtain these images, a contrast-enhanced three-station imaging technique called

MobiTrak (Busch et al. (1999)) is used. Three individual, partially overlapping volumes are

scanned using a Gadolinium-based contrast agent. These three three-dimensional MR images
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Figure 6.2: Representation of the 51 main arteries in the human arterial system.
The numbers correspond to the artery numbers listed in table 6.1 and the characters
indicate the monitoring sites for visualising the computational results.
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Nr. artery name N L [cm] ap [cm] ad [cm] h [10−2mm] E [106Pa]

1 ascending aorta 1 4.0 1.470 1.440 16.30 0.4
2 aortic arch A 1 2.0 1.120 1.120 12.60 0.4
3 innominate 1 3.4 0.620 0.620 8.00 0.4
4 r. subclavian A 1 3.4 0.423 0.423 6.70 0.4
5 r. carotid 4 17.7 0.370 0.370 6.30 0.4
6 r. vertebral 3 14.8 0.188 0.183 4.50 0.8
7 r. subclavian B 6 42.2 0.403 0.236 6.70 0.4
8 r. radial 4 23.5 0.174 0.142 4.30 0.8
9 r. ulnar A 1 6.7 0.215 0.215 4.60 0.8
10 r. interosseous 3 7.9 0.091 0.091 2.80 1.6
11 r. ulnar B 4 17.1 0.203 0.183 4.60 0.8
12 r. int. carotid 4 17.7 0.177 0.083 4.50 0.8
13 r. ext. carotid 4 17.7 0.177 0.083 4.20 0.8
14 aortic arch B 1 3.9 1.070 1.070 11.50 0.4
15 l. carotid 5 20.8 0.370 0.370 6.30 0.4
16 l. int. carotid 4 17.7 0.177 0.083 4.50 0.8
17 l. ext. carotid 4 17.7 0.177 0.083 4.20 0.8
18 thoracic aorta A 1 5.2 0.999 0.999 11.00 0.4
19 l. subclavian A 1 3.4 0.423 0.423 6.60 0.4
20 l. vertebral 3 14.8 0.188 0.186 4.50 0.8
21 l. subclavian B 6 42.2 0.403 0.236 6.70 0.4
22 l. radial 4 23.5 0.174 0.142 4.30 0.8
23 l. ulnar A 1 6.7 0.215 0.215 4.60 0.8
24 l interosseous 3 7.9 0.091 0.091 2.80 1.6
25 l. ulnar B 4 17.1 0.203 0.183 4.60 0.8
26 intercostals 2 8.0 0.200 0.150 4.90 0.4
27 thoracic aorta B 2 10.4 0.675 0.645 10.00 0.4
28 celiac 1 1.0 0.300 0.300 6.40 0.4
29 abdom. aorta A 1 5.3 0.610 0.610 9.00 0.4
30 abdom. aorta B 1 1.0 0.600 0.600 8.00 0.4
31 sup. mesenteric 1 5.9 0.435 0.435 6.90 0.4
32 l. renal 1 3.2 0.260 0.260 5.30 0.4
33 abdom. aorta C 1 1.0 0.590 0.590 8.00 0.4
34 r. renal 1 3.2 0.260 0.260 5.30 0.4
35 abdom. aorta D 2 10.6 0.580 0.548 7.50 0.4
36 inf. mesenteric 1 5.0 0.160 0.160 4.30 0.4
37 abdom. aorta E 1 1.0 0.520 0.520 6.50 0.4
38 l. common iliac 1 5.8 0.368 0.350 6.00 0.4
39 l. ext. iliac 3 14.4 0.320 0.270 5.30 0.8
40 l. int. iliac 1 5.0 0.200 0.200 4.00 1.6
41 l. femoral 6 44.3 0.259 0.190 5.00 0.8
42 l. deep femoral 3 12.6 0.255 0.186 4.70 0.8
43 l. post. tibial 5 32.1 0.247 0.141 4.50 1.6
44 l. ant. tibial 5 34.3 0.130 0.130 3.90 1.6
45 r. common iliac 1 5.8 0.368 0.350 6.00 0.4
46 r. ext. iliac 3 14.4 0.320 0.270 5.30 0.8
47 r. int. iliac 1 5.0 0.200 0.200 4.00 1.6
48 r. femoral 6 44.3 0.259 0.190 5.00 0.8
49 r. deep femoral 3 12.6 0.255 0.186 4.70 0.8
50 r. post. tibial 5 32.1 0.247 0.141 4.50 1.6
51 r. ant. tibial 5 34.3 0.130 0.130 3.90 1.6

Table 6.1: physiological and geometrical data of the arterial tree base on Stergiopulos
et al. (1992).
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Nr. artery name Rc Rp Ct

[kg cm−4s−1] [kg cm−4s−1] [10−3cm4s2kg−1]

6 r. vertebral 11.2 25.5 58.7

8 r. radial 20.6 58.0 25.9
10 r. interosseous 71.4 227.0 6.6

11 r. ulnar B 11.3 25.4 59.0

12 r. int. carotid 80.5 313.0 4.8
13 r. ext. carotid 77.8 315.0 4.8

16 l. int. carotid 80.5 313.0 4.8

17 l. ext. carotid 77.8 315.0 4.8
20 l. vertebral 11.2 25.5 58.7

22 l. radial 20.6 58.0 25.9
24 l interosseous 71.4 227.0 6.6

25 l. ulnar B 11.3 25.4 59.0

26 intercostals 13.5 53.1 28.3
28 celiac 2.7 5.6 268.0

31 sup. mesenteric 11.2 1.6 931.0

32 l. renal 3.6 9.2 162.0
34 r. renal 3.6 9.2 162.0

36 inf. mesenteric 10.8 44.1 34.0
40 l. int. iliac 11.9 16.2 92.6

42 l. deep femoral 10.9 24.0 62.5

43 l. post. tibial 30.3 49.9 30.0
44 l. ant. tibial 34.5 67.8 22.1

47 r. int. iliac 11.9 16.2 92.6

49 r. deep femoral 10.9 24.0 62.5
50 r. post. tibial 30.3 49.9 30.0

51 r. ant. tibial 34.5 67.8 22.1

Table 6.2: parameters used for the Windkessel models.

E fv Ee Ev ηw

106 [Pa] [-] 106 [Pa] 106 [Pa] 106 [Pa]

0.4 0.2 0.4 0.2 2.5

0.8 0.4 0.8 0.9 1.0
1.6 0.6 1.6 3.4 3.0

Table 6.3: parameters used for the standard linear solid model, depending on the
elastic modulus E according to table 6.1.
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velocity profile cp cq δ1

vz(α, z, t) cp(α) cq(α) δ1(α)
Poiseuille 1 1 4/3

no friction 1 0 1

Table 6.4: values for cp, cq and δ1 for each assumed velocity profile.

Figure 6.3: (left) Three-station MR image of the lower extremities, by Philips Medical
Systems (PMS, Best, The Netherlands). (centre) The same MR image now including
the segmented arteries, where the colours represent the segments generation (by
PMS). (right) Mapping of this segmentation into a one-dimensional mesh. Here, the
angles between the individual segments are purely illustrative.
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are then merged into one image set (left of figure 6.3) and by selecting a starting point just

above the aortic bifurcation, an automatic vessel-tree tracking algorithm (Bülow et al. (2004))

is initiated to find the centerline of the vessels tree in both legs. The local vessel lumen radius

a0 is automatically detected using the full-width-half-maximum of the lumen intensity as a

threshold to obtain a segmentation as shown in the centre of figure 6.3. In the translation of

the current segmentation into one-dimensional finite elements, for each individual segment a

mean element length Lm is defined, based on the mean radius am of the segments lumen. In

this case a relation of Lm = 30am is chosen, resulting in 150 elements for the total mesh. The

radius of the individual elements is then based on a quadratic fit through the radius of each

segment. Since the vessel wall cannot be determined from the images obtained, it is assumed

to have a local thickness of h = 0.125a0 [m] and a constant Young modulus of E = 1.00 · 106

[Pa], roughly based on the physiological data of table 6.1.

The segment representing the left femoral artery as indicated in figure 6.3 is clearly narrowed at

the indicated location so at this position a stenosis element is used defined by equation (6.20).

Next, four computations are executed. The first with the stenotic region intact, the second after

balloon angioplasty of this stenosis, a third where also the remainder of this segment is repaired

by balloon angioplasty and finally a computation is performed where the total pathological

region of this vessel is bypassed using a vessel with a lumen radius of a0 = 2.0 [mm], a wall

thickness of h = 0.25 [mm] and a Young modulus of E = 1 · 106 [Pa].

6.3 Results

For each computation based on the geometric data from table 6.1, the pressure and flow at

positions A through H as indicated in figure 6.2 are monitored. Figures 6.4 and 6.5 show the

pressure and the flow respectively at positions A, B, C, D, F and H for the profile computations

without pathological regions, using linear elastic wall behaviour for the three velocity profile

functions discussed earlier. Figure 6.5A confirms that, when assuming a flat frictionless veloc-

ity profile, the total pressure drop over the arterial tree is the least, since both the contribution

of the non-linear term (δ1) and the friction term is smaller than they are for the other two as-

sumed velocity profiles. It also shows that the differences between the use of the approximate

velocity profiles function and Poiseuille profiles are only minor. In the region of the arterial tree

where the frictional forces are dominantly present, the approximate velocity profile function

approaches Poiseuille profiles, whereas in the inertia dominated regions, where the approxi-

mate profiles are more flat, frictional forces no longer significantly influence the pressure and

flow waves. Figure 6.6 shows the wall shear stress τw as a function of time at positions A,

B, C, D, F and H for the Poiseuille based velocity profiles and the velocity profiles based on

the approximate velocity profile function. It shows that the assumption of Poiseuille profiles in

the larger arteries provides an under-estimation of the wall shear stress at peak systole. In the

smaller arteries, this under-estimation becomes less profound. Also, the time averaged wall

shear stress obtained from the approximate velocity profile function is of the same order of

magnitude throughout the arterial system, whereas for Poiseuille profiles it increases towards

the distal ends.

Figures 6.7 and 6.8 show the pressure and the flow for the constitutive computations with

linear elastic and viscoelastic properties of the arterial wall. The model using viscoelastic wall

properties clearly shows a higher attenuation of the pressure and flow waves travelling through

the arterial system. The increased pressure in the systolic phase in the aorta (A through C) of

the model using viscoelastic wall properties is caused by the increase in the effective Young’s

modulus using this model. This increase also results in an increased wave speed throughout
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Figure 6.4: The pressure as a function of time, monitored at positions A, B, C, D,
F and H of simulations profile. The solid line is obtained by using the approximate
velocity profile function, the dashed line is based on the assumption of Poiseuille
profiles and the dotted line indicates the pressure when assuming frictionless fluid
flow.

8 8.5 9 9.5 10
−100

0

100

200

300

400

500

8 8.5 9 9.5 10
0

50

100

150

200

250

300

 

 

8 8.5 9 9.5 10
0

20

40

60

80

8 8.5 9 9.5 10
−5

0

5

10

15

20

8 8.5 9 9.5 10
0

2

4

6

8

10

8 8.5 9 9.5 10
0

1

2

3

4

t/T [-]t/T [-]t/T [-]

q
[c

m
3
/
s]

q
[c

m
3
/
s]

q
[c

m
3
/
s]

q
[c

m
3
/
s]

q
[c

m
3
/
s]

q
[c

m
3
/
s]

our
Pois.
no fr.

A B C

D F H
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the arterial tree, as can be seen by the phase lag of the pressure and flow pulses in points F and

H.

Next, the influence of the presence of a stenosis based on the stenosed simulations is demon-

strated. Figures 6.9 and 6.10 show the pressure and the flow respectively at positions A, B,

C, E, F and G obtained from computations with stenoses of 70, 80 and 90% in the femoral

artery. Clearly, the presence of such stenosis lowers the perfusion of the organs distal to the

pathological region. The results of the 70% stenosed artery shows only a small decrease in flow

distal to the pathological region, whereas the 90% stenosis severely lowers the perfusion of the

peripheral beds. In the remainder of the arterial system, hardly any influence of the stenosis is

observed.

The influence of a severe abdominal aortic aneurysm as computed with the aneurysm simula-

tions is shown in figures 6.11 and 6.12. When modelling the compliance of the aneurysm to be

equal to the vessel compliance without an aneurysm, no significant differences can be detected

between the results with and without an aneurysm in the abdominal aorta. Apparently, the

influence of the pressure drop over the aneurysm as described by equation 6.21 is small with

respect to the physiological pressure pulse. Increasing the aneurysms compliance as a result of

the increased lumen radius, results in a reflection of part of the systolic pressure wave, which

significantly changes the wave characteristics throughout the arterial system.

The pressure and flow resulting from the patient computations on the patient-specific arterial

tree obtained from MR images are presented in figures 6.13 and 6.14. In the atherosclerotic

femoral artery, a clear pressure drop with respect to the unobstructed femoral artery is shown,

together with a significant decrease in blood flow through the obstructed vessel. By repairing

the proximal stenosis, indicated with S1 in the MR image, a slight improvement of the blood

flow through this segment is achieved, but only angioplasty of the distal narrowing (S2) results
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Figure 6.8: The same as figure 6.7 but now the flow is shown.
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in sufficient perfusion of the distal vascular bed. The computations with a bypass around the

stenosed region, as illustrated in figure 6.14 also shows sufficient blood flow to the distal re-

gions. The pressure and flow waves, however, are partially reflected as a result of the discrete

transition from the artery to the bypass graft. Choosing a graft with a different lumen radius

or more appropriate mechanical properties of the tubes wall, can yield better results.

6.4 General Discussion

In the present thesis, a wave propagation model of the patient-specific arterial system has been

presented. For the propagation of pressure and flow waves through the individual arterial

segments a one-dimensional wave propagation model is used that models the non-linear flow

behaviour in linear elastic or viscoelastic tapered vessels. By assuming pressure continuity and

conservation of mass over each bifurcation, a coupling model is developed that interconnects

the individual arterial models into the model of an arterial system. The peripheral bed for each

truncated artery is modelled using a three-element Windkessel model. Moreover, special steno-

sis and aneurysm models are introduced to relate the pressure drop across these pathological

regions to the local flow characteristics.

To obtain appropriate estimates for the frictional forces and the non-linear term in the momen-

tum balance of the one-dimensional wave propagation model, in chapter 2 a velocity profile

function is introduced that is a function of the flow, the pressure gradient and the Womers-

ley parameter α. It is based on the division of the flow in a vessel into an inviscid core flow

and a friction-dominated boundary layer flow that can behave out-of-phase. The thickness of

this boundary layer is dependent on the Womersley number corresponding to the fundamental

harmonic of the local flow. For single-harmonic as well as multi-harmonic physiological flow

signals this velocity profile function yields estimates for the wall shear stress and convection

forces that are in good agreement with the analytical solution for fully developed flow in a

rigid vessel by Womersley (1957). In the present chapter, by means of the profile simulations,

the influence of this newly developed velocity profile function on the pressure and flow wave

propagation through the arterial system is demonstrated with respect to the commonly as-

sumed Poiseuille profiles and flat inviscid profiles. The model based on flat frictionless velocity

profiles yields significantly different wave characteristics than the models that use our approx-

imate velocity profiles or Poiseuille profiles. The differences between the latter two are only

minor throughout the arterial system. The corresponding wall shear stresses do differ signifi-

cantly, especially in the larger inertia-dominated vessels. The time averaged mean wall shear

stress obtained from the approximate velocity profiles is constant over the total arterial system

whereas for the Poiseuille based profiles it increases towards the peripheral beds. Since the

approximate velocity profile function provides the most physiologically realistic contributions

of the frictional and convection forces in the one-dimensional momentum balance, as discussed

in chapter 2, the results using this approach are most likely to describe the physiological situa-

tion.

In chapter 3 a constitutive law, that is based on the viscoelastic behaviour of the standard lin-

ear solid model, is introduced into the one-dimensional wave propagation model to relate the

local instantaneous cross-sectional area to the local instantaneous pressure. A comparison to

the pressure and flow obtained from an experimental setup shows that using our model the

pressure and flow wave propagation, reflections and attenuation through straight and slightly

tapered vessels can be accurately predicted. With respect to the total arterial tree, in the cur-

rent chapter the computational results using a linear elastic constitutive law are compared to

the results obtained from the computations with the constitutive law based on the standard
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linear solid model (constitutive simulations). The viscoelastic properties of the vessel walls of

the more muscular-type vessels are shown to significantly contribute to the pressure and flow

wave attenuation and should be taken into account when modelling the propagation of pres-

sure and flow waves travelling through the arterial system.

To incorporate also the effect of pathological regions in the one-dimensional wave propagation

model of the arterial system, in chapters 4 and 5 the pressure drop over stenoses and aneurysms

respectively as a function of the local flow characteristics has been investigated. For stenoses

this resulted in a relation between the pressure drop and the flow that is dependent on the

Womersley number and the shape of the restriction. The commonly used stenosis model from

Young (1979), which is based on experimental work, uses a relation between the pressure drop

and the flow that is dependent only on the length of the stenosis and on the maximum severity

and not on the actual shape of the stenosis and on the Womersley number. By assuming that

the pressure drop over the stenosis occurs linearly over the length of the pathological region,

a one-dimensional momentum balance is obtained that can be used to model one-dimensional

propagation of pressure and flow waves through this region. The effect of a stenosis in the

femoral artery on the perfusion of the peripheral beds is demonstrated by showing results of

the stenosed computations with stenoses of 70, 80 and 90% restriction of the lumen’s cross-

sectional area. It illustrates that a stenosis of 80% or less in the femoral artery does not lead

to a significant decrease in perfusion of the peripheral beds distal to the stenosis, as was also

found by Stergiopulos et al. (1992) for patients in a resting condition. Even for more severe

stenoses the distal bed is able to adjust to the decreased oxygen delivery by lowering, to a cer-

tain extent, the peripheral resistance by vasodilation. For physiologically relevant aneurysms,

a relation between the pressure drop and the flow is found to depend only on the Womersley

number. The shape of the aneurysm is important only for less severe aneurysms that can also

be modelled using standard one-dimensional wave propagation theory. Again, the pressure

drop over the pathological region is assumed to occur linearly over the length of the aneurysm,

to obtain a one-dimensional momentum balance that can be used in the modelling of one-

dimensional wave propagation through this region. The aneurysm computations including an

aneurysm in the abdominal aorta indicate that the pressure drop over such an aneurysm is neg-

ligible with respect to the magnitude of the local pressure pulse. The sudden change in local

compliance caused by the vessel dilation, however, causes wave reflections that influence the

wave characteristics throughout the arterial system. Note, that in the physiological situation,

the changing morphology of the aneurysm wall leads to an increase in the effective Young’s

modulus (Long et al. (2005)), thereby decreasing the local compliance of the aneurysm. This

same effect is obtained by the formation of thrombus in the aneurysm sac, resulting in a de-

crease in the lumen’s effective cross-sectional area.

The computations based on the patient-specific arterial system (patient) indicate that the one-

dimensional wave propagation model can be used as an aid in the diagnosis and treatment of

arterial diseases. Using this model, the effect of an arterial abnormality on the hemodynamics

of the total arterial system can be assessed. Moreover, because of its predictive nature, the

one-dimensional wave propagation model can be used to pre-operatively determine the effect

of balloon angioplasty or other methods of intervention, to be used in surgical planning.

6.4.1 Model restrictions

In the current chapter, the individual arterial segments are interconnected using a bifurcation

model. In the derivation of this model pressure continuity over the bifurcation is assumed,

thereby stating that the pressure loss due to the viscous effects in the bifurcation are coun-
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terbalanced by the pressure gained by the expansion of the total cross-sectional area over the

bifurcation according to Bernoulli’s law. Also, in the derivation of the 1D wave equations, the

axes of the arterial segments are assumed to be straight. This means that the balancing forces

for fluid flow through bends such as the aortic arch are assumed to be the same as for fluid flow

through a straight vessel. These assumptions for both bifurcations and bends may be plausible

in some situations but to be certain, proper estimates of the balancing forces acting in these

regions must be obtained by parametric analysis using fully three-dimensional fluid structure

interaction computations or laboratory experiments.

In the derivation of the velocity profile function from chapter 2, blood is assumed to behave

purely Newtonian whereas it is known that the blood viscosity is shear and history dependent

as a result of the deformation and aggregation of erythrocytes that are suspended in the plasma

(Chien and Jan (1973)). This shear thinning behaviour of blood causes the velocity profiles

and so the wall shear stress in blood vessels to differ from purely Newtonian fluid flow through

such vessels. To incorporate such behaviour into the model, a shear thinning model should be

adopted in the derivation of the velocity profile function.

Furthermore, the constitutive law for both the elastic and the viscoelastic model is based on

thin walled tube theory. The assumption of a thin vessel wall with respect to the lumen radius

cannot be used without caution because in many cases this ratio is of O(0.1). By adopting a

piecewise linear effective Young’s modulus depending on the current pressure, however, a first

order appropriate model can still be derived using thin walled cylinder theory.

The computations including a stenosis in the femoral artery demonstrate the local pressure

drop over this pathological region as a function of the flow characteristics. The effect of this

pressure drop on the wave phenomena and on the blood division throughout the arterial tree,

however, do not represent the physiological situation where the distal peripheral bed is known

to adapt its resistance to a decrease in oxygen delivery. Such a response could be included in

the computational model by relating the Windkessel parameter Rp to the mean local flow.

To investigate whether the model assumptions made in the previous and current chapters are

valid in the physiological situation, a comparison between the pressure and flow characteris-

tics obtained from the one-dimensional wave propagation model and an in-vitro model of the

arterial tree is needed. In comparison to the human arterial system, from an in-vitro setup, all

model parameters can be obtained and any possible difference between the model results and

the experimental results can be ascribed to imperfections of the computational model. When

modelling the propagation of pressure and flow waves through the patient-specific arterial sys-

tem, based on the segmentation of MR images, minor errors in the estimation of the lumen

radius can significantly influence the pulse wave velocity and attenuation. Moreover, the thick-

ness of the local vessel wall and its mechanical properties are difficult to obtain throughout the

arterial system. Therefore, here the parameters defining the constitutive relation and the ratio

between the lumen radius and vessel wall thickness were based on the literature. Possible ways

to estimate the arterial wall properties are by locally measuring the pulse wave velocity using

an ultrasound probe and by simultaneously measuring the local arterial wall distension and

the local centre-line blood velocity (Brands et al. (1996)). Using this approach, the local com-

pliance of the vessel can be determined without a need for the wall thickness and the Young

modulus. Also, the morphological components of the vessel wall can be obtained from MR

images and by providing the mechanical properties for each individual material, the effective

Young modulus can be derived (Dam (2007)).
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6.4.2 Perspectives

Using the current one-dimensional wave propagation model, the pressure and the shear stress

exerted by the blood on the vessel wall can be estimated throughout the arterial system. Since

both these parameters are crucial stimuli in the remodelling process of the arterial wall, using

this wave propagation model and an appropriate adaptation law, the adaptation of the vessel

wall to changing physiological conditions can be predicted. This added value of the present

wave propagation model can be used e.g. to predict the outcome of the surgical placement of

an arteriovenous shunt in the lower arm of a hemodialysis patient to increase the blood flow

through this extremity. The purpose of such a direct connection between the lumen of the

radial artery to the lumen of a larger vein in the lower arm, is to bypass the highly resistive

peripheral bed and thereby increasing the blood flow through these vessels and so through the

hemodialysis apparatus attached to them. This increased blood flow induces an increase of

the wall shear stress in both the arteries and the veins in the arm that will start an adaptation

process of the vessel wall to increase the lumen diameter. Also, the pressure in the connecting

veins has increased enormously, resulting in the thickening of the venous wall. To what extent

these maturation processes take place is dependent on the position of the shunt placement

and on the architecture of the arterial and venous system in the lower arm. The current one-

dimensional wave propagation model, in combination with a suitable adaptation law can be

used to predict this maturation process to pre-operatively decide on the optimal location and

size of the arteriovenous shunt.

In the computations performed in this chapter, the proximal end of the arterial tree was closed

using a periodic flow q(t) boundary condition. A more physiological and interactive approach

would be to couple the one-dimensional wave propagation model to a model of the heart

(Bovendeerd et al. (2006)) that will generate a pressure and flow pulse, dependent on the

total peripheral resistance, inertance and compliance.

6.5 Conclusion

A wave propagation model of the patient-specific arterial system has been developed, that

is able to provide the pressure, flow and wall shear stress throughout the arterial system.

The effects of different friction models on these parameters has been demonstrated and the

influence of viscoelastic properties for the arterial wall model has been shown. Also, the effect

of a femoral stenosis and an abdominal aortic aneurysm has been investigated.
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S. Sherwin, L. Formaggia, J. Peiró, and V. Franke. Computational modelling of 1d blood flow

with variable mechanical properties and its application to the simulation of wave propaga-

tion in the human arterial system. Int. J. Num. Meth. Fluids, 43:673–700, 2003.

M. Siouffi, R. Pelissier, D. Farahifar, and R. Rieu. The effect of unsteadiness on the flow through

stenoses and bifurcation. J. Biomech., 17:299–315, 1984.

M. Siouffi, V. Deplano, and R. Pelissier. Experimental analysis of unsteady flows through a

stenosis. J. Biomech., 31:11–19, 1998.

B. Steele, J. Wan, J. Ku, T. Hughes, and C. Taylor. In vivo validation of a one-dimensional

finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans.

BioMed. Eng, 50:649–656, 2003.

N. Stergiopulos, D. Young, and T. Rogge. Computer simulation of arterial flow with application

to arterial and aortic stenoses. J. Biomech., 25:1477–1488, 1992.

N. Stergiopulos, M. Spiridon, F. Pythoud, and J.-J. Meister. On the wave transmission and

reflection properties of stenoses. J. Biomech., 29:31–38, 1996.



110 References

N. Stergiopulos, B. Westerhof, and N. Westerhof. Total arterial inertance as the fourth element

of the windkessel model. Am. J. Physiol., 276:H81–H88, 1999.

C. Taylor, T. Hughes, and C. Zarins. Finite element modeling of blood flow in arteries. Comput.

Meth. Appl. Mech. Eng., 158:155–196, 1998.

G. Tortora and N. Anagnostakos. Principles of anatomy and physiology. Harper and Row Pub-

lishers, Nw York, 1990.

F. Tsou, P. Chou, S. Frankel, and A. Hahn. An integral method for the analysis of blood flow.

Bull. of Math. Biophys., 33:117–128, 1971.

C. Tu and M. Deville. Pulsatile flow of non-newtonian fluids through arterial stenoses. J.

Biomech., 29:899–908, 1996.

C. Tu, M. Deville, L. Dheur, and L. Vanderschuren. Finite element simulation of pulsatile flow

through arterial stenosis. J. Biomech., 25:1141–1152, 1992.

F. van de Vosse, J. Hart, C. van Oijen, D. Bessems, T. Gunther, A. Segal, B. Wolters, J. Stij-

nen, and F. Baaijens. Finite-element-based computational methods for cardiovascular fluid-

structure interaction. J. of Eng. Math., 47:335–368, 2003.

J. Wan, B. Steele, S. Spicer, S. Strohband, C. Feijoo, T. Hughes, and C. Taylor. A one-dimensional

finite element method for simulation-based medical planning for cardiovascular disease.

Comput. Meth. Biomech. Biomed. Eng., 5:195–206, 2002.

J. Wang and H. Parker. Wave propagation in a model of the arterial circulation. J. Biomech.,

37:457–470, 2004.

N. Westerhof, F. Bosman, C. de Vries, and A. Noordergraaf. Analog studies of the human

systemic arterial tree. J. Biomech., 2:121–143, 1969.

S. Wille. Pulsatile pressure and flow in an arterial aneurysm simulated in a mathematical

model. J. Biomed. Engng, 3:153–158, 1981.
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Appendix A

Derivation of non-linear part

The derivation of γ(p, q) = Av2
z is illustrated by determining the square of the velocity profile

vz(p, q) and integrating the result over cross sectional area A. The velocity profile as presented

in (2.18) is taken as the point of departure:

vz =
− ln ζ̂
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or

vz = φ1 vz + φ2 vp (A.2)

with φ1 and φ2 defined as

φ1 =
− ln ζ̂
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and φ2 = 1 − ζ̂ + 1

2
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From this, v2
z is given by
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Taking the mean of this term and multiplying by A results in
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or, choosing a more appropriate notation and using vz ≡ q/A,
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Introducing functions δ1, δ2 and δ3 according to

δ1(ζc) =
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yields the expression for γ(p, q):
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Spatial discretisation

Strong form

Consider spatial domain Ω = [Γin, Γout] ⊂ IR and a time period T = [0, Te]. Assume that

N (u, z, t), D(u, z, t), H(u, z, t) and f (u, z, t) are matrices of known functions from Ω → IR.

The strong form of the one-dimensional wave propagation problem is then given by:

find u(z, t) = [u1(z, t), u2(z, t)] : Ω × T → IR × IR that is a solution of:

∂u

∂t
+ N

∂u

∂z
− D

∂2u

∂z2
+ Hu = f in Ω

u2(z, t) = u2in(t) for z = Γin,

u1(z, t) = u1out(t) for z = Γout,

u(z, 0) = u0(z) for t = 0,

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

(B.1)

with u1 = p the pressure and u2 = q the flow. Functions u2in and u1out define the boundary

conditions and u0(z) = (u0
1(z), u0

2(z)) is a given function that defines the initial condition.

Weak form

To derive a weak form of the problem (B.1) we define the space of trial functions that satisfy

the Dirichlet boundary conditions at Γin and Γout:

U = {u|u ∈ H1(Ω) × H1(Ω), u1|Γout = u1out, u2|Γin
= u2in}. (B.2)

Moreover, we define a set of test functions that satisfy the homogeneous Dirichlet conditions:

W = {w|w ∈ H1(Ω) × H1(Ω), w1|Γout = 0, w2|Γin
= 0}. (B.3)

Here H1(Ω) is the Hilbert space defined by:

H1(Ω) = {v ∈ L2(Ω)|
Z

Ω

„

∂v

∂z

«2

dΩ < ∞} (B.4)
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with L2(Ω) the space of square integrable functions:

L2(Ω) = {v|
Z

Ω

v2
dΩ < ∞} (B.5)

endowed with the inner product:

(u, w)L2 =

Z

Ω

uwdΩ (B.6)

The corresponding weak form of (B.1) is:

find u(z, t) ∈ U such that ∀w ∈ W :

Z

Ω

wl
∂ul

∂t
dΩ +

2
X

k=1

Z

Ω

wlNlk
∂uk

∂z
dΩ +

Z

Ω

∂wl

∂z
· Dlk

∂uk

∂z
dΩ +

+

Z

Ω

wlHlkuk dΩ =

Z

Ω

wlfl dΩ for l = 1, 2

(B.7)

with Nlk, Dlk, Hlk and fl the matrix components of matrices N , D, H and f , as defined

in (2.43) and (2.44), respectively. Note that the boundary integral resulting from the partial

integration of diffusion term D

Z

Γ

wD
∂u

∂z
dΓ = −w2D22

∂u2

∂z
|Γout (B.8)

has been omitted. Since this term D-term is small and is only kept for numerical stability, this

will not induce strong constraints on u1 and u2.

Discrete form

With the aid of the basis functions φi(z) we define the subspaces Uh ⊂ U and W h ⊂ W

according to

U
h = {uh|uh(z, t) =

N
X

i=1

ui(t)φi(z), uh
1 |Γout = u1out , uh

2 |Γin
= u2in

}, (B.9)

W
h = {wh|wh(z) =

N
X

i=1

wiφi(z), wh
1 |Γout = 0, wh

2 |Γin
= 0}, (B.10)

so after introduction of

v
˜

T = [v1, . . . , vN ] for v = u1, u2, w, f, φ (B.11)

and using translations

N
X

i=1

ui(t)φi(z) = u
˜

T · φ
˜

and

N
X

i=1

wi(t)φi(z) = w
˜

T · φ
˜
, (B.12)
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the Galerkin weak form of (B.1) is:

find uh(z, t) ∈ Uh such that ∀wh ∈ W h:

Z

Ω

wl
˜

T φ
˜
· u̇

˜

T
l φ

˜
dΩ +

2
X

k=1

Z

Ω

wl
˜

T φ
˜
· Nlku

˜

T
k

∂φ
˜∂z

dΩ +

Z

Ω

wl
˜

T
∂φ

˜∂z
· Dlku

˜

T
k

∂φ
˜∂z

dΩ +

+

Z

Ω

wl

˜

T φ
˜
· Hlku

˜

T
k φ

˜
dΩ =

Z

Ω

f
˜

T

l
φ
˜
· wl

˜

T φ
˜

dΩ for l = 1, 2
(B.13)

or, when considering that these equations must hold for all admissible w
˜
∈ W h:

Find uh(z, t) ∈ Uh such that ∀wh ∈ W h:

Z

Ω

φ
˜
φ
˜

T dΩ u̇
˜

l +
2

X

k=1

Z

Ω

φ
˜
Nlk

∂φ
˜

T

∂z
dΩ u

˜
k +

Z

Ω

∂φ
˜∂z

Dlk

∂φT

˜∂z
dΩ u

˜
k+

+

Z

Ω

φ
˜
Hlkφ

˜

T
dΩ u

˜
k =

Z

Ω

φ
˜
φT

˜
dΩ f

˜
l

for l = 1, 2.

(B.14)

With the introduction of the matrices:

M– =

Z

Ω

φ
˜
φ
˜

T
dΩ , N– lk =

Z

Ω

φ
˜
Nlk

∂φ
˜

T

∂z
dΩ,

D– lk =

Z

Ω

∂φ
˜∂z

Dlk

∂φT

˜∂z
dΩ , H– lk =

Z

Ω

φ
˜
HlkφT

˜
dΩ,

(B.15)

this yields

M– u̇
˜

l +

2
X

k=1

N– lku
˜

k + D– lku
˜

k + H– lku
˜

k = M– f
˜

l
for l = 1, 2 (B.16)

Spectral element approximation

First the basis functions φ are restricted to functions that satisfy:

φi(zj) = δij , i = 1, . . . , N , (B.17)

with δij the Kronecker delta function and zj a set of collocation points such that Γin ≤ zj ≤
Γout for j = 1, . . . , N . Consequently the values of the parameters ui are equal to the approxi-

mate solution at the collocation point:

u
h
l (zj) =

N
X

i=1

ul,iφi(zj) = ul,j , j = 1, . . . , N . (B.18)

Secondly the domain Ω is decomposed into a finite number Ne of sub-domains (elements) Ωe.

The integrations that appear in (B.15) then can be carried out element by element according

to:

Z

Ω

fdΩ =

Ne
X

e=1

Z

Ωe

fedΩ (B.19)
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where fe is the restriction of f on Ωe. If we choose the element boundaries to coincide with

a subset of the collocation points, to satisfy (B.17), we can define the basis functions by the

Lagrange interpolation polynomials through the n + 1 collocation points in each element:

φi(z) =

n
Q

k=0,k 6=i

(z − zk)

n
Q

k=0,k 6=i

(zi − zk)
i = 0, . . . , n (B.20)

Finally we use a Legendre-Gauss-Lobatto integration and choose the Lagrange interpolation

points to be equal to the Legendre-Gauss-Lobatto points:

Z

Ωe

f(z)dz =

1
Z

−1

f(ξ)
dz

dξ
dξ ≈

n
X

k=0

f(ξgl
k )J(ξgl

k )wgl
k (B.21)

with ξgl
k the Legendre-Gauss-Lobatto integration points defined as the zeros of the first deriva-

tive of the n-th order Legendre polynomial Ln(ξ) extended with the element boundary ξ0 =
−1, ξn = 1, J(ξgl

k ) the Jacobian dz/dξ, and wgl
k the Legendre-Gauss-Lobatto weight functions

defined by Canuto et al. (1988):

wgl
k =

2

n(n + 1)

1

L2
n(ξk)

k = 0, . . . , n (B.22)
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Linearisation of equations

Before linearising the general set of equations a few assumptions are introduced. First, the

arterial wall thickness is assumed constant in time, hence ∂h/∂t = 0. The velocity profile

functions δ1, cp and cq as well as the compliance C and resistance R are computed using the

initial radius a0. Newton-Raphson linearisation of the non-linear parts of equation (3.17) is

accomplished by approximations

f(A, q, p) ≈ f(Ai, qi, pi) +
∂

∂A

„

f(Ai, qi, pi)

«

`

A − Ai

´

+

∂

∂q

„

f(Ai, qi, pi)

«

`

q − qi

´

+
∂

∂p

„

f(Ai, qi, pi)

«

`

p − pi

´

(C.1)

where f is the nonlinear term and subscript i indicates the solution of the previous iteration. By

repeatedly solving the system of equations, the iterative solution should approach a converged

state. First, the individual parts of the convective term are linearised:

2δ1
q

A

∂q

∂z
≈

»

2δ1
1

Ai

∂qi

∂z

–

q +

»

2δ1
qi

Ai

–

∂q

∂z
+

»

− 2δ1
qi

A2
i

∂qi

∂z

–

A

−δ1

„

q

A

«2
∂A

∂z
≈

»

− 2δ1
qi

A2
i

∂Ai

∂z

–

q +

»

2δ1
q2

i

A3
i

∂Ai

∂z

–

A +

»

− δ1
q2

i

A2
i

–

∂A

∂z

q2

A

∂δ1

∂z
≈

»

2
qi

Ai

∂δ1

∂z

–

q +

»

− q2
i

A2
i

∂δ1

∂z

–

A

(C.2)

where the terms between straight brackets indicate the contribution of each part to the eventual

linear system of equations (3.17). Next, the contribution of the pressure gradient is linearised.

A

ρ

`

2 − cp

´∂p

∂z
≈

»

1

ρ

`

2 − cp

´∂pi

∂z

–

A +

»

Ai

ρ

`

2 − cp

´

–

∂p

∂z
+

»

− Ai

ρ

`

2 − cp

´∂pi

∂z

–

(C.3)
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The last term in the momentum balance to be linearised is the friction term.

A

ρ
cqRq ≈

»

qi

ρ
cqR

–

A +

»

Ai

ρ
cqR

–

q +

»

− Ai

ρ
cqRqi

–

(C.4)

Conclusively, the non-linear terms of the constitutive law are linearised.

a

h
p =

q

A
π

h
p ≈

»

q

Ai

π

h

–

p +

»

pi

2h
√

Aiπ

–

A −
»

q

Ai

π

2h
pi

–

(C.5)

a

h

∂p

∂t
=

q

A
π

h

∂p

∂t
≈

»

q

Ai

π

h

–

∂p

∂t
+

»

1

2h
√

Aiπ

∂pi

∂t

–

A −
»

q

Ai

π

2h

∂pi

∂t

–

(C.6)

p

h

∂a

∂t
=

p

h

∂

∂t

“

r

A

π

”

≈
»

1

h

∂

∂t

“

r

Ai

π

”

–

p+

»

pi

2h

∂

∂t

“ 1√
Aiπ

”

–

A−
»

piAi

2h

∂

∂t

“ 1√
Aiπ

”

–

. (C.7)



Samenvatting

Om bij cardiovasculaire chirurgie preoperatief de verschillende interventie mogelijkheden te

kunnen evalueren zijn patiëntspecifieke fysiologische data zoals de bloeddruk, het bloeddebiet

en de wandschuifspanning nodig. Deze data kunnen worden verkregen met behulp van nu-

merieke modellen van het arteriële systeem. Aangezien volledig driedimensionale numerieke

modellen slechts een klein segment van de arteriële boom kunnen modelleren, zijn ééndimen-

sionale golfvoortplantingsmodellen van het gehele arteriële systeem meer geschikt om klinisch

relevante informatie te verkrijgen. Huidige ééndimensionale golfvoortplantingsmodellen van

het arteriële stelsel maken gebruik van aannames met betrekking tot de wrijvingsterm en de

niet-lineaire term in de momenten balans, die de fysiologische situatie incorrect representeren.

De constitutieve wet, die de bloeddruk koppelt aan het oppervlak van de dwarsdoorsnede van

het lumen, is veelal gebaseerd op lineair elastisch materiaalgedrag. Uit de literatuur is echter

bekend dat de arteriële wand viscoelastische eigenschappen bezit die het golfgedrag kunnen

bëınvloeden. Ook zijn bestaande ééndimensionale golfvoortplantingsmodellen enkel bruikbaar

in arteriële segmenten waarin de radiale snelheid van het bloed verwaarloosbaar klein is ten

opzichte van de axiale component. In pathologische gebieden, zoals bij stenosen en aneurys-

mata, is dit door de sterke axiale gradiënt in het lumen oppervlak vaak niet het geval.

In dit onderzoek is een ééndimensionaal golfvoortplantingsmodel ontwikkeld, dat gebruik

maakt van een snelheidsprofielfunctie die fysiologische benaderingen geeft voor de wrijvings-

term en de niet-lineaire term. De hieruit resulterende waarden voor de wandschuifspanning en

convectieve term komen sterk overeen met hun analytisch verkregen waarden voor pulserende

stroming door een rechte starre buis. Wat betreft het wandgedrag van de vaten, is er een con-

stitutieve relatie gëıntroduceerd die gebaseerd is op het mechanische gedrag van het Kelvin

model. Het resulterende ééndimensionale golfvoortplantingsmodel is gevalideerd door de ge-

simuleerde druk en het debiet te vergelijken met data verkregen uit een experimentele op-

stelling waarmee vloeistofstroming door rechte en taps toelopende polyurethane vaten gemo-

delleerd kan worden. Om het verkregen ééndimensionale golfvoortplantingsmodel toe te kun-

nen passen op patiëntspecifieke arteriële netwerken is een bifurcatie model gëımplementeerd

om de druk en het debiet in de moederarterie te koppelen aan de druk en het debiet in de

dochterarterieën. Daarnaast zijn er afsluitimpedanties gëıntroduceerd die gebaseerd zijn op

een drie-elementen Windketel model om hiermee geschikte randvoorwaarden te creëren voor

de uiteinden van de arteriële boom. Aangezien er in patiëntspecifieke modellen van het ar-

teriële stelsel stenosen en aneurysmata voor kunnen komen zijn voor deze vaatsegmenten spe-

ciale ééndimensionale golfvoortplantingsmodellen ontwikkeld. Deze modellen zijn gebaseerd

op een numerieke studie van bloedstroming door tweedimensionale axisymmetrische starre ge-

ometrieën van stenosen en aneurysmata en zijn afhankelijk van de geometrische eigenschappen

van de pathologische gebieden en van de karakteristieke eigenschappen van de bloedstroming

door deze gebieden. Het uiteindelijk verkregen model is toegepast op een gëıdealiseerde ar-
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teriële boom bekend uit de literatuur om hiermee de invloed van de verschillende model-

aannames op de bloeddruk, het debiet en de wandschuifspanning te kunnen onderzoeken. De

bloeddruk en het debiet, berekend met het ééndimensionale golfvoortplantingsmodel dat ge-

bruik maakt van de snelheidsprofielfunctie verschilt weinig van de bloeddruk en het debiet

verkregen met simulaties gebaseerd op Poiseuille profielen. De verkregen wandschuifspanning

verschilt wel significant tussen de beide modellen. Er is aangetoond dat de gëıntroduceerde

viscoelastische eigenschappen van de vaatwand significant bijdragen aan de uitdemping van

de druk- en debietgolven. Ook wordt de invloed van een stenose in de arteria femoralis en van

een aneurysma in de abdominale aorta getoond.

Concluderend: het ontwikkelde ééndimensionale golfvoortplantingsmodel kan gebruikt wor-

den om patiëntspecifieke arteriële systemen te modeleren en daarmee fysiologische data te

verkrijgen die relevant kunnen zijn bij de evaluatie van verschillende interventie mogelijkhe-

den in de cardiovasculaire chirurgie.
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