276 research outputs found

    Quasi-automatic colon segmentation on T2-MRI images with low user effort

    Get PDF
    About 50% of the patients consulting a gastroenterology clinic report symptoms without detectable cause. Clinical researchers are interested in analyzing the volumetric evolution of colon segments under the effect of different diets and diseases. These studies require noninvasive abdominal MRI scans without using any contrast agent. In this work, we propose a colon segmentation framework designed to support T2-weighted abdominal MRI scans obtained from an unprepared colon. The segmentation process is based on an efficient and accurate quasiautomatic approach that drastically reduces the specialist interaction and effort with respect other state-of-the-art solutions, while decreasing the overall segmentation cost. The algorithm relies on a novel probabilistic tubularity filter, the detection of the colon medial line, probabilistic information extracted from a training set and a final unsupervised clustering. Experimental results presented show the benefits of our approach for clinical use.Peer ReviewedPostprint (author's final draft

    A New Image Quantitative Method for Diagnosis and Therapeutic Response

    Get PDF
    abstract: Accurate quantitative information of tumor/lesion volume plays a critical role in diagnosis and treatment assessment. The current clinical practice emphasizes on efficiency, but sacrifices accuracy (bias and precision). In the other hand, many computational algorithms focus on improving the accuracy, but are often time consuming and cumbersome to use. Not to mention that most of them lack validation studies on real clinical data. All of these hinder the translation of these advanced methods from benchside to bedside. In this dissertation, I present a user interactive image application to rapidly extract accurate quantitative information of abnormalities (tumor/lesion) from multi-spectral medical images, such as measuring brain tumor volume from MRI. This is enabled by a GPU level set method, an intelligent algorithm to learn image features from user inputs, and a simple and intuitive graphical user interface with 2D/3D visualization. In addition, a comprehensive workflow is presented to validate image quantitative methods for clinical studies. This application has been evaluated and validated in multiple cases, including quantifying healthy brain white matter volume from MRI and brain lesion volume from CT or MRI. The evaluation studies show that this application has been able to achieve comparable results to the state-of-the-art computer algorithms. More importantly, the retrospective validation study on measuring intracerebral hemorrhage volume from CT scans demonstrates that not only the measurement attributes are superior to the current practice method in terms of bias and precision but also it is achieved without a significant delay in acquisition time. In other words, it could be useful to the clinical trials and clinical practice, especially when intervention and prognostication rely upon accurate baseline lesion volume or upon detecting change in serial lesion volumetric measurements. Obviously, this application is useful to biomedical research areas which desire an accurate quantitative information of anatomies from medical images. In addition, the morphological information is retained also. This is useful to researches which require an accurate delineation of anatomic structures, such as surgery simulation and planning.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Volumetric MRI Reconstruction from 2D Slices in the Presence of Motion

    Get PDF
    Despite recent advances in acquisition techniques and reconstruction algorithms, magnetic resonance imaging (MRI) remains challenging in the presence of motion. To mitigate this, ultra-fast two-dimensional (2D) MRI sequences are often used in clinical practice to acquire thick, low-resolution (LR) 2D slices to reduce in-plane motion. The resulting stacks of thick 2D slices typically provide high-quality visualizations when viewed in the in-plane direction. However, the low spatial resolution in the through-plane direction in combination with motion commonly occurring between individual slice acquisitions gives rise to stacks with overall limited geometric integrity. In further consequence, an accurate and reliable diagnosis may be compromised when using such motion-corrupted, thick-slice MRI data. This thesis presents methods to volumetrically reconstruct geometrically consistent, high-resolution (HR) three-dimensional (3D) images from motion-corrupted, possibly sparse, low-resolution 2D MR slices. It focuses on volumetric reconstructions techniques using inverse problem formulations applicable to a broad field of clinical applications in which associated motion patterns are inherently different, but the use of thick-slice MR data is current clinical practice. In particular, volumetric reconstruction frameworks are developed based on slice-to-volume registration with inter-slice transformation regularization and robust, complete-outlier rejection for the reconstruction step that can either avoid or efficiently deal with potential slice-misregistrations. Additionally, this thesis describes efficient Forward-Backward Splitting schemes for image registration for any combination of differentiable (not necessarily convex) similarity measure and convex (not necessarily smooth) regularization with a tractable proximal operator. Experiments are performed on fetal and upper abdominal MRI, and on historical, printed brain MR films associated with a uniquely long-term study dating back to the 1980s. The results demonstrate the broad applicability of the presented frameworks to achieve robust reconstructions with the potential to improve disease diagnosis and patient management in clinical practice

    Automated segmentation of colorectal tumor in 3D MRI Using 3D multiscale densely connected convolutional neural network

    Get PDF
    The main goal of this work is to automatically segment colorectal tumors in 3D T2-weighted (T2w) MRI with reasonable accuracy. For such a purpose, a novel deep learning-based algorithm suited for volumetric colorectal tumor segmentation is proposed. The proposed CNN architecture, based on densely connected neural network, contains multiscale dense interconnectivity between layers of fine and coarse scales, thus leveraging multiscale contextual information in the network to get better flow of information throughout the network. Additionally, the 3D level-set algorithm was incorporated as a postprocessing task to refine contours of the network predicted segmentation. The method was assessed on T2-weighted 3D MRI of 43 patients diagnosed with locally advanced colorectal tumor (cT3/T4). Cross validation was performed in 100 rounds by partitioning the dataset into 30 volumes for training and 13 for testing. Three performance metrics were computed to assess the similarity between predicted segmentation and the ground truth (i.e., manual segmentation by an expert radiologist/oncologist), including Dice similarity coefficient (DSC), recall rate (RR), and average surface distance (ASD). The above performance metrics were computed in terms of mean and standard deviation (mean ± standard deviation). The DSC, RR, and ASD were 0.8406 ± 0.0191, 0.8513 ± 0.0201, and 2.6407 ± 2.7975 before postprocessing, and these performance metrics became 0.8585 ± 0.0184, 0.8719 ± 0.0195, and 2.5401 ± 2.402 after postprocessing, respectively. We compared our proposed method to other existing volumetric medical image segmentation baseline methods (particularly 3D U-net and DenseVoxNet) in our segmentation tasks. The experimental results reveal that the proposed method has achieved better performance in colorectal tumor segmentation in volumetric MRI than the other baseline techniques

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume
    corecore