6 research outputs found

    Picture-based task definition and parameterization support system

    Get PDF
    Applications for task definition and automation are valuable tools to automated software engineering area. This paper describes a solution to support a parameterized task definition using screen capture images. The approach allows the capture of a sequence of actions defined by the user. Through the captured sequence of actions, the approach assists in the implementation of task automation processes. Based on picture-driven computing the proposed tool aims to reduce the challenges that users face while trying to define tasks. This approach provides also a foundation for the creation of picture-driven based tests for interactive systems, enabling to test any interactive system but also allowing for the definition, parameterization and execution of tests that might involve the use of several independent interactive systems.info:eu-repo/semantics/acceptedVersio

    Automated GUI performance testing

    Get PDF
    A significant body of prior work has devised approaches for automating the functional testing of interactive applications. However, little work exists for automatically testing their performance. Performance testing imposes additional requirements upon GUI test automation tools: the tools have to be able to replay complex interactive sessions, and they have to avoid perturbing the application's performance. We study the feasibility of using five Java GUI capture and replay tools for GUI performance test automation. Besides confirming the severity of the previously known GUI element identification problem, we also describe a related problem, the temporal synchronization problem, which is of increasing importance for GUI applications that use timer-driven activity. We find that most of the tools we study have severe limitations when used for recording and replaying realistic sessions of real-world Java applications and that all of them suffer from the temporal synchronization problem. However, we find that the most reliable tool, Pounder, causes only limited perturbation and thus can be used to automate performance testing. Based on an investigation of Pounder's approach, we further improve its robustness and reduce its perturbation. Finally, we demonstrate in a set of case studies that the conclusions about perceptible performance drawn from manual tests still hold when using automated tests driven by Pounder. Besides the significance of our findings to GUI performance testing, the results are also relevant to capture and replay-based functional GUI test automation approache

    Analysing Reverse Engineering Techniques for Interactive Systems

    Get PDF
    Reverse engineering is the process of discovering a model of a software system by analyzing its structure and functions. Reverse engineering techniques applied to interactive software applications (e.g. applications with user interfaces (UIs)) are very important and significant, as they can help engineers to detect defects in the software and then improve or complete them. There are several approaches, and many different tools, which are able to reverse-engineer software applications into formal models. These can be classified into two main types: dynamic tools and static tools. Dynamic tools interact with the application to find out the run-time behaviours of the software, simulating the actions of a user to explore the system’s state space, whereas static tools focus on static structure and architecture by analysing the code and documents. Reverse engineering techniques are not common for interactive software systems, but nowadays more and more organizations recognize the importance of interactive systems, as the trend in software used in computers is for applications with graphical user interfaces. This has in turn led to a developing interest in reverse engineering tools for such systems. Many reverse engineering tools generate very big models which make analysis slow and resource intensive. The reason for this is the large amount of information that is generated by the existing reverse engineering techniques. Slicing is one possible technique which helps with reducing un-necessary information for building models of software systems. This project focuses on static analysis and slicing, and considers how they can aid reverse engineering techniques for interactive systems, particularly with respect to the generation of a particular set of models, Presentation Models (PModels) and Presentation Interaction Models (PIMs)

    Structural usability techniques for dependable HCI.

    Get PDF
    Since their invention in the middle of the twentieth century, interactive computerised systems have become more and more common to the point of ubiquity. While formal techniques have developed as tools for understanding and proving things about the behaviour of computerised systems, those that involve interaction with human users present some particular challenges which are less well addressed by traditional formal methods. There is an under-explored space where interaction and the high assurances provided by formal approaches meet. This thesis presents two techniques which fit into this space, and which can be used to automatically build and analyse formal models of the interaction behaviour of existing systems. Model discovery is a technique for building a state space-based formal model of the interaction behaviour of a running system. The approach systematically and exhaustively simulates the actions of a user of the system; this is a dynamic analysis technique which requires tight integration with the running system and (in practice) its codebase but which, when set up, can proceed entirely automatically. Theorem discovery is a technique for analysing a state space-based formal model of the interaction behaviour of a system, looking for strings of user actions that have equivalent effects across all states of the system. The approach systematically computes and compares the effects of ever-longer strings of actions, though insights can also arise from strings that are almost equivalent, and also from considering the meaning of sets of such equivalences. The thesis introduces and exemplifies each technique, considers how they may be used together, and demonstrates their utility and novelty, with case studies

    A Generic Library for GUI Reasoning and Testing

    No full text
    Graphical user interfaces (GUIs) make software easy to use by providing the user with visual controls. Therefore, correctness of GUI's code is essential to the correct execution of the overall software. Models can help in the evaluation of interactive applications by allowing designers to concentrate on its more important aspects. This paper presents a generic model for language-independent reverse engineering of graphical user interface based applications, and we explore the integration of model-based testing techniques in our approach, thus allowing us to perform fault detection. A prototype tool has been constructed, which is already capable of deriving and testing a user interface behavioral model of applications written in Java/Swing
    corecore