1,958 research outputs found

    A generic knowledge-guided image segmentation and labeling system using fuzzy clustering algorithms

    Full text link

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes

    Automated liver tissues delineation based on machine learning techniques: A survey, current trends and future orientations

    Get PDF
    There is no denying how machine learning and computer vision have grown in the recent years. Their highest advantages lie within their automation, suitability, and ability to generate astounding results in a matter of seconds in a reproducible manner. This is aided by the ubiquitous advancements reached in the computing capabilities of current graphical processing units and the highly efficient implementation of such techniques. Hence, in this paper, we survey the key studies that are published between 2014 and 2020, showcasing the different machine learning algorithms researchers have used to segment the liver, hepatic-tumors, and hepatic-vasculature structures. We divide the surveyed studies based on the tissue of interest (hepatic-parenchyma, hepatic-tumors, or hepatic-vessels), highlighting the studies that tackle more than one task simultaneously. Additionally, the machine learning algorithms are classified as either supervised or unsupervised, and further partitioned if the amount of works that fall under a certain scheme is significant. Moreover, different datasets and challenges found in literature and websites, containing masks of the aforementioned tissues, are thoroughly discussed, highlighting the organizers original contributions, and those of other researchers. Also, the metrics that are used excessively in literature are mentioned in our review stressing their relevancy to the task at hand. Finally, critical challenges and future directions are emphasized for innovative researchers to tackle, exposing gaps that need addressing such as the scarcity of many studies on the vessels segmentation challenge, and why their absence needs to be dealt with in an accelerated manner.Comment: 41 pages, 4 figures, 13 equations, 1 table. A review paper on liver tissues segmentation based on automated ML-based technique

    Speech data analysis for semantic indexing of video of simulated medical crises.

    Get PDF
    The Simulation for Pediatric Assessment, Resuscitation, and Communication (SPARC) group within the Department of Pediatrics at the University of Louisville, was established to enhance the care of children by using simulation based educational methodologies to improve patient safety and strengthen clinician-patient interactions. After each simulation session, the physician must manually review and annotate the recordings and then debrief the trainees. The physician responsible for the simulation has recorded 100s of videos, and is seeking solutions that can automate the process. This dissertation introduces our developed system for efficient segmentation and semantic indexing of videos of medical simulations using machine learning methods. It provides the physician with automated tools to review important sections of the simulation by identifying who spoke, when and what was his/her emotion. Only audio information is extracted and analyzed because the quality of the image recording is low and the visual environment is static for most parts. Our proposed system includes four main components: preprocessing, speaker segmentation, speaker identification, and emotion recognition. The preprocessing consists of first extracting the audio component from the video recording. Then, extracting various low-level audio features to detect and remove silence segments. We investigate and compare two different approaches for this task. The first one is threshold-based and the second one is classification-based. The second main component of the proposed system consists of detecting speaker changing points for the purpose of segmenting the audio stream. We propose two fusion methods for this task. The speaker identification and emotion recognition components of our system are designed to provide users the capability to browse the video and retrieve shots that identify ”who spoke, when, and the speaker’s emotion” for further analysis. For this component, we propose two feature representation methods that map audio segments of arbitary length to a feature vector with fixed dimensions. The first one is based on soft bag-of-word (BoW) feature representations. In particular, we define three types of BoW that are based on crisp, fuzzy, and possibilistic voting. The second feature representation is a generalization of the BoW and is based on Fisher Vector (FV). FV uses the Fisher Kernel principle and combines the benefits of generative and discriminative approaches. The proposed feature representations are used within two learning frameworks. The first one is supervised learning and assumes that a large collection of labeled training data is available. Within this framework, we use standard classifiers including K-nearest neighbor (K-NN), support vector machine (SVM), and Naive Bayes. The second framework is based on semi-supervised learning where only a limited amount of labeled training samples are available. We use an approach that is based on label propagation. Our proposed algorithms were evaluated using 15 medical simulation sessions. The results were analyzed and compared to those obtained using state-of-the-art algorithms. We show that our proposed speech segmentation fusion algorithms and feature mappings outperform existing methods. We also integrated all proposed algorithms and developed a GUI prototype system for subjective evaluation. This prototype processes medical simulation video and provides the user with a visual summary of the different speech segments. It also allows the user to browse videos and retrieve scenes that provide answers to semantic queries such as: who spoke and when; who interrupted who? and what was the emotion of the speaker? The GUI prototype can also provide summary statistics of each simulation video. Examples include: for how long did each person spoke? What is the longest uninterrupted speech segment? Is there an unusual large number of pauses within the speech segment of a given speaker

    PEDESTRIAN SEGMENTATION FROM COMPLEX BACKGROUND BASED ON PREDEFINED POSE FIELDS AND PROBABILISTIC RELAXATION

    Get PDF
    The wide use of cameras enables the availability of a large amount of image frames that can be used for people counting or to monitor crowds or single individuals for security purposes. These applications require both, object detection and tracking. This task has shown to be challenging due to problems such as occlusion, deformation, motion blur, and scale variation. One alternative to perform tracking is based on the comparison of features extracted for the individual objects from the image. For this purpose, it is necessary to identify the object of interest, a human image, from the rest of the scene. This paper introduces a method to perform the separation of human bodies from images with changing backgrounds. The method is based on image segmentation, the analysis of the possible pose, and a final refinement step based on probabilistic relaxation. It is the first work we are aware that probabilistic fields computed from human pose figures are combined with an improvement step of relaxation for pedestrian segmentation. The proposed method is evaluated using different image series and the results show that it can work efficiently, but it is dependent on some parameters to be set according to the image contrast and scale. Tests show accuracies above 71%. The method performs well in other datasets, where it achieves results comparable to stateof-the-art approaches

    Data-driven shape analysis and processing

    Get PDF
    Data-driven methods serve an increasingly important role in discovering geometric, structural, and semantic relationships between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods aggregate information from 3D model collections to improve the analysis, modeling and editing of shapes. Through reviewing the literature, we provide an overview of the main concepts and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing
    corecore