476 research outputs found

    New strong convergence method for the sum of two maximal monotone operators

    Get PDF
    This paper aims to obtain a strong convergence result for a Douglas–Rachford splitting method with inertial extrapolation step for finding a zero of the sum of two set-valued maximal monotone operators without any further assumption of uniform monotonicity on any of the involved maximal monotone operators. Furthermore, our proposed method is easy to implement and the inertial factor in our proposed method is a natural choice. Our method of proof is of independent interest. Finally, some numerical implementations are given to confirm the theoretical analysis

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure

    Stochastic Quasi-Fej\'er Block-Coordinate Fixed Point Iterations with Random Sweeping

    Get PDF
    This work proposes block-coordinate fixed point algorithms with applications to nonlinear analysis and optimization in Hilbert spaces. The asymptotic analysis relies on a notion of stochastic quasi-Fej\'er monotonicity, which is thoroughly investigated. The iterative methods under consideration feature random sweeping rules to select arbitrarily the blocks of variables that are activated over the course of the iterations and they allow for stochastic errors in the evaluation of the operators. Algorithms using quasinonexpansive operators or compositions of averaged nonexpansive operators are constructed, and weak and strong convergence results are established for the sequences they generate. As a by-product, novel block-coordinate operator splitting methods are obtained for solving structured monotone inclusion and convex minimization problems. In particular, the proposed framework leads to random block-coordinate versions of the Douglas-Rachford and forward-backward algorithms and of some of their variants. In the standard case of m=1m=1 block, our results remain new as they incorporate stochastic perturbations

    Almost sure convergence of the forward-backward-forward splitting algorithm

    Get PDF
    In this paper, we propose a stochastic forward-backward-forward splitting algorithm and prove its almost sure weak convergence in real separable Hilbert spaces. Applications to composite monotone inclusion and minimization problems are demonstrated.Comment: arXiv admin note: text overlap with arXiv:1210.298

    A first-order stochastic primal-dual algorithm with correction step

    Get PDF
    We investigate the convergence properties of a stochastic primal-dual splitting algorithm for solving structured monotone inclusions involving the sum of a cocoercive operator and a composite monotone operator. The proposed method is the stochastic extension to monotone inclusions of a proximal method studied in {\em Y. Drori, S. Sabach, and M. Teboulle, A simple algorithm for a class of nonsmooth convex-concave saddle-point problems, 2015} and {\em I. Loris and C. Verhoeven, On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty, 2011} for saddle point problems. It consists in a forward step determined by the stochastic evaluation of the cocoercive operator, a backward step in the dual variables involving the resolvent of the monotone operator, and an additional forward step using the stochastic evaluation of the cocoercive introduced in the first step. We prove weak almost sure convergence of the iterates by showing that the primal-dual sequence generated by the method is stochastic quasi Fej\'er-monotone with respect to the set of zeros of the considered primal and dual inclusions. Additional results on ergodic convergence in expectation are considered for the special case of saddle point models
    • …
    corecore