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Abstract In this paper, we propose a stochastic forward–backward–forward split-
ting algorithm and prove its almost sure weak convergence in real separable Hilbert
spaces. Applications to composite monotone inclusion andminimization problems are
demonstrated.
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1 Introduction

Forward–backward–forward splitting algorithm was firstly proposed in [24] for solv-
ing the problem of finding a zero point of the sum of a maximally monotone operator
A : H → 2H and a monotone Lipschitzian operator C : H → H, where H is a
real Hilbert space. This splitting algorithm plays a role in solving a large class of
composite monotone inclusions [3] and monotone inclusions involving the parallel
sums [2,10,11,15] as well as applications to conposite convex optimization problem
involving the infimal-convolutions [2–4,11,15]. However, these works are limitted to
deterministic setting.

Very recently, we have found out in the literature that there appears the study of
some splitting algorithms for solvingmonotone inclusions in the stochastic setting as in
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[12,19,21], and primal-dual splitting algorithm for composite monotone inclusions in
[12,19]. Some iterations in [12,19,21] are designed for monotone inclusions involv-
ing cocoercive operators. For solving monotone inclusions involving Lipschitzian
monotone operators, one can often use the iterations which has the structure of the
forward–backward–forward splitting methods as cited above, but the convergence
of their proposed methods is no longer available, in the literature, in the stochastic
setting.

The objective of this note is to study the convergence of the forward–backward–
forward splitting in the stochastic setting for monotone inclusions involving Lip-
schitzian monotone operators as well as for composite monotone inclusions involving
parallel sums.

In Sect. 2, we recall some notations, background and preliminary results. We prove
the almost sure convergence of the stochastic forward–backward–forward splitting
algorithm in Sect. 3. In the last section,we provide applications to compositemonotone
inclusions involving the parallel sums as well as minimization problems involving
infimal convolutions.

2 Notation–background and premilary results

Throughout,H, G, and (Gi )1≤i≤m are real separable Hilbert spaces. Their scalar prod-
ucts and associated norms are respectively denoted by 〈· | ·〉 and ‖ · ‖. We denote
by B (H,G) the space of bounded linear operators from H to G. The adjoint of
L ∈ B (H,G) is denoted by L∗. We set B (H) = B (H,H). Id denotes the identity
operator. The symbols ⇀ and → denote weak and strong convergence, respectively.
We denote by �1+(N) the set of summable sequences in [0,+∞[. The class of all
proper lower semicontinuous convex functions fromH to ] − ∞,+∞] is denoted by
�0(H). Let M1 and M2 be self-adjoint operators in B (H), we write M1 � M2 if and
only if (∀x ∈ H) 〈M1x | x〉 ≥ 〈M2x | x〉 . Let α ∈]0,+∞[. We set

Pα(H) = {
M ∈ B (H) | M∗ = M and M � α Id

}
. (2.1)

Let A : H → 2H be a set-valued operator. The domain of A is dom A = {
x ∈ H |

Ax �= ∅
}
, and the graph of A is gra A = {

(x, u) ∈ H × H | u ∈ Ax
}
. The set of

zeros of A is zer A = {
x ∈ H | 0 ∈ Ax

}
, and the range of A is ran A = {

u ∈ H |
(∃ x ∈ H) u ∈ Ax

}
. The inverse of A is A−1 : H �→ 2H : u �→ {

x ∈ H | u ∈ Ax
}
,

and the resolvent of A is
JA = (Id+A)−1. (2.2)

Moreover, A is monotone if

(∀(x, y) ∈ H × H)(∀(u, v) ∈ Ax × Ay) 〈x − y | u − v〉 ≥ 0, (2.3)

and maximally monotone if it is monotone and there exists no monotone operator
B : H → 2H such that gra A ⊂ gra B and A �= B. We say that A is uniformly
monotone at x ∈ dom A if there exists an increasing function φA : [0,+∞[→
[0,+∞] vanishing only at 0 such that
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Almost sure convergence of the forward–backward. . . 783

(∀u ∈ Ax
)(∀(y, v) ∈ gra A

) 〈x − y | u − v〉 ≥ φA(‖x − y‖). (2.4)

Given a probability space (�,F,P), we denote by σ(x) the σ -field generated by
a random vector x : � → H, where H is endowed with the Borel σ -algebra. The
expectation of a random variable x is denoted by E[x]. The conditional expectation of
x given a sub-sigma algebraF ⊂ F is denoted byE[x |F]. The conditional expectation
of x given y is denoted by E[x |y].
Lemma 2.1 [23, Theorem 1] Let (Fn)n∈N be an increasing sequence of sub-sigma
algebras ofF . For every n ∈ N, let zn, ξn, ζn and tn be non-negative,Fn-measurable
random variable such that (ζn)n∈N and (tn)n∈N are summable and

(∀n ∈ N) E[zn+1|Fn] ≤ (1 + tn)zn + ζn − ξn P − a.s. (2.5)

Then (zn)n∈N converges and (ξn)n∈N is summable P-a.s.

Lemma 2.2 [12, Proposition 2.3] Let H be a real separable Hilbert space, let C be
a non-empty closed subset of H, let φ : [0,∞[→ [0,∞[, let (xn)n∈N be a sequence
of random vectors in H. Suppose that, for every x ∈ C, there exist non-negative
summable sequences of random variables (ζn(x))n∈N and (tn(x))n∈N such that, for
every n ∈ N, ζn(x) and tn(x) are Fn = σ(x0, . . . , xn)-measurable, and

(∀n ∈ N) E[φ(‖xn+1 − x‖)|Fn] ≤ (1+ tn(x))φ(‖xn − x‖) + ζn(x) P-a.s. (2.6)

Suppose that φ is strictly increasing and limξ→∞ φ(ξ) = +∞. Then the following
hold.

(i) (‖xn − x‖)n∈N is bounded and converges P-a.s.
(ii) There exists a subset �∗ with P(�∗) = 1 such that for every x ∈ C and every

ω ∈ �∗, (‖xn(ω) − x‖)n∈N converges.
(iii) (xn)n∈N converges weaklyP-a.s. to a C-valued random vector if and only if every

its weak cluster point is in C P-a.s.

Remark 2.3 A sequence (xn)n∈N satisfying (2.6) is called a stochastic φ-quasi-Fejér
monotone with respect to the target set C . The connections of Lemma 2.2 to existing
work can be found in [12, Remark 2.4].

In view of the work in [13, Theorem 3.3], we also have a variable metric extension
of Lemma 2.2.

Proposition 2.4 LetH be a real separable Hilbert space, let C be a non-empty closed
subset of H, let φ : [0,∞[→ [0,∞[, let α ∈]0,∞[, let W ∈ Pα(H) and (Wn)n∈N
be a sequence in Pα(H) such that Wn → W pointwise, let (xn)n∈N be a sequence
of random vectors in H. Suppose that, for every x ∈ C, there exist non-negative
summable sequences of random variables (ζn(x))n∈N and (tn(x))n∈N such that, for
every n ∈ N, ζn(x) and tn(x) are Fn = σ(x0, . . . , xn)-measurable, and

(∀n ∈ N) E[φ(‖xn+1 − x‖Wn+1)|Fn] ≤ (1+ tn(x))φ(‖xn − x‖Wn ) + ζn(x) P-a.s.
(2.7)
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784 B. C. Vũ

Suppose that φ is strictly increasing and limξ→∞ φ(ξ) = +∞. Then the following
hold.

(i) (‖xn − x‖Wn )n∈N is bounded and converges P-a.s.
(ii) There exists a subset �∗ with P(�∗) = 1 such that for every x ∈ C and every

ω ∈ �∗, (‖xn(ω) − x‖Wn )n∈N converges.
(iii) (xn)n∈N converges weaklyP-a.s. to a C-valued random vector if and only if every

its weak cluster point is in C P-a.s.

Proof (i): Set (∀n ∈ N) ξn = ‖xn − z‖Wn . It follows from (2.7) and Lemma 2.1 that
(φ(ξn))n∈N converges P-a.s., say φ(ξn) → λ. In turn, since limt→+∞ φ(t) = +∞,
(ξn)n∈N is boundedP-a.s. Letω ∈ � such that (ξn(ω))n∈N is bounded and, to show that
it converges, it suffices to show that it cannot have two distinct cluster points. Suppose
to the contrary thatwe can extract two subsequences (ξkn (ω))n∈N and (ξln )n∈N(ω) such
that ξkn (ω) → η(ω) and ξln (ω) → ζ(ω) > η(ω), and fix ε ∈]0, (ζ − η)/2[. Then, for
n sufficiently large, ξkn (ω) ≤ η(ω) + ε < ζ(ω) − ε ≤ ξln (ω) and, since φ is strictly
increasing, φ(ξkn (ω)) ≤ φ(η(ω)+ε) < φ(ζ(ω)−ε) ≤ φ(ξln (ω)). Taking the limit as
n → +∞ yields λ(ω) ≤ φ(η(ω) + ε) < φ(ζ(ω) − ε) ≤ λ(ω), which is impossible.

(ii): Since H is separable, so is C and hence there exists a countable subset X of
C such that X = C . In view of (i), for each x ∈ X , there exists a subset �x with
probability 1 such that (‖xn(ω) − x‖Wn )n∈N converges for every ω ∈ �x . Define
�∗ = ⋂

x∈X �x . Since X is countable, P(�∗) = 1. Now, let x0 ∈ C and ω0 ∈ �∗.
Then, there exists a sequence (ck)k∈N in X such that ck → x0. By (i), we have

(∀k ∈ N)(∃τk : � → [0,+∞[)(∀ω ∈ �ck ) ‖xn(ω) − ck‖Wn → τk(ω). (2.8)

Moreover, set μ = supn∈N ‖Wn‖. Then μ < +∞ by Banach–Steinhaus Theorem.
Then, for every n ∈ N and k ∈ N, we have

−√
μ‖ck − x0‖ ≤ −‖ck − x0‖Wn ≤ ‖xn(ω0) − x0‖Wn − ‖xn(ω0) − ck‖Wn

≤ ‖ck − x0‖Wn

≤ √
μ‖ck − x0‖. (2.9)

Therefore,

(∀k ∈ N) − √
μ‖ck − x0‖ ≤ lim

n→∞
‖xn(ω0) − x0‖Wn − lim

n→∞ ‖xn(ω0) − ck‖Wn

= lim
n→∞

‖xn(ω0) − x0‖Wn − τk(ω0)

≤ lim
n→∞ ‖xn(ω0) − x0‖Wn − τk(ω0)

≤ √
μ‖ck − x0‖. (2.10)

Now, let k → ∞, we get limn→∞ ‖xn(ω0) − x0‖Wn = limk→∞ τk(ω0) which proves
(ii).

(iii): Necessity is clear. To show sufficiency, let � be the set of all ω such that
every weak sequential cluster point of (xn(ω))n∈N is in C . Then � has proba-
bility 1, so is �∗ = � ∩ �∗. Let ω ∈ �∗ and x(ω) and y(ω) be two weak
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Almost sure convergence of the forward–backward. . . 785

cluster points of (xn(ω))n∈N, say xkn (ω) ⇀ x(ω) and xln (ω) ⇀ y(ω). Then it
follows from (ii) that (‖xn(ω) − x(ω)‖Wn )n∈N and (‖xn(ω) − y(ω)‖Wn )n∈N con-
verge. Moreover, ‖x(ω)‖2Wn

= 〈Wnx(ω) | x(ω)〉 → 〈Wx(ω) | x(ω)〉 and, likewise,
‖y(ω)‖2Wn

→ 〈Wy(ω) | y(ω)〉. Therefore, since

(∀n ∈ N) 〈Wnxn(ω) | x(ω)−y(ω)〉= 1

2

(‖xn(ω)−y(ω)‖2Wn
−‖xn(ω) − x(ω)‖2Wn

+ ‖x(ω)‖2Wn
− ‖y(ω)‖2Wn

)
, (2.11)

the sequence (〈Wnxn(ω) | x(ω) − y(ω)〉)n∈N converges, say 〈Wnxn(ω) | x(ω) − y(ω)〉
→ λ(ω) ∈ R, which implies that

〈xn(ω) | Wn(x(ω) − y(ω))〉 → λ(ω) ∈ R. (2.12)

However, since xkn (ω) ⇀ x(ω) and Wkn (x(ω) − y(ω)) → W (x(ω) − y(ω)), it fol-
lows from (2.12) and [5, Lemma 2.41(iii)] that 〈x(ω) | W (x(ω) − y(ω))〉 = λ(ω).
Likewise, passing to the limit along the subsequence (xln (ω))n∈N in (2.12) yields
〈y(ω) | W (x(ω) − y(ω))〉 = λ. Thus,

0 = 〈x(ω) | W (x(ω) − y(ω))〉 − 〈y(ω) | W (x(ω) − y(ω))〉
= 〈x(ω) − y(ω) | W (x(ω) − y(ω))〉
≥ α‖x(ω) − y(ω)‖2. (2.13)

This shows that x(ω) = y(ω). Upon invoking (ii) and [5, Lemma 2.38], we conclude
that xn(ω) ⇀ x(ω) and hence we obtain the conclusion. ��

3 A stochastic forward–backward–forward splitting algorithm

The forward–backward–forward splitting algorithm was firstly proposed in [24] to
solve inclusion involving the sumof amaximallymonotoneoperator and aLipschitzian
monotone operator. In [3], it was revisited to include computational errors. Below, we
extend it to a stochastic setting. The following theorem is a stochastic version of [25,
Theorem 3.1].

Theorem 3.1 LetK be a real separable Hilbert space with the scalar product 〈〈· | ·〉〉
and the associated norm ||| · |||. Let α and β be in ]0,+∞[, let (ηn)n∈N be a sequence
in �1+(N), and let (Un)n∈N be a sequence in B (K) such that

μ = sup
n∈N

‖Un‖ < +∞ and (∀x ∈ K) (1 + ηn)〈〈x | Un+1x〉〉

≥ 〈〈x | Unx〉〉 ≥ α|||x|||2. (3.1)

Let A : K → 2K be maximally monotone, let B : K → K be a monotone and β-
Lipschitzian operator on K such that zer(A + B) �= ∅. Let (an)n∈N, (bn)n∈N, and
(cn)n∈N be sequences of square integrable K-valued random vectors. Let x0 be a
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786 B. C. Vũ

square integrable K-valued random vector, let ε ∈]0, 1/(βμ + 1)[, let (γn)n∈N be a
sequence in [ε, (1 − ε)/(βμ)], and set

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎣

yn = xn − γnUn(Bxn + an)
pn = JγnUn A yn + bn
qn = pn − γnUn(B pn + cn)
xn+1 = xn − yn + qn .

(3.2)

Suppose that
(√

E[|||an|||2|Fn]
)
n∈N,

(√
E[|||bn|||2|Fn]

)
n∈N, and

(√
E[|||cn|||2|Fn]

)
n∈N are summableP-a.s., the following hold for some zer(A+B)-

valued random vector x.

(i)
∑

n∈N E[|||xn − pn|||2|Fn] < +∞ and
∑

n∈N E[||| yn − qn|||2|Fn] < +∞
P-a.s.

(ii) xn ⇀ x and JγnUn A(xn − γnUnBxn) ⇀ x P-a.s.
(iii) Suppose that one of the following is satisfied for some subset �̃ ⊂ �withP(�̃) =

1.
(a) A + B is demiregular (see [1, Definition 2.3]) at x(ω) for every ω ∈ �̃.
(b) A or B is uniformly monotone at x(ω) for every ω ∈ �̃.
Then xn → x and JγnUn A(xn − γnUnBxn) → x P-a.s.

Proof It follows from [14, Lemma 3.7] that the sequences (xn)n∈N, ( yn)n∈N, ( pn)n∈N
and (qn)n∈N are well defined. Moreover, using [13, Lemma 2.1(i)(ii)] and (3.1), for
every sequence of random vectors K-valued (zn)n∈N, we have

∑

n∈N

√
E[|||zn|||2|Fn]< +∞ P-a.s. ⇔

∑

n∈N

√
E[|||zn|||2U−1

n
|Fn]<+∞ P-a.s.

(3.3)
and

∑

n∈N

√
E[|||zn|||2|Fn] < +∞ P-a.s. ⇔

∑

n∈N

√
E[|||zn|||2Un

|Fn] < +∞ P-a.s.

(3.4)
Let us set, for every n ∈ N,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ỹn = xn − γnUnBxn
p̃n = JγnUn A ỹn
q̃n = p̃n − γnUnB p̃n
x̃n+1 = xn − ỹn + q̃n,

and

⎧
⎪⎨

⎪⎩

un = γ −1
n U−1

n (xn − p̃n) + B p̃n − Bxn
en = x̃n+1 − xn+1

dn = qn − q̃n + ỹn − yn .

(3.5)
Then (3.5) yields

(∀n ∈ N) un = γ −1
n U−1

n ( ỹn − p̃n) + B p̃n ∈ A p̃n + B p̃n, (3.6)
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and (3.5), Lemma [14, Lemma 3.7(ii)], and the Lipschitzianity of B onK yield

(∀n ∈ N)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

||| yn − ỹn|||U−1
n

≤ (βμ)−1|||an|||Un

||| pn − p̃n|||U−1
n

≤ |||bn|||U−1
n

+ (βμ)−1|||an|||Un

|||qn − q̃n|||U−1
n

≤ 2
(|||bn|||U−1

n
+ (βμ)−1|||an|||Un

)

+ (βμ)−1|||cn|||Un .

(3.7)

Since
(√

E[|||an|||2|Fn]
)
n∈N,

(√
E[|||bn|||2|Fn]

)
n∈N, and

(√
E[|||cn|||2|Fn]

)
n∈N

are summable P-a.s., using Jensen’s inequality, we derive from (3.3), (3.4), (3.5),
and (3.7) that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
n∈N E[||| pn − p̃n||||Fn] < +∞ and

∑
n∈N E[||| pn − p̃n|||U−1

n
|Fn]

< +∞ P-a.s.
∑

n∈N E[|||qn − q̃n||||Fn] < +∞ and
∑

n∈N E[|||qn − q̃n|||U−1
n

|Fn]
< +∞ P-a.s.

∑
n∈N E[|||dn||||Fn] < +∞ and

∑
n∈N E[|||dn|||U−1

n
|Fn] < +∞ P-a.s.

(3.8)

Noting that

2E[||| yn − ỹn|||2U−1
n

|Fn] ≤ 2(βμ)−2E[|||an|||2Un
|Fn], (3.9)

and

2E[|||qn − q̃n|||2U−1
n

|Fn] ≤ 24
(
E[|||bn|||2U−1

n
|Fn] + (βμ)−2E[|||an|||2Un

+ |||cn|||2Un
|Fn]

)
(3.10)

Therefore, upon setting c = max{26(βμ)−2, 24}, and adding (3.9) and (3.10), we get

2E[||| yn − ỹn|||2U−1
n

|Fn] + 2E[|||qn − q̃n|||2U−1
n

|Fn]
≤ c

(
E[|||an|||2Un

|Fn] + E[|||bn|||2U−1
n

|Fn] + E[|||cn|||2Un
|Fn]

)
. (3.11)

Now, using (3.11), (3.33), (3.34), (3.3), (3.4) and (3.5), we have

∑

n∈N
E[|||dn|||2U−1

n
|Fn]≤2

∑

n∈N
E[||| yn− ỹn|||2U−1

n
|Fn]+2

∑

n∈N
E[|||qn−q̃n|||2U−1

n
|Fn]

≤ c

( ∑

n∈N
E[|||an|||2Un

|Fn] +
∑

n∈N
E[|||bn|||2U−1

n
|Fn]

+
∑

n∈N
E[|||cn|||2Un

|Fn]
)
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788 B. C. Vũ

≤ cτ0

( ∑

n∈N

√
E[|||an|||2Un

|Fn] +
∑

n∈N

√
E[|||bn|||2U−1

n
|Fn]

+
∑

n∈N

√
E[|||cn|||2Un

|Fn]
)

< +∞ P-a.s., (3.12)

where we define

τ0 = sup
n∈N

{√
E[|||an|||2Un

|Fn],
√

E[|||bn|||2U−1
n

|Fn],
√

E[|||cn|||2Un
|Fn]

}

< +∞ P-a.s. (3.13)

Now, let x ∈ zer(A + B). Then, for every n ∈ N, (x,−γnUnBx) ∈ gra(γnUnA)

and (3.5) yields ( p̃n, ỹn − p̃n) ∈ gra(γnUnA). Hence, by monotonicity of
UnA with respect to the scalar product 〈〈· | ·〉〉U−1

n
, we have 〈〈 p̃n − x |

p̃n − ỹn − γnUnBx〉〉U−1
n

≤ 0. Moreover, by monotonicity of UnB with respect to
the scalar product 〈〈· | ·〉〉U−1

n
, we also have 〈〈 p̃n − x | γnUnBx − γnUnB p̃n〉〉U−1

n
≤

0. By adding the last two inequalities, we obtain

(∀n ∈ N) 〈〈 p̃n − x | p̃n − ỹn − γnUnB p̃n〉〉U−1
n

≤ 0. (3.14)

In turn, we derive from (3.5) that

(∀n ∈ N) 2γn〈〈 p̃n − x | UnBxn − UnB p̃n〉〉U−1
n

= 2〈〈 p̃n − x | p̃n − ỹn − γnUnB p̃n〉〉U−1
n

+ 2〈〈 p̃n − x | γnUnBxn + ỹn − p̃n〉〉U−1
n

≤ 2〈〈 p̃n − x | γnUnBxn + ỹn − p̃n〉〉U−1
n

= 2〈〈 p̃n − x | xn − p̃n〉〉U−1
n

= |||xn − x|||2
U−1

n
− ||| p̃n − x|||2

U−1
n

− |||xn − p̃n|||2U−1
n

. (3.15)

Hence, using (3.5), (3.15), the β-Lipschitz continuity of B, and [13, Lemma 2.1(ii)],
for every n ∈ N, we obtain

|||̃xn+1 − x|||2
U−1

n
= |||̃qn + xn − ỹn − x|||2

U−1
n

= |||( p̃n − x) + γnUn(Bxn − B p̃n)|||2U−1
n

= ||| p̃n − x|||2
U−1

n
+ 2γn〈〈 p̃n − x | Bxn − B p̃n〉〉

+ γ 2
n |||Un(Bxn − B p̃n)|||2U−1

n

≤ |||xn − x|||2
U−1

n
− |||xn − p̃n|||2U−1

n

+ γ 2
n μβ2|||xn − p̃n|||2
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≤ |||xn − x|||2
U−1

n
− μ−1|||xn − p̃n|||2

+ γ 2
n μβ2|||xn − p̃n|||2. (3.16)

Hence, it follows from (3.1) and [13, Lemma 2.1(i)] that

(∀n ∈ N) |||̃xn+1 − x|||2
U−1

n+1

≤ (1 + ηn)|||xn − x|||2
U−1

n
− μ−1(1 − γ 2

n β2μ2)|||xn − p̃n|||2. (3.17)

Consequently,

(∀n ∈ N) |||̃xn+1 − x|||U−1
n+1

≤ (1 + ηn)|||xn − x|||U−1
n

. (3.18)

For every n ∈ N, set

εn =
√

μα−1
(
2
(|||bn |||U−1

n
+(βμ)−1|||an |||Un

)+(βμ)−1|||cn |||Un +(βμ)−1|||an |||Un

)
.

(3.19)
Then (E[εn|Fn])n∈N is summable P-a.s. by (3.3) and we derive from [13,
Lemma 2.1(ii)(iii)], and (3.8) that

(∀n ∈ N) |||en|||U−1
n+1

= |||̃xn+1 − xn+1|||U−1
n+1

≤
√

α−1|||̃xn+1 − xn+1|||
≤

√
μα−1|||̃xn+1 − xn+1|||U−1

n

≤
√

μα−1(|||̃ yn − yn|||U−1
n

+ |||̃qn − qn|||U−1
n

)

≤ εn . (3.20)

In turn, we derive from (3.18) that

(∀n ∈ N) |||xn+1 − x|||U−1
n+1

≤ |||̃xn+1 − x|||U−1
n+1

+ |||̃xn+1 − xn+1|||U−1
n+1

≤ |||̃xn+1 − x|||U−1
n+1

+ εn

≤ (1 + ηn)|||xn − x|||U−1
n

+ εn . (3.21)

By assumption, since E[‖x0‖2] is finite, by induction, for every n ∈ N, E[‖xn‖2] is
finite and hence E[‖xn‖] and E[‖xn‖U−1

n
] are finite too. By taking the conditional

expectation with respect to Fn and note that |||xn − x|||U−1
n

is Fn-measurable, we
obtain

(∀n ∈ N) E[|||xn+1− x|||U−1
n+1

|Fn] ≤ (1+ηn)|||xn − x|||U−1
n

+E[εn|Fn]. (3.22)

This shows that (xn)n∈N is | · |–quasi-Fejér monotone with respect to the target set
zer(A+ B) relative to (U−1

n )n∈N. Moreover, (|||xn − x|||U−1
n

)n∈N is bounded. In turn,

123



790 B. C. Vũ

since B and (JγnUn A)n∈N are Lipschitzian, and (∀n ∈ N) x = JγnUn A(x−γnUnBx),
we deduce from (3.5) that (̃ yn)n∈N, ( p̃n)n∈N, and (̃qn)n∈N are bounded. Therefore,

τ = sup
n∈N

{|||xn − ỹn + q̃n − x|||U−1
n

, |||xn − x|||U−1
n

} < +∞ P-a.s. (3.23)

Hence, using (3.5), Cauchy–Schwarz for the norms (||| · |||U−1
n

)n∈N, and (3.16), we
get, for every n ∈ N,

|||xn+1 − x|||2
U−1

n
= |||xn − yn + qn − x|||2

U−1
n

= |||̃qn + xn − ỹn − x + dn|||2U−1
n

≤|||̃qn+xn − ỹn − x|||2
U−1

n
+2|||̃qn+xn− ỹn−x|||U−1

n
|||dn|||U−1

n

+ |||dn|||2U−1
n

≤ |||xn − x|||2
U−1

n
− μ−1(1 − γ 2

n β2μ2)|||xn − p̃n|||2 + ε1,n,

(3.24)

where (∀n ∈ N) ε1,n = 2|||̃qn + xn − ỹn − x|||U−1
n

|||dn|||U−1
n

+ |||dn|||2U−1
n
. In turn,

for every n ∈ N, by (3.1) and [13, Lemma 2.1(i)],

|||xn+1 − x|||2
U−1

n+1
≤ (1 + ηn)|||xn+1 − x|||2

U−1
n

≤ (1 + ηn)|||xn − x|||2
U−1

n
− μ−1(1 − γ 2

n β2μ2)|||xn − p̃n|||2
+(1 + ηn)ε1,n . (3.25)

Since, Jγn A◦(Id−γnB) is continuous, p̃n isFn-measurable. In turn, for every n ∈ N,

E[|||xn+1−x|||2
U−1

n+1
|Fn]≤(1+ηn)|||xn−x|||2

U−1
n

−μ−1(1 − γ 2
n β2μ2)|||xn − p̃n|||2

+ E[(1 + ηn)ε1,n|Fn]. (3.26)

Let us prove that ∑

n∈N
E[ε1,n|Fn] < +∞ P-a.s. (3.27)

Indeed, since Id−γnB is continuous, ỹn and q̃n areFn-measurable. Therefore, |||xn−
ỹn + q̃n − x|||U−1

n
is Fn-measurable and hence by (3.8) and (3.23), we obtain
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∑

n∈N
E[|||xn − ỹn + q̃n − x|||U−1

n
|||dn|||U−1

n
|Fn]

=
∑

n∈N
|||xn − ỹn + q̃n − x|||U−1

n
E[|||dn|||U−1

n
|Fn]

≤ τ
∑

n∈N
E[|||dn|||U−1

n
|Fn]

< +∞ P-a.s., (3.28)

which and (3.12) prove (3.27). It follows from Lemma 2.1 that

∑

n∈N
|||xn − p̃n|||2 < +∞ P-a.s. (3.29)

(i): It follows from (3.29) and (3.8) that

∑

n∈N
E[|||xn − pn|||2|Fn] ≤ 2

∑

n∈N
|||xn − p̃n|||2 + 2

∑

n∈N
E[||| pn − p̃n|||2|Fn]

< +∞ P-a.s. (3.30)

Furthermore, we derive from (3.8), (3.3) and (3.12) that

∑

n∈N
E[||| yn − qn|||2] =

∑

n∈N
E[|||̃qn − ỹn + dn|||2|Fn]

=
∑

n∈N
E[||| p̃n − xn + γnUn(Bxn − B p̃n) + dn|||2|Fn]

≤ 3
( ∑

n∈N
|||xn − p̃n|||2 + E[|||γnUn(Bxn − B p̃n)|||2

+ |||dn|||2|Fn]
)

< +∞ P-a.s. (3.31)

(ii): Let �0 be the set of all ω ∈ � such that (xn(ω))n∈N is bounded and (3.29)
is satisfied. We have P(�0) = 1. Fix ω ∈ �0. Let x(ω) be a weak cluster point of
(xn(ω))n∈N. Then there exists a subsequence (xkn (ω))n∈N that converges weakly to
x(ω). Therefore p̃kn (ω) ⇀ x(ω) by (3.29) and by the definition of �0. Furthermore,
it follows from (3.5) that ukn (ω) → 0. Hence, since (∀n ∈ N) ( p̃kn (ω), ukn (ω)) ∈
gra(A+ B), we obtain, x(ω) ∈ zer(A+ B) [5, Proposition 20.33 (ii)]. Altogether, it
follows Proposition 2.4 that xn ⇀ x and hence that p̃n ⇀ x.

Now, let �1 be the set of all ω ∈ � such that xn(ω) ⇀ x(ω) and p̃n(ω) ⇀ x(ω),
and p̃n(ω) − xn(ω) → 0. Then P(�1) = 1 and hence P(�1 ∩ �̃) = 1.

(iii)(a): Fix ω ∈ �1 ∩ �̃. Then xn(ω) ⇀ x(ω) and p̃n(ω) ⇀ x(ω). Furthermore,
it follows from (3.5) that un(ω) → 0. Hence, since (∀n ∈ N) ( p̃n(ω), un(ω)) ∈
gra(A + B) and since A + B is demiregular at x(ω) by our assumption, by [1,
Definition 2.3], p̃n(ω) → x(ω), and therefore xn(ω) → x(ω).
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(iii)(b): Fix ω ∈ �1 ∩ �̃. If A or B is uniformly monotone at x(ω), then A + B
is uniformly monotone at x(ω). Therefore, the result follows from [1, Proposition
2.4(i)]. ��
Corollary 3.2 LetK be a real separable Hilbert space with the scalar product 〈〈· | ·〉〉
and the associated norm ||| · |||. Let β be in ]0,+∞[, let A : K → 2K be maximally
monotone, let B : K → K be a monotone and β-Lipschitzian operator on K such
that zer(A + B) �= ∅. Let (an)n∈N, (bn)n∈N, and (cn)n∈N be sequences of square
integrableK-valued random vectors. Let x0 be a square integrableK-valued random
vector , let ε ∈]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β], and set

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎣

yn = xn − γn(Bxn + an)
pn = Jγn A yn + bn
qn = pn − γn(B pn + cn)
xn+1 = xn − yn + qn .

(3.32)

Suppose that the following conditions are satisfied with Fn = σ(x0, . . . , xn),

∑

n∈N

√
E[|||an|||2|Fn] < ∞,

∑

n∈N

√
E[|||bn|||2|Fn] < ∞ (3.33)

and ∑

n∈N

√
E[|||cn|||2|Fn] < ∞ P-a.s. (3.34)

Then the following hold for some zer(A + B)-valued random vector x.

(i)
∑

n∈N E[|||xn − pn|||2|Fn] < +∞ and
∑

n∈N E[||| yn − qn|||2|Fn] < +∞
P-a.s.

(ii) xn ⇀ x and Jγn A(xn − γnBxn) ⇀ x P-a.s.
(iii) Suppose that one of the following is satisfied for some subset �̃ ⊂ � with P

(�̃) = 1.
(a) A + B is demiregular (see [1, Definition 2.3]) at x(ω) for every ω ∈ �̃.
(b) A or B is uniformly monotone at x(ω) for every ω ∈ �̃.
Then xn → x and Jγn A(xn − γnBxn) → x P-a.s.

Remark 3.3 Here are some remarks. In the case when B is a general multi-valued
maximally monotone operator or a cocoercive operator, the almost sure convergence
of the Douglas–Rachford or forward–backward are proved in [12] under the same type
of condition on the stochastic errors. Furthermore, in the casewhen B is cocoercive and
uniformly monotone, the almost sure convergence of the forward–backward splitting
is also proved in [21] under different conditions on stepsize and stochastic errors. One
of the early work concerns with Lipschitzian monotone operator was in [18].

Example 3.4 Let f : K → [−∞,+∞] be a proper lower semicontinuous con-
vex function, let α ∈ ]0,+∞[, let β ∈ ]0,+∞[, let B : K → K be a monotone
and β-Lipschitzian operator. Let (an)n∈N, (bn)n∈N, and (cn)n∈N be sequences of
square integrable K-valued random vectors such that (3.33) and (3.34) are sat-
isfied. Furthermore, let x0 be a square integrable K-valued random vector, let

123



Almost sure convergence of the forward–backward. . . 793

ε ∈]0,min{1, 1/(β + 1)}[, let (γn)n∈N be a sequence in [ε, (1 − ε)/β]. Suppose
that the variational inequality

find x ∈ K such that (∀ y ∈ K) 〈x − y | Bx〉 + f (x) ≤ f ( y) (3.35)

admits at least one solution and set

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎢
⎣

yn = xn − γn(Bxn + an)

pn = arg min
x∈K

(
f (x) + 1

2γn
|||x − yn|||2

)
+ bn

qn = pn − γn(B pn + cn)
xn+1 = xn − yn + qn .

(3.36)

Then, for almost allω ∈ �, (xn(ω))n∈N converges weakly to a solution x(ω) to (3.35).

Proof Set A = ∂ f in Corollary 3.2(ii). ��
Remark 3.5 Since (γn)n∈N is bounded away from 0, we have

∑

n∈N
γn = +∞ and

∑

n∈N
γ 2
n = +∞. (3.37)

While, in the standard stochastic gradient method [20], we often require

∑

n∈N
γn = +∞ and

∑

n∈N
γ 2
n < +∞. (3.38)

Under the condition (3.38), the conditions on the stochastic errors in the stochastic
gradient method are weaker than (3.33)–(3.34) (see also [26, Assumption 2 and Eq
(4) ] for the case of the projected stochastic gradient method).

We end this section by noting that, in the case when Un = U , we obtain a pre-
conditioned version of (3.32). Some other preconditioned algorithms can be found in
[17,19].

4 Monotone inclusions involving Lipschitzian operators

The applications of the forward–backward-forward splitting algorithm considered in
[3,11,24] can be extended to a stochastic setting using Theorem 3.1. As an illustration,
we present a stochastic version of the algorithm proposed in [11, Eq. (3.1)]. Recall
that the parallel sum of A : H → 2H and B : H → 2H is [5]

A� B = (A−1 + B−1)−1. (4.1)

Problem 4.1 LetH be a real separableHilbert space, letm be a strictly positive integer,
let z ∈ H, let A : H → 2H be maximally monotone operator, let C : H → H be
monotone and ν0-Lipschitzian for some ν0 ∈]0,+∞[. For every i ∈ {1, . . . ,m}, let Gi
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794 B. C. Vũ

be a real separableHilbert space, let ri ∈ Gi , let Bi : Gi → 2Gi bemaximallymonotone
operator, let Di : Gi → 2Gi bemonotone and such that D−1

i is νi -Lipschitzian for some
νi ∈]0,+∞[, and let Li : H → Gi be a nonzero bounded linear operator. Suppose
that

z ∈ ran

(
A +

m∑

i=1

L∗
i

(
(Bi � Di )(Li · −ri )

) + C

)
. (4.2)

The problem is to solve the primal inclusion

z ∈ Ax +
m∑

i=1

L∗
i

(
(Bi � Di )(Li x − ri )

) + Cx, (4.3)

and the dual inclusion

(∀i ∈ {1, . . . ,m}) ri ∈ −Li (A + C)−1

(

z −
m∑

i=1

L∗
i vi

)

+ B−1
i vi + D−1

i vi . (4.4)

We denote by P and D be the set of solutions to (4.3) and (4.4), respectively.

As shown in [11], Problem 4.1 covers a wide class of problems in nonlinear analysis
and convex optimization problems. However, the algorithm in [11, Theorem 3.1] is
studied in the deterministic. The following result extends this result to a stochastic
setting.

Let us defineK = H⊕G1⊕· · ·⊕Gm the Hilbert direct sum of the Hilbert spacesH
and (Gi )1≤i≤m , the scalar product and the associated norm of K respectively defined
by

〈〈· | ·〉〉 : ((x, v), (y,w)) �→ 〈x | y〉 +
m∑

i=1

〈vi | wi 〉 and ||| · ||| : (x, v)

�→
√√
√
√‖x‖2 +

m∑

i=1

‖vi‖2, (4.5)

where v = (v1, . . . , vm) andw = (w1, . . . , wm) are generic elements inG1⊕· · ·⊕Gm .
Corollary 4.2 Let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be sequences of square inte-
grable H-valued random vectors, and for every i ∈ {1, . . . ,m}, let (a2,i,n)n∈N,

(b2,i,n)n∈N, and (c2,i,n)n∈N be sequences of square integrable Gi -valued random vec-
tors. Furthermore, set

β = max{ν0, ν1, . . . , νm} +
√√
√
√

m∑

i=1

‖Li‖2, (4.6)
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let x0 be a square integrableH-valued random vector, and, for every i ∈ {1, . . . ,m},
let vi,0 be a square integrable Gi -valued random vector, let ε ∈]0, 1/(1 + β)[, let
(γn)n∈N be a sequence in [ε, (1 − ε)/β]. Set

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1,n = xn − γn
(
Cxn + ∑m

i=1 L
∗
i vi,n + a1,n

)

p1,n = Jγn A(y1,n + γnz) + b1,n
for i = 1, . . . ,m⎢
⎢
⎢
⎢
⎢
⎣

y2,i,n = vi,n + γn
(
Li xn − D−1

i vi,n + a2,i,n
)

p2,i,n = J
γn B

−1
i

(y2,i,n − γnri ) + b2,i,n

q2,i,n = p2,i,n + γn
(
Li p1,n − D−1

i p2,i,n + c2,i,n
)

vi,n+1 = vi,n − y2,i,n + q2,i,n
q1,n = p1,n − γn

(
Cp1,n + ∑m

i=1 L
∗
i p2,i,n + c1,n

)

xn+1 = xn − y1,n + q1,n .

(4.7)

Suppose that the following conditions hold for Fn = σ((xk, (vi,k)1≤i≤m)0≤k≤n,

⎧
⎪⎨

⎪⎩

∑
n∈N

√
E[|||(a1,n, (a2,i,n)1≤i≤m)|||2|Fn] < +∞

∑
n∈N

√
E[‖(b1,n, (b2,i,n)1≤i≤m)|||2|Fn] < +∞

∑
n∈N

√
E[|||(c1,n, (c2,i,n)1≤i≤m)|||2|Fn] < +∞.

(4.8)

Then the following hold.

(i)
∑

n∈N E[‖xn − p1,n‖2|Fn] < +∞ and (∀i ∈ {1, . . . ,m}) ∑
n∈N E[‖vi,n −

p2,i,n‖2|Fn] < +∞ P-a.s.
(ii) There exist a P-valued random vector x and a D-valued random vector

(v1, . . . , vm) such that the following hold.
(a) xn ⇀ x and Jγn A(xn − γn(Cxn + ∑m

i=1 L
∗
i vi,n) + γnz) ⇀ x P-a.s.

(b) (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi and J
γn B

−1
i

(vi,n+γn
(
Li xn−D−1

i vi,n)−γnri ) ⇀

vi P-a.s.
(c) Suppose that A or C is uniformly monotone at x(ω) for every ω ∈ �̃ ⊂ �with

P(�̃) = 1, then xn → x and Jγn A(xn − γn(Cxn + ∑m
i=1 L

∗
i vi,n) + γnz) → x

P-a.s.
(d) Suppose that B−1

j or D−1
j is uniformly monotone at v j (ω) for every ω ∈

�̃ ⊂ � with P(�̃) = 1, for some j ∈ {1, . . . ,m}, then v j,n → v j and
J
γn B

−1
j

(v j,n + γn
(
L j xn − D−1

j v j,n) − γnr j ) → v j P-a.s.

Proof Set

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A : K → 2K : (x, v1, . . . , vm) �→ (−z + Ax) × (r1 + B−1
1 v1)

× · · · × (rm + B−1
m vm)

B : K → K : (x, v1, . . . , vm) �→
(
Cx + ∑m

i=1 L
∗
i vi , D

−1
1 v1 − L1x, . . . ,

D−1
m vm − Lmx

)
.

(4.9)
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Since A is maximally monotone [5, Propositions 20.22 and 20.23], B is monotone and
β-Lipschitzian [11, Eq. (3.10)] with dom B = K, A+ B is maximally monotone [5,
Corollary 24.24(i)]. In addition, [5, Propositions 23.15(ii) and 23.16] yield (∀γ ∈
]0,+∞[)(∀n ∈ N)(∀(x, v1, . . . , vm) ∈ K)

Jγ A(x, v1, . . . , vm) =
(
Jγ A(x + γ z),

(
J
γ B−1

i
(vi − γ ri )

)
1≤i≤m

)
. (4.10)

It is shown in [11, Eq. (3.12)] and [11, Eq. (3.13)] that under the condition (4.2),
zer(A + B) �= ∅. Moreover, [11, Eq. (3.21)] and [11, Eq. (3.22)] yield

(x, v1, . . . , vm) ∈ zer(A + B) ⇒ x solves (4.3) and (v1, . . . , vm) solves (4.4).
(4.11)

Let us next set, for every n ∈ N,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xn = (xn, v1,n, . . . , vm,n)

yn = (y1,n, y2,1,n, . . . , y2,m,n)

pn = (p1,n, p2,1,n, . . . , p2,m,n)

qn = (q1,n, q2,1,n, . . . , q2,m,n)

and

⎧
⎪⎨

⎪⎩

an = (a1,n, a2,1,n, . . . , a2,m,n)

bn = (b1,n, b2,1,n, . . . , b2,m,n)

cn = (c1,n, c2,1,n, . . . , c2,m,n).

(4.12)
Then our assumptions imply that

∑

n∈N

√
E[|||an|||2|Fn] < ∞,

∑

n∈N

√
E[|||bn|||2|Fn] < ∞, and

∑

n∈N

√
E[|||cn|||2|Fn] < ∞. (4.13)

Furthermore, it follows from the definition of B, (4.10), and (4.12) that (4.7) can be
rewritten inK as

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎣

yn = xn − γn(Bxn + an)
pn = Jγn A yn + bn
qn = pn − γn(B pn + cn)
xn+1 = xn − yn + qn,

(4.14)

which is (3.32). Moreover, every specific conditions in Corollary 3.2 are satisfied.
(i): By Corollary 3.2(i),

∑
n∈N E[|||xn − pn|||2|Fn] < ∞.

(ii)(a)&(ii)(b): It follows from Corollary 3.2(ii) that

xn ⇀ x and (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi P − a.s. (4.15)

Corollary 3.2(ii) shows that (x, v1, . . . , vm) ∈ zer(A+B). Hence, it follows from [11,
Eq (3.19)] that (x, v1, . . . , vm) satisfies the inclusions

{
− ∑m

i=1 L
∗
i vi − Cx ∈ −z + Ax

(∀i ∈ {1, . . . ,m}) Li x − D−1
i vi ∈ ri + B−1

i vi .
(4.16)
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For every n ∈ N and every i ∈ {1, . . . ,m}, set
{
ỹ1,n = xn−γn

(
Cxn+∑m

i=1 L
∗
i vi,n

)

p̃1,n = Jγn A(ỹ1,n+γnz)
and

{
ỹ2,i,n =vi,n + γn

(
Li xn − D−1

i vi,n
)

p̃2,i,n = J
γn B

−1
i

(ỹ2,i,n − γnri ).

(4.17)
We note that (4.13) implies that

E[|||an|||2|Fn] → 0, E[|||bn|||2|Fn] → 0 and E[|||cn|||2|Fn] → 0 P-a.s.

(4.18)

Then, using [5, Corollary 23.10], we get

{
‖ p̃1,n − p1,n‖ ≤ ‖b1,n‖ + β−1‖a1,n‖,
(∀i ∈ {1, . . . ,m}) ‖ p̃2,i,n − p2,i,n‖ ≤ ‖b2,i,n‖ + β−1‖a2,i,n‖, (4.19)

which and (4.18) imply that

⎧
⎪⎨

⎪⎩

E[‖ p̃1,n − p1,n‖2|Fn] ≤ 2E[‖b1,n‖2 + β−2‖a1,n‖2|Fn] → 0 P-a.s.
(∀i ∈ {1, . . . ,m}) E[‖ p̃2,i,n − p2,i,n‖2|Fn] ≤ 2E[‖b2,i,n‖2

+β−2‖a2,i,n‖2|Fn] → 0 P-a.s.
(4.20)

Since (x, v1 . . . , vm) �→ Jγn A(x − γn
(
Cx + ∑m

i=1 L
∗
i vi ) + γnz) is continuous from

K → H, p̃1,n isFn-measurable. By the same way, for every i ∈ {1, . . . ,m}, p̃2,i,n is
Fn-measurable. In turn, by (i),(ii)(a), and (ii)(b), we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ p̃1,n − xn‖2 = E[‖ p̃1,n − xn‖2|Fn] ≤ 2E[‖p1,n − xn‖2 + ‖ p̃1,n
−p1,n‖2|Fn] → 0 P-a.s.

(∀i ∈ {1, . . . ,m}) ‖ p̃2,i,n − vi,n‖2 = E[‖ p̃2,i,n − vi,n‖2|Fn]
≤ 2E[‖ p̃2,i,n − p2,i,n‖2 + ‖p2,i,n

−vi,n‖2|Fn] → 0 P-a.s.
p̃1,n ⇀ x P-a.s. and (∀i ∈ {1, . . . ,m}) p̃2,i,n ⇀ vi P-a.s.

(4.21)

(ii)(c): We derive from (4.17) that

(∀n ∈ N)

⎧
⎪⎨

⎪⎩

γ −1
n (xn − p̃1,n) − ∑m

i=1 L
∗
i vi,n − Cxn ∈ −z + A p̃1,n

(∀i ∈ {1, . . . ,m}) γ −1
n (vi,n − p̃2,i,n) + Li xn − D−1

i vi,n ∈ ri
+B−1

i p̃2,i,n .

(4.22)

Let�3 be the set of all ω ∈ � such that (xn(ω)− x(ω))n∈N, ( p̃1,n(ω)− x(ω))n∈N and
(∀i ∈ {1, . . . ,m}) (vi,n(ω) − vi (ω))n∈N, ( p̃2,i,n(ω) − vi (ω))n∈N are bounded, and
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(∀i ∈ {1, . . . ,m}) p̃2,i,n(ω)−vi,n(ω) → 0, p̃1,n(ω)− xn(ω) → 0. Set�4 = �3 ∩ ˜�.
Then �4 has probability 1. Now fix ω ∈ �4. Since A is uniformly monotone at x(ω),
using (4.16) and (4.22), there exists an increasing function φA : [0,+∞[→ [0,+∞]
vanishing only at 0 such that, for every n ∈ N,

φA(‖ p̃1,n(ω) − x(ω)‖) �
〈
p̃1,n(ω) − x(ω) | γn(xn(ω)

− p̃1,n(ω)) −
∑m

i=1
(L∗

i vi,n(ω) − L∗
i vi (ω))

〉
− χn(ω)

=
〈
p̃1,n(ω) − x(ω) | γ −1

n (xn(ω) − p̃1,n(ω))
〉
− χn(ω)

−
m∑

i=1

〈
p̃1,n(ω) − x(ω) | L∗

i vi,n(ω) − L∗
i vi (ω)

〉
, (4.23)

where we denote
(∀n ∈ N

)
χn(ω) = 〈

p̃1,n(ω) − x̄(ω) | Cxn(ω) − Cx̄(ω)
〉
. Since

(B−1
i )1≤i≤m are monotone, for every i ∈ {1, . . . ,m}, we obtain

(∀n ∈ N) 0 �
〈
p̃2,i,n(ω) − vi (ω) | Li xn(ω) + γ −1

n (vi,n(ω) − p̃2,i,n(ω)) − Li x(ω)
〉

− βi,n(ω)

=
〈
p̃2,i,n(ω) − vi (ω) | Li (xn(ω) − x(ω)) + γ −1

n (vi,n(ω) − p̃2,i,n(ω))
〉

− βi,n(ω), (4.24)

where
(∀n ∈ N

)
βi,n(ω) =

〈
p̃2,i,n(ω) − vi (ω) | D−1

i vi,n(ω) − D−1
i v̄i (ω)

〉
. Now,

adding (4.24) from i = 1 to i = m and (4.23), we obtain, for every n ∈ N,

φA(‖ p̃1,n(ω) − x(ω)‖) ≤
〈
p̃1,n(ω) − x(ω) | γ −1

n (xn(ω) − p̃1,n(ω))
〉

+
〈

p̃1,n(ω) − x(ω) |
m∑

i=1

L∗
i ( p̃2,i,n(ω) − vi,n(ω))

〉

+
m∑

i=1

〈
p̃2,i,n(ω) − vi (ω) | Li (xn(ω) − p̃1,n(ω))

+γ −1
n (vi,n(ω) − p̃2,i,n(ω))

〉

−χn(ω) −
m∑

i=1

βi,n(ω). (4.25)
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For every n ∈ N and every i ∈ {1, . . . ,m}, we expand χn(ω) and βi,n(ω) as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χn(ω) = 〈xn(ω) − x(ω) | Cxn(ω) − Cx(ω)〉
+ 〈

p̃1,n(ω) − xn(ω) | Cxn(ω) − Cx(ω)
〉
,

βi,n(ω) =
〈
vi,n(ω) − vi (ω) | D−1

i vi,n(ω) − D−1
i vi (ω)

〉

+
〈
p̃2,i,n(ω) − vi,n(ω) | D−1

i vi,n(ω) − D−1
i vi (ω)

〉
.

(4.26)

By monotonicity of C and (D−1
i )1≤i≤m ,

(∀n ∈ N)

{〈xn(ω) − x(ω) | Cxn(ω) − Cx(ω)〉 ≥ 0,

(∀i ∈ {1, . . . ,m})
〈
vi,n(ω) − vi (ω) | D−1

i vi,n(ω) − D−1
i vi (ω)

〉
≥ 0.

(4.27)
Therefore, for every n ∈ N, we derive from (4.26) and (4.25) that

φA(‖ p̃1,n(ω)−x(ω)‖)≤φA(‖ p̃1,n(ω) − x(ω)‖)+〈xn(ω)−x(ω) | Cxn(ω)−Cx(ω)〉

+
m∑

i=1

〈
vi,n(ω) − vi (ω) | D−1

i vi,n(ω) − D−1
i vi (ω)

〉

≤
〈
p̃1,n(ω) − x(ω) | γ −1

n (xn(ω) − p̃1,n(ω))
〉

+
〈

p̃1,n(ω) − x(ω) |
m∑

i=1

L∗
i ( p̃2,i,n(ω) − vi,n(ω))

〉

+
m∑

i=1

〈
p̃2,i,n(ω) − vi (ω) | Li (xn(ω) − p̃1,n(ω))

+γ −1
n (vi,n(ω) − p̃2,i,n(ω))

〉

− 〈
p̃1,n(ω) − xn(ω) | Cxn(ω) − Cx(ω)

〉

−
m∑

i=1

〈
p̃2,i,n(ω) − vi,n(ω) | D−1

i vi,n(ω) − D−1
i vi (ω)

〉
.

(4.28)

We set

ζ = max
1≤i≤m

sup
n∈N

{
‖xn(ω)−x(ω)||, ‖ p̃1,n(ω)−x(ω)‖, ‖vi,n(ω)−vi (ω)‖, ‖ p̃2,i,n(ω)

−vi (ω)‖
}
. (4.29)

Then it follows from the definition of �4 that ζ < ∞, and from our assumption that
(∀n ∈ N) γ −1

n ≤ ε−1. Therefore, using the Cauchy–Schwarz inequality, and the
Lipschitzianity of C and (D−1

i )1≤i≤m , we derive from (4.28) that
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φA(‖ p̃1,n(ω)−x(ω)‖)≤ε−1ζ‖xn(ω)− p̃1,n(ω)‖+ζ

m∑

i=1

(‖Li‖ ‖xn(ω)− p̃1,n(ω)‖

+ ε−1‖vi,n− p̃2,i,n‖
)+ζ

(
m∑

i=1

‖L∗
i ‖‖ p̃2,i,n(ω)−vi,n(ω)‖

+ν0‖ p̃1,n(ω) − xn(ω)‖ +
m∑

i=1

νi‖ p̃2,i,n(ω) − vi,n(ω)‖
)

→ 0. (4.30)

We deduce from (4.30) and (4.21) that φA(‖ p̃1,n(ω) − x(ω)‖) → 0, which implies
that p̃1,n(ω) → x(ω). In turn, xn(ω) → x(ω). Likewise, if C is uniformly monotone
at x(ω), there exists an increasing function φC : [0,+∞[→ [0,+∞] that vanishes
only at 0 such that

φC (‖xn(ω) − x(ω)‖) ≤ ε−1ζ‖xn(ω) − p̃1,n(ω)‖ + ζ

m∑

i=1

(‖Li‖ ‖xn(ω) − p̃1,n(ω)‖

+ ε−1‖vi,n(ω)− p̃2,i,n(ω)‖)+ζ

(
m∑

i=1

‖L∗
i ‖‖ p̃2,i,n(ω)

− vi,n(ω)‖+ν0‖ p̃1,n(ω)−xn(ω)‖+
m∑

i=1

νi‖ p̃2,i,n(ω)−vi,n(ω)‖
)

→ 0, (4.31)

in turn, xn(ω) → x(ω).
(ii)(d): Proceeding as in the proof of (ii)(c), we obtain the conclusions. ��
We provide an application to minimization problems in [11, Section 4] which cover

awide class of convex optimization problems in the literature.We recall that the infimal
convolution of the two functions f and g fromH to ] − ∞,+∞] is

f � g : x �→ inf
y∈H

( f (y) + g(x − y)). (4.32)

The proximity operator of f ∈ �0(H), denoted by prox f , which maps each point

x ∈ H to the unique minimizer of the function f + 1
2‖x − ·‖2.

Example 4.3 Let m be a strictly positive integer. Let H be a real separable Hilbert
space, let z ∈ H, let f ∈ �0(H), let h : H → R be convex differentiable function with
ν0-Lipschitz continuous gradient, for some ν0 ∈]0,+∞[. For every k ∈ {1, . . . ,m},
let (Gk, 〈· | ·〉) be a real separable Hilbert space, let rk ∈ Gk , let gk ∈ �0(Gk), let �k ∈
�0(Gk) be 1/νk-strongly convex, for some νk ∈]0,+∞[. For every k ∈ {1, . . . ,m},
let Lk : H → Gk be a bounded linear operator. The primal problems is to
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minimize
x∈H

(
f (x) − 〈x | z〉 ) +

m∑

k=1

(
�k � gk)

)
(
Lkx − rk

)
+ h(x), (4.33)

and the dual problem is to

minimize
v1∈G1,...,vm∈Gm

( f ∗ � h∗)
(

z −
m∑

i=1

L∗
i vi

)

+
m∑

i=1

(
g∗
i (vi ) + �∗

i (vi ) + 〈vi | ri 〉
)
.

(4.34)
We denote by P1 and D1 be the set of solutions to (4.33) and (4.34), respectively.

Corollary 4.4 In Example 4.3, suppose that

z ∈ ran

(

∂ f +
m∑

i=1

L∗
i

(
(∂gi � ∂�i )(Li · −ri )

) + ∇h

)

. (4.35)

Let (a1,n)n∈N, (b1,n)n∈N, and (c1,n)n∈N be sequences of square integrable H-valued
random vectors, and for every i ∈ {1, . . . ,m}, let (a2,i,n)n∈N, (b2,i,n)n∈N, and
(c2,i,n)n∈N be sequences of square integrable Gi -valued random vectors. Further-
more, set

β = max{ν0, ν1, . . . , νm} +
√√
√
√

m∑

i=1

‖Li‖2, (4.36)

let x0 be a square integrableH-valued random vector, and, for every i ∈ {1, . . . ,m},
let vi,0 be a square integrable Gi -valued random vector, let ε ∈]0, 1/(1 + β)[, let
(γn)n∈N be a sequence in [ε, (1 − ε)/β]. Set

(∀n ∈ N)

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1,n = xn − γn
(∇h(xn) + ∑m

i=1 L
∗
i vi,n + a1,n

)

p1,n = proxγn f (y1,n + γnz) + b1,n
for i = 1, . . . ,m⎢
⎢
⎢
⎢
⎢
⎣

y2,i,n = vi,n + γn
(
Li xn − ∇�∗

i (vi,n) + a2,i,n
)

p2,i,n = proxγng∗
i
(y2,i,n − γnri ) + b2,i,n

q2,i,n = p2,i,n + γn
(
Li p1,n − ∇�∗

i (p2,i,n) + c2,i,n
)

vi,n+1 = vi,n − y2,i,n + q2,i,n
q1,n = p1,n − γn

(∇h(p1,n) + ∑m
i=1 L

∗
i p2,i,n + c1,n

)

xn+1 = xn − y1,n + q1,n .

(4.37)

Suppose that the following conditions hold for Fn = σ((xk, (vi,k)1≤i≤m)0≤k≤n,

⎧
⎪⎨

⎪⎩

∑
n∈N

√
E[|||(a1,n, (a2,i,n)1≤i≤m)|||2|Fn] < +∞

∑
n∈N

√
E[‖(b1,n, (b2,i,n)1≤i≤m)|||2|Fn] < +∞

∑
n∈N

√
E[|||(c1,n, (c2,i,n)1≤i≤m)|||2|Fn] < +∞.

(4.38)

Then the following hold.
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(i)
∑

n∈N E[‖xn − p1,n‖2|Fn] < +∞ and (∀i ∈ {1, . . . ,m}) ∑
n∈N E[‖vi,n −

p2,i,n‖2|Fn] < +∞.
(ii) There exist a P1-valued random vector x and a D1-valued random vector

(v1, . . . , vm) such that the following hold.
(a) xn ⇀ x and proxγn f (xn − γn(∇h(xn) + ∑m

i=1 L
∗
i vi,n) + γnz) ⇀ x P-a.s.

(b) (∀i ∈ {1, . . . ,m}) vi,n ⇀ vi and proxγ g∗
i
(vi,n + γn

(
Li xn − ∇�∗

i (vi,n) −
γnri ) ⇀ vi P-a.s.

(c) Suppose that f or ∇h is uniformly convex at x(ω) for every ω ∈ �̃ ⊂ � with
P(�̃) = 1, then xn → x and proxγn f (xn − γn(∇h(xn) + ∑m

i=1 L
∗
i vi,n) +

γnz) → x P-a.s.
(d) Suppose that g∗

j or �∗
j is uniformly convex at v j (ω) for every ω ∈ �̃ ⊂ � with

P(�̃) = 1, for some j ∈ {1, . . . ,m}, then v j,n → v j and proxγng∗
j
(v j,n +

γn
(
L j xn − ∇�∗

j (v j,n) − γnr j ) → v j P-a.s.

Proof Using the same argument as in the proof [11, Theorem 4.2], the conclusions
follows from Corollary 4.2. ��
Remark 4.5 Here are some comments.

(i) By using Remark 3.1, an extension of Corollary 4.2 to the variable metric setting
is straightforward.

(ii) Almost sure convergence for someprimal-dual splittingmethods solving compos-
ite monotone inclusions and composite minimization problems are also presented
in [12,19].

(iii) In the deterministic setting and in the case when each �k is the indicator function
of {0}, and (∀k ∈ {1, . . . ,m})rk = 0, and z = 0, a preconditioned algorithm for
solving (4.33) can be found in [22].
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