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Abstract
This paper aims to obtain a strong convergence result for a Douglas–Rachford split-
ting method with inertial extrapolation step for finding a zero of the sum of two 
set-valued maximal monotone operators without any further assumption of uniform 
monotonicity on any of the involved maximal monotone operators. Furthermore, 
our proposed method is easy to implement and the inertial factor in our proposed 
method is a natural choice. Our method of proof is of independent interest. Finally, 
some numerical implementations are given to confirm the theoretical analysis.
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1  Introduction

Let H be a real Hilbert space with scalar product ⟨., .⟩ and induced norm ‖ ⋅ ‖ . An oper-
ator A ∶ H → 2H with domain D(A) is said to be monotone if

A is maximal monotone if its graph

is not properly contained in the graph of any other monotone operators.
Let us consider the inclusion problem of the form

where A and B are set-valued maximal monotone operators in H. Throughout this 
paper, we assume that the set of solution, denoted by S, of (1) is nonempty.

The proximal point algorithm (PPA) is the well-known method for solving inclusion 
problem (1) (see, Lions and Mercier 1979; Martinet 1970; Moreau 1965; Rockafellar 
1976). The PPA for solving (1) is expressed as

where 𝜆 > 0 is the proximal parameter. Now, implementing PPA (2) to solve (1) 
requires computing the resolvent operator of the sum A + B exactly. This is very dif-
ficult to implement and could be as hard as the original inclusion problem (1). This 
difficulty has led many authors to consider the operator splitting approach to solve 
(1). The aim of operator splitting method is to circumvent the computation of J�

A+B
 

when implementing (2) but rather consider the computation of J�
A
 and J�

B
 (Eckstein 

and Bertsekas 1992; Glowinski and Le Tallec 1989; Lions and Mercier 1979).
When both A and B are single-valued linear operators in (1), Douglas and Rachford 

(1956) proposed the following method for solving heat conduction problems:

We can eliminate u
k+

1

2

 in (3) above and obtain

Define zk ∶=
(
J�
B

)−1

uk ⇔ uk = J�
B
(zk) . Then, (4) reduces to the following splitting 

method (known as Douglas–Rachford splitting method)

⟨u − v, x − y⟩ ≥ 0 ∀x, y ∈ D(A), u ∈ Ax, v ∈ Ay.

G(A) ∶= {(x, y) ∶ x ∈ D(A), y ∈ Ax}

(1)0 ∈ A(u) + B(u),

(2)0 ∈ A(uk+1) + B(uk+1) +
1

�
(uk+1 − uk),

(3)

⎧⎪⎨⎪⎩

1

�

�
u
k+

1

2

− u
k

�
+ A

�
u
k+

1

2

�
+ B(u

k
) = 0,

1

�

�
u
k+1 − u

k+
1

2

�
+ B

�
u
k+1

�
− B(u

k
) = 0.

(4)
(
J�
B

)−1

uk+1 =
(
J�
A
(2J�

B
− I) + (I − J�

B
)
)(

J�
B

)−1

uk.

(5)zk+1 = J�
A
(2J�

B
− I)zk + (I − J�

B
)zk.
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Lions and Mercier (1979) extended the Douglas–Rachford splitting method (5) to the 
generic case where both A and B are set-valued nonlinear operators as in our prob-
lem (1). The Douglas–Rachford splitting method (5) to the generic case is explained 
as follows in Lions and Mercier (1979): Starting from an arbitrary iterate u1 in the 
domain of B, choosing b1 ∈ B(u1) and setting z1 = u1 + �b1 , then u1 = J�

B
(z1) (the 

existence of the pair (u1, z1) is unique by the Representation Lemma, see Eckstein and 
Bertsekas 1992, cor. 2.3). Thus a sequence {zk} is generated by the Douglas–Rach-
ford scheme (5); and consequently a sequence {uk ∶= J�

B
(zk)} converging to a solution 

point of (1) can be generated (see Eckstein 1989, Thm. 3.15). We refer to Combettes 
(2004) for the precise connection between (5) and the original Douglas–Rachford 
scheme in Douglas and Rachford (1956) for heat conduction problems. More details 
on Douglas–Rachford splitting method (5) can also be found in Fukushima (1996), 
Gabay and Mercier (1976) and Glowinski and Marrocco (1975).

1.1 � Motivations and contributions

Boţ et al. (2015) gave the following method for solving (1): z0 = z1;

where {�k} is a non-decreasing sequence with 0 ≤ 𝛼k ≤ 𝛼 < 1,∀k ≥ 1 and 𝜆, 𝜎, 𝛿 > 0 
such that 

(a)	 𝛿 >
𝛼2(1+𝛼)+𝛼𝜎

1−𝛼2
 ; and

(b)	 0 < 𝜆 ≤ 𝛽k ≤ 𝜃 ∶= 2
𝛿−𝛼[𝛼(1+𝛼)+𝛼𝛿+𝜎]

𝛿[1+𝛼(1+𝛼)+𝛼𝛿+𝜎]
.

Boţ et  al. (2015) obtained weak convergence analysis of algorithm (6) for find-
ing common zeros of the sum of two maximal monotone operators and illus-
trate their results through some numerical experiments. The same conditions 
(a) and (b) above have been used in recent works in Dong et  al. (2018), Shehu 
(2018) and other associated papers. When �k = 0 , it was proved in Bauschke and 
Combettes (2011, Thm. 25.6(vii)) that {zk} in (6) converges strongly to a solu-
tion of (1) if either A or B is uniformly monotone (A is uniformly monotone if 
⟨x − y, u − v⟩ ≥ �(‖x − y‖),∀u ∈ Ax, v ∈ Ay , where � ∶ [0,∞) → [0,∞) is increas-
ing and vanishes only at zero) on every nonempty bounded subset of its domain.

When �k = 1 and B ≡ 0 , then (6) reduces to the inertial proximal point method 
proposed by Alvarez and Attouch (2001). In this case, Alvarez and Attouch (2001) 
assumed that the inertial factor �k satisfies the condition 0 ≤ 𝛼k ≤ 𝛼k+1 ≤ 𝛼 <

1

3
 in 

their convergence result. However, the assumption on the inertial factor �k imposed 
in (6) does not appear as simple as condition 0 ≤ 𝛼k ≤ 𝛼k+1 ≤ 𝛼 <

1

3
 , assumed by 

Alvarez and Attouch (2001).

(6)

⎧⎪⎪⎨⎪⎪⎩

u
k
= J

�
B
(z

k
+ �

k
(z

k
− z

k−1))

w
k
= J

�
A
(2u

k
− z

k
− �

k
(z

k
− z

k−1))

z
k+1 ∶= z

k
+ �

k
(z

k
− z

k−1) + �
k
(w

k
− u

k
),
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Problems arise in infinite dimensional spaces in many disciplines like eco-
nomics, image recovery, electromagnetics, quantum physics, and control theory. 
For such problems, strong convergence of sequence of iterates zk of the proposed 
iterative procedure is often much more desirable than weak convergence. This 
is because strong convergence translates the physically tangible property that 
the energy ‖zk − z‖ of the error between the iterate zk and a solution z eventu-
ally becomes arbitrarily small. Another importance of strong convergence is also 
underlined in the works of Güler (1991), where a convex function f is minimized 
through the proximal point algorithm. Güler (1991) showed that the rate of con-
vergence of the value sequence {f (zk)} is better when {zk} converges strongly than 
when it converges weakly. For more details on importance of strong convergence, 
please see Bauschke and Combettes (2001).

Strong convergence methods for solving problem (1) when B is set-valued 
maximal monotone operator and A is a single-valued �-inverse strongly mono-
tone operator (i.e., ⟨Ax − Ay, x − y⟩ ≥ �‖Ax − Ay‖2, ∀x, y ∈ H ) have been studied 
extensively in the literature (see, for example, Boikanyo 2016; Chang et al. 2019; 
Cholamjiak 2016; Cholamjiak et  al. 2018; Dong et  al. 2017; Gibali and Thong 
2018; López et  al. 2012; Riahi et  al. 2018; Shehu 2016, 2019; Shehu and Cai 
2018; Thong and Cholamjiak 2019; Wang and Wang 2018). However, there are 
still few results on the strong convergence results concerning more general case 
of problem (1) when A and B are set-valued maximal monotone operators. This is 
the gap that this paper aims to fill in.

Our aim in this paper is to prove the strong convergence analysis of the inertial 
Douglas–Rachford splitting method with different conditions from the conditions 
(a) and (b) assumed in Boţ et al. (2015) without assuming uniform monotonicity 
on either maximal monotone operator A or B. Furthermore our assumptions on 
the inertial factor �k here in this paper are the same assumptions in the results of 
Alvarez and Attouch (2001) (which is a special case of our result). In summary,

•	 We prove strong convergence analysis of inertial Douglas–Rachford split-
ting method without using the conditions (a) and (b) assumed in Boţ et  al. 
(2015). Our inertial conditions are the same as the ones assumed in Alvarez 
and Attouch (2001) for finding zero of a set-valued maximal monotone opera-
tor using inertial proximal method.

•	 We obtain strong convergence results without assuming that any of the 
involved maximal monotone operators is uniformly monotone on every non-
empty bounded subset. Our strong convergence results are much more general 
than the current ones in Bauschke and Combettes (2011) and other associated 
works where strong convergence is obtained.

•	 Some numerical examples are given to confirm the importance of the presence 
of inertial term in our method.

The paper is therefore organized as follows: We first recall some basic explana-
tions of Douglas–Rachford splitting method and introduce our inertial Doug-
las–Rachford splitting method alongside some results in Sect. 2. The analysis of 
strong convergence of our proposed method is then investigated in Sect.  3. We 
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give numerical implementations in Sect. 4 and conclude with some final remarks 
in Sect. 5.

2 � Preliminaries

Let us first recall some basics that are required to derive and analyze the Doug-
las–Rachford splitting method; for the corresponding details, we refer, Eckstein and 
Bertsekas (1992), He and Yuan (2015), Svaiter (2011) and Zhang and Cheng (2013).

Let 𝜆 > 0 be a fixed parameter, and let us denote by

the resolvents of A and B, respectively, which are known to be firmly nonexpansive 
(operator T is firmly-nonexpansive if ⟨x − y,Tx − Ty⟩ ≥ ‖Tx − Ty‖2, ∀x, y ∈ H ). 
Furthermore, let us write

for the corresponding reflections (also called Cayley operators), and 
note that the reflections are nonexpansive operators (T is nonexpansive if 
‖Tx − Ty‖ ≤ ‖x − y‖, ∀x, y ∈ H).

In Eckstein and Bertsekas (1992) and He and Yuan (2015), the maximal mono-
tone operator S�,A,B is defined as

It was shown in Eckstein and Bertsekas (1992) that the Douglas–Rachford splitting 
method (5) can be converted to

By Eckstein and Bertsekas (1992, Thm. 5), for any given zero z∗ of S�,A,B , J�
B
(z∗) is a 

zero of A + B . Therefore, J�
B
(z∗) is a solution of (1) whenever z∗ satisfies

Consequently, the Douglas–Rachford splitting method (5) can be rewritten as

where e(zk, �) ∶=
1

2
(zk − R�

A
oR�

B
(zk)).

J�
A
∶= (I + �A)−1 and J�

B
∶= (I + �B)−1

R�

A
∶= 2J�

A
− I and R�

B
∶= 2J�

B
− I

S�,A,B ∶= {(v + �b, u − v) ∶ (u, b) ∈ B, (v, a) ∈ A, v + �a = u − �b}.

zk+1 =
(
J�
A
(2J�

B
− I) + (I − J�

B
)
)
zk = (I + S�,A,B)

−1zk = JS�,A,B(zk).

(7)z∗ = R�

A
oR�

B
(z∗).

(8)

zk+1 = J�
A
(2J�

B
− I)zk + (I − J�

B
)zk

= zk +
1

2
(2J�

A
(2J�

B
(zk) − zk) − (2J�

B
(zk) − zk) − zk)

= zk +
1

2
(R�

A
oR�

B
(zk) − zk)

= zk − e(zk, �),
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In this paper, our convergence analysis will be conducted for an inertial general-
ized version of Douglas–Rachford splitting method (8): z0, z1 ∈ H,

with �k ∈ [0, 1), �k ∈ (0, 1] and �k ∈ [0, 1) . We get the original Douglas–Rachford 
method (8) when �k = 1, �k = 0 = �k in (9).

We next recall some properties of the projection. For any point u ∈ H , there 
exists a unique point PCu ∈ C such that

PC is called the metric projection  of H onto C. We know that PC is a nonexpansive 
mapping of H onto C. It is also known that PC satisfies

In particular, we get from (10) that

Furthermore, PCx is characterized by the properties

This characterization implies that

The following result is obtained (Shehu et al. 2020) but we give the proof for the 
sake of completeness.

Lemma 2.1  Let S ⊆ H be a nonempty, closed, and convex subset of 
a real Hilbert space H. Let u ∈ H be arbitrarily given, z ∶= PSu , and 
Ω ∶= {x ∈ H ∶ ⟨x − u, x − z⟩ ≤ 0} . Then Ω ∩ S = {z}.

Proof  By definition, it follows immediately that z ∈ Ω ∩ S . Conversely, take an arbi-
trary y ∈ Ω ∩ S . Then, in particular, we have y ∈ Ω , and it therefore follows that

Using z = PSu together with the characterization (12), we also have

In particular, since y ∈ S , we therefore have ⟨u − z, z − y⟩ ≥ 0 . Hence (14) implies 
‖y − z‖2 ≤ 0 , so that y = z . This completes the proof. 	� ◻

(9)
{

yk = �kz0 + (1 − �k)zk + �k(zk − zk−1)

zk+1 = yk − �ke(yk, �),

‖u − PCu‖ ≤ ‖u − y‖, ∀y ∈ C.

(10)⟨x − y,PCx − PCy⟩ ≥ ‖PCx − PCy‖2 ∀x, y,∈ H.

(11)⟨x − y, x − PCy⟩ ≥ ‖x − PCy‖2, ∀x ∈ C, y ∈ H.

(12)PCx ∈ C and ⟨x − PCx,PCx − y⟩ ≥ 0, ∀y ∈ C.

(13)‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PCx‖2 ∀x ∈ H,∀y ∈ C.

(14)
‖y − z‖2 = ⟨y − z, y − z⟩

= ⟨y − z, y − u⟩ + ⟨y − z, u − z⟩
≤ ⟨y − z, u − z⟩.

⟨u − z, z − x⟩ ≥ 0 ∀x ∈ S.
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Finally, we state some basic properties that will be used in our convergence 
theorems.

Lemma 2.2  The following statements hold in H: 

(a)	 ‖x + y‖2 = ‖x‖2 + 2⟨x, y⟩ + ‖y‖2 for all x, y ∈ H.
(b)	 2⟨x − y, x − z⟩ = ‖x − y‖2 + ‖x − z‖2 − ‖y − z‖2 for all x, y, z ∈ H.
(c)	 ‖tx + sy‖2 = t(t + s)‖x‖2 + s(t + s)‖y‖2 − st‖x − y‖2, ∀x, y ∈ H,∀s, t ∈ ℝ.

Lemma 2.3  (Maingé 2008) Assume that �k ∈ [0,∞) and �k ∈ [0,∞) satisfy:

(1)	 �k+1 − �n ≤ �k(�k − �k−1) + �k,

(2)	
∑∞

k=1
𝛿k < ∞,

(3)	 {𝜃k} ⊂ [0, 𝜃], where � ∈ (0, 1).

Then the sequence {�k} is convergent with 
∑∞

k=1
[𝜑k+1 − 𝜑k]+ < ∞, where 

[t]+ ∶= max{t, 0} (for any t ∈ ℝ).

3 � Analysis of the convergence

For the rest of this paper, we assume that S ≠ ∅ , �k ∈ (0, 1) with limk→∞ �k = 0 
and 

∑∞

k=1
�k = ∞ , 0 < 𝛽 ≤ 𝛽k ≤ 1 and 0 ≤ 𝜃k ≤ 𝜃k+1 ≤ 𝜃 <

1

3
.

Lemma 3.1  Let {zk} be the sequence generated by (9). For any z satisfying (7), we 
have

Proof  By (9), we get

We know that e(yk, �) =
1

2
(yk − R�

A
oR�

B
(yk)) , where 𝜆 > 0 is the proximal parameter, 

is firmly-nonexpansive (see, He and Yuan 2015, lem. 2.2). Thus,

In particular, for z = R�
A
oR�

B
(z) , we obtain

Putting (17) into (16), we have

(15)‖zk+1 − z‖2 ≤ ‖yk − z‖2 − ‖zk+1 − yk‖2.

(16)
‖zk+1 − z‖2 =‖yk − z − �ke(yk, �)‖2

=‖yk − z‖2 − 2�k⟨yk − z, e(yk, �)⟩ + �2
k
‖e(yk, �)‖2.

⟨x − y, e(x, 𝜆) − e(y, 𝜆)⟩ ≥ ‖e(x, 𝜆) − e(y, 𝜆)‖2, ∀x, y ∈ H, 𝜆 > 0.

(17)⟨yk − z, e(yk, �)⟩ ≥ ‖e(yk, �)‖2.



	 Y. Shehu et al.

1 3

Recall that �ke(yk, �) = yk − zk+1 implies that

Using (19) in (18) and the condition that 0 < 𝛽 ≤ 𝛽k ≤ 1 , we have

	�  ◻

Lemma 3.2  Let {zk} be the sequence generated by (9). For any z satisfying (7), we 
have

Proof  Moreover, from the definition of yk , we obtain using Lemma 2.2 (a) that

and, similarly, with z replaced by zk+1 in the previous formula,

Substituting (21) and (22) into (15) and eliminating identical terms, we get

(18)
‖zk+1 − z‖2 ≤ ‖yk − z‖2 − 2�k‖e(yk, �)‖2 + �2

k
‖e(yk, �)‖2

= ‖yk − z‖2 − �k(2 − �k)‖e(yk, �)‖2.

(19)e(yk, �) =
1

�k
(yk − zk+1).

‖zk+1 − z‖2 ≤ ‖yk − z‖2 − �k(2 − �k)
1

�2
k

‖zk+1 − yk‖2

= ‖yk − z‖2 − 2 − �k

�k
‖zk+1 − yk‖2

≤ ‖yk − z‖2 − ‖zk+1 − yk‖2.

(20)

− 2�k⟨zk − z, zk − z0⟩
≥ ‖zk+1 − z‖2 − ‖zk − z‖2 + 2�k+1‖zk+1 − zk‖2 − 2�k‖zk − zk−1‖2
+ �k+1‖z0 − zk+1‖2 − �k‖zk − z0‖2 − �k‖zk − z‖2 + �k−1‖zk−1 − z‖2
+ (1 − 3�k+1 − �k)‖zk − zk+1‖2.

(21)

‖yk − z‖2 =‖(zk − z) + �k(zk − zk−1) − �k(zk − z0)‖2
=‖zk − z‖2 + ‖�k(zk − zk−1) − �k(zk − z0)‖2
+ 2

�
zk − z, �k(zk − zk−1) − �k(zk − z0)

�

=‖zk − z‖2 + 2�k⟨zk − z, zk − zk−1⟩ − 2�k⟨zk − z, zk − z0⟩
+ ‖�k(zk − zk−1) − �k(zk − z0)‖2,

(22)

‖yk − zk+1‖2
=‖zk − zk+1‖2 + 2�k⟨zk − zk+1, zk − zk−1⟩
− 2�k⟨zk − zk+1, zk − z0⟩ + ‖�k(zk − zk−1) − �k(zk − z0)‖2.
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Therefore, we obtain

where the last identity exploits Lemma 2.2 (a) twice. We therefore have

Using the fact that {�k} is non-decreasing and {�k} is non-increasing, we then obtain

which is the desired inequality. 	�  ◻

Our first central result below shows that the sequence {zk} generated by (9) is 
bounded.

Lemma 3.3  The sequence {zk} generated by (9) is bounded.

Proof  A simple re-ordering of (20) implies that

(23)

‖zk+1 − z‖2
≤ ‖zk − z‖2 + 2�k⟨zk − z, zk − zk−1⟩
− 2�k⟨zk − z, zk − z0⟩ − ‖zk − zk+1‖2
− 2�k⟨zk − zk+1, zk − zk−1⟩ + 2�k⟨zk − zk+1, zk − z0⟩

= ‖zk − z‖2 + 2�k⟨zk − z, zk − zk−1⟩
− 2�k⟨zk − z, zk − z0⟩ − ‖zk − zk+1‖2 + �k‖zk − zk+1‖2 + �k‖zk − zk−1‖2
− �k‖zk − zk+1 + (zk − zk−1)‖2 + 2�k⟨zk − zk+1, zk − z0⟩.

(24)

‖zk+1 − z‖2 − ‖zk − z‖2 − �k‖zk − zk−1‖2 + (1 − �k)‖zk − zk+1‖2
≤ −2�k⟨zk − z, zk − z0⟩ + 2�k⟨zk − z, zk − zk−1⟩ + 2�k⟨zk − zk+1, zk − z0⟩
= −2�k⟨zk − z, zk − z0⟩ − �k‖zk−1 − z‖2 + �k‖zk − z‖2 + �k‖zk − zk−1‖2
− �k‖z0 − zk+1‖2 + �k‖zk+1 − zk‖2 + �k‖zk − z0‖2,

(25)−2�k⟨zk − z, zk − z0⟩

(26)

≥ ‖zk+1 − z‖2 − ‖zk − z‖2 + 2�k+1‖zk+1 − zk‖2 − 2�k‖zk − zk−1‖2
+ �k

�‖zk−1 − z‖2 − ‖zk − z‖2� + �k
�‖z0 − zk+1‖2 − ‖zk − z0‖2

�

+ (1 − �k − 2�k+1 − �k)‖zk+1 − zk‖2.

− 2�k⟨zk − z, zk − z0⟩
≥ ‖zk+1 − z‖2 − ‖zk − z‖2 + 2�k+1‖zk+1 − zk‖2 − 2�k‖zk − zk−1‖2
+ �k+1‖z0 − zk+1‖2 − �k‖zk − z0‖2 − �k‖zk − z‖2 + �k−1‖zk−1 − z‖2
+ (1 − 3�k+1 − �k)‖zk − zk+1‖2,
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where the equality uses once again Lemma 2.2 (a). Hence, by cancellation, re-order-
ing, and neglecting a non-positive term on the right-hand side, we obtain

Let �j ∶= e
∑j

i=1
�i , j ≥ 1 . Using 1 − x ≤ e−x for all x ∈ ℝ (or equivalently, 

1 − e−x ≤ x, x ∈ ℝ ), we obtain

Then (29) consequently implies that

Since {�k} is non-increasing in (0,1), this implies

It then follows from (28) and (30) that

(27)

‖zk+1 − z‖2 − ‖zk − z‖2
≤ �k‖zk − z‖2 − �k−1‖zk−1 − z‖2 − (1 − 3�k+1 − �k)‖zk − zk+1‖2
− 2�k+1‖zk+1 − zk‖2 + 2�k‖zk − zk−1‖2 − �k+1‖z0 − zk+1‖2
+ �k‖zk − z0‖2 − 2�k⟨zk − z0, zk − z⟩

= �k‖zk − z‖2 − �k−1‖zk−1 − z‖2 − (1 − 3�k+1 − �k)‖zk − zk+1‖2
− 2�k+1‖zk+1 − zk‖2 + 2�k‖zk − zk−1‖2 − �k+1‖z0 − zk+1‖2
+ �k‖zk − z0‖2 + �k‖z0 − z‖2 − �k‖zk − z0‖2 − �k‖zk − z‖2,

(28)

‖zk+1 − z‖2 − ‖zk − z‖2 + �k‖zk − z‖2
≤ �k‖zk − z‖2 − �k−1‖zk−1 − z‖2 − (1 − 3�k+1 − �k)‖zk − zk+1‖2
− 2�k+1‖zk+1 − zk‖2 + 2�k‖zk − zk−1‖2 + �k‖z0 − z‖2.

(29)

1

�k+1

(�k+1 − �k) =1 −
�k

�k+1

=1 − e(
∑k

i=1
�i−

∑k+1
i=1

�i)

=1 − e−�k+1 ≤ �k+1.

1

�k+1

�
�k+1‖zk+1 − z‖2 − �k‖zk − z‖2�

= ‖zk+1 − z‖2 − ‖zk − z‖2 + 1

�k+1

(�k+1 − �k)‖zk − z‖2

≤ ‖zk+1 − z‖2 − ‖zk − z‖2 + �k+1‖zk − z‖2.

(30)
1

�k+1

�
�k+1‖zk+1 − z‖2 − �k‖zk − z‖2�

≤ ‖zk+1 − z‖2 − ‖zk − z‖2 + �k‖zk − z‖2.
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Since �k ≤ �k+1 , �k+1 = �ke
�k+1 and {�k} is non-increasing in (0,1), we therefore get

which can be rewritten as (since {�k} is non-increasing in (0,1))

Since the sequence {�k} belongs to the interval [0, �] , we have

Using limk→∞ �k = 0 and � ∈ [0, 1∕3) , it follows that the right-hand side is eventu-
ally bounded from below by a positive number, i.e., there is a constant 𝛾 > 0 such 
that 1 − �k+1

(
3 + 2(e�k+1 − 1)

)
− �k ≥ � for all k ∈ ℕ sufficiently large, say, for all 

k ≥ k0 . Hence, we have

This implies that for k ≥ k0,

Thus, dividing by �k+1 and omitting a non-positive term, we get

1

�k+1

�
�k+1‖zk+1 − z‖2 − �k‖zk − z‖2�

≤ �k‖zk − z‖2 − �k−1‖zk−1 − z‖2
− (1 − 3�k+1 − �k)‖zk − zk+1‖2 − 2�k+1‖zk+1 − zk‖2
+ 2�k‖zk − zk−1‖2 + �k‖z0 − z‖2.

�k+1‖zk+1 − z‖2 − �k‖zk − z‖2
≤ �k+1�k‖zk − z‖2 − �k�k−1‖zk−1 − z‖2 − �k+1(1 − 3�k+1 − �k)‖zk+1 − zk‖2
− 2�k+1�k+1‖zk+1 − zk‖2 + 2�k�ke

�k+1‖zk − zk−1‖2 + �k+1�k‖z0 − z‖2,

�k+1‖zk+1 − z‖2 − �k‖zk − z‖2
≤ �k+1�k‖zk − z‖2 − �k�k−1‖zk−1 − z‖2
− �k+1

�
1 − �k+1

�
3 + 2(e�k+1 − 1)

�
− �k

�‖zk+1 − zk‖2
− 2�k+1�k+1e

�k+1‖zk+1 − zk‖2 + 2�k�ke
�k‖zk − zk−1‖2 + �k+1�k‖z0 − z‖2.

1 − �k+1
(
3 + 2(e�k+1 − 1)

)
− �k ≥ 1 − �

(
3 + 2(e�k+1 − 1)

)
− �k, ∀k ∈ ℕ.

�k+1‖zk+1 − z‖2 − �k‖zk − z‖2
≤ �k+1�k‖zk − z‖2 − �k�k−1‖zk−1 − z‖2 − 2�k+1�k+1e

�k+1‖zk+1 − zk‖2
− ��k+1‖zk+1 − zk‖2 + 2�k�ke

�k‖zk − zk−1‖2 + �k+1�k‖z0 − z‖2.

(31)

‖z0 − z‖2
k�

j=k0+1

�j+1�j

≥ �k+1‖zk+1 − z‖2 + 2�k+1�k+1e
�k+1‖zk+1 − zk‖2 − �k+1�k‖zk − z‖2

− �k0+1
‖zk0+1 − z‖2 − 2�k0+1

�k0+1e
�k0+1‖zk0+1 − zk0‖2

+ �k0+1
�k0‖zk0 − z‖2.
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where tk ∶=
∑k

i=1
�i . Since �k ∈ (0, 1) for all k ∈ ℕ , it is easy to see that 

�ke
tk+1 ≤ e2(etk − etk−1 ) for all k ≥ 2 , so that

which, by (32), e−tk+1 ≤ 1 , and the fact that {�k} belongs to the interval [0, 𝜃] ⊂ [0,
1

3
) , 

yields

Using (33), � ∈ [0, 1) , and the convergence of the geometric series, a simple calcula-
tion gives

Using once again that 𝜃 < 1 , this shows that {zk} is bounded. 	�  ◻

Next, we formulate a simple lemma that turns out to be useful for proving the 
strong convergence result.

Lemma 3.4  Let {zk} be the sequence generated by (9). Define

for all k ∈ ℕ . Then uk ≥ 0 for all k ∈ ℕ.

Proof  Since {�k} is non-decreasing with 0 ≤ 𝜃k <
1

3
 , and by Lemma 2.2 (a), we have

(32)

‖zk+1 − z‖2 − �k‖zk − z‖2
≤ e−tk+1

�
�k0+1

‖zk0+1 − z‖2 + 2�k0+1
�k0+1e

�k0+1‖zk0+1 − zk0‖2

− �k0+1
�k0‖zk0 − z‖2� + ‖z0 − z‖2e−tk+1

k�
j=k0+1

�je
tj+1,

k∑
j=k0+1

�j+1�j =

k∑
j=k0+1

�je
tj+1 ≤ e2

(
etk − e

tk0
)
≤ e2etk ,

(33)

‖zk+1 − z‖2
≤ �‖zk − z‖2 + �k0+1

‖zk0+1 − z‖2 + 2�k0+1
�k0+1e

�k0+1‖zk0+1 − zk0‖2
+ e2‖z0 − z‖2.

‖zk+1 − z‖2 ≤�k−k0‖zk0+1 − z‖2 + 1

1 − �

�
�k0+1

‖zk0+1 − z‖2
+ 2�k0+1

�k0+1e
�k0+1‖zk0+1 − zk0‖2 + e2‖z0 − z‖2�.

uk ∶= ‖zk − z‖2 − �k−1‖zk−1 − z‖2 + 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2
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and this completes the proof. 	�  ◻

Before we prove our main strong convergence result, we state another prelimi-
nary result which provides sufficient conditions for the strong convergence of the 
sequence {zk} generated by our method (9). In our strong convergence result, we will 
then show that these sufficient conditions automatically hold.

Lemma 3.5  Let {zk} be the sequence generated by (9). Assume that

and

Then the entire sequence {zk} converges strongly to the solution z.

Proof  By assumption, we have

We claim that this already implies

uk = ‖zk − z‖2 − �k−1‖zk−1 − zk + zk − z‖2 + 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2
= ‖zk − z‖2 − �k−1

�‖zk−1 − zk‖2 + ‖zk − z‖2 + 2⟨zk−1 − zk, zk − z⟩�

+ 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2
= ‖zk − z‖2 − �k−1

�
2‖zk−1 − zk‖2 + 2‖zk − z‖2 − ‖zk−1 − 2zk − z‖2�

+ 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2
= ‖zk − z‖2 − 2�k−1‖zk−1 − zk‖2 − 2�k−1‖zk − z‖2 + �k−1‖zk−1 − 2zk − z‖2
+ 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2

≥ ‖zk − z‖2 − 2�k‖zk−1 − zk‖2 − 2

3
‖zk − z‖2 + �k−1‖zk−1 − 2zk − z‖2

+ 2�k‖zk − zk−1‖2 + �k‖zk − z0‖2

≥
1

3
‖zk − z‖2 + �k‖zk − z0‖2

≥0,

lim
k→∞

‖zk+1 − zk‖ = 0

lim
k→∞

(‖zk+1 − z‖2 − �k‖zk − z‖2) = 0.

(34)
0 = lim

k→∞
(‖zk+1 − z‖2 − �k‖zk − z‖2)

= lim
k→∞

�
(‖zk+1 − z‖ +√

�k‖zk − z‖)(‖zk+1 − z‖ −√
�k‖zk − z‖)

�
.

lim
k→∞

(‖zk+1 − z‖ +√
�k‖zk − z‖) = 0,
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from which the strong convergence of the entire sequence {zk} to z follows immedi-
ately. Assume this limit does not hold. Then there is a subset K ⊆ ℕ and a constant 
𝜌 > 0 such that

Since limk→∞ ‖zk+1 − zk‖ = 0 by the assumption and 0 ≤ 𝜃 < 1 , then (recall that if 
{ak} and {bk} are bounded sequences in ℝ and one of either {ak} or {bk} converges, 
then lim supk→∞(ak + bk) = lim supk→∞ ak + lim supk→∞ bk)

Using (34) and 𝜃k ≤ 𝜃 < 1 , we get

Consequently, we have lim supk∈K ‖zk − z‖ ≤ 0. Since lim infk∈K ‖zk − z‖ ≥ 0 obvi-
ously holds, it follows that limk∈K ‖zk − z‖ = 0. This implies [by (35)]

for all k ∈ K sufficiently large, a contradiction to the assumption that 
limk→∞ ‖zk+1 − zk‖ = 0. This completes the proof. 	�  ◻

We are now ready to obtain strong convergence of the sequence {zk} generated 
by (9) to an element of S.

Theorem  3.6  The sequence {zk} generated by (9) strongly converges to z, where 
z = PSz0.

(35)‖zk+1 − z‖ +√
�k‖zk − z‖ ≥ �,∀k ∈ K.

lim sup
k∈K

((1 −
√
�)‖zk − z‖ − ‖zk+1 − zk‖) = lim sup

k∈K

(1 −
√
�)‖zk − z‖ − lim

k∈K
‖zk+1 − zk‖

=(1 −
√
�) lim sup

k∈K

‖zk − z‖ − lim
k∈K

‖zk+1 − zk‖.

0 = lim
k∈K

(‖zk+1 − z‖ −√
�k‖zk − z‖)

= lim sup
k∈K

(‖zk+1 − zk + zk − z‖ −√
�k‖zk − z‖)

≥ lim sup
k∈K

(‖zk − z‖ − ‖zk+1 − zk‖ −
√
�k‖zk − z‖)

≥ lim sup
k∈K

((1 −
√
�)‖zk − z‖ − ‖zk+1 − zk‖)

= (1 −
√
�) lim sup

k∈K

‖zk − z‖ − lim
k∈K

‖zk+1 − zk‖

= (1 −
√
�) lim sup

k∈K

‖zk − z‖.

‖zk+1 − zk‖ ≥ ‖zk+1 − z‖ − ‖zk − z‖
= ‖zk+1 − z‖ +√

�k‖zk − z‖ − (1 +
√
�k)‖zk − z‖

≥
�

2
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Proof  Let uk denote the nonnegative number defined in Lemma 3.4, and let us apply 
Lemma 3.2. We obtain from (20) that

We now consider two cases.
Case 1 Suppose {uk} is eventually a monotonically decreasing sequence, i.e. 

for some k0 ∈ ℕ large enough, we have uk+1 ≤ uk for all k ≥ k0 . Then, since uk is 
nonnegative for all k ∈ ℕ by Lemma 3.4, we obviously get that {uk} is a conver-
gent sequence. Consequently, it follows that limk→∞ uk = limk→∞ uk+1 . Since {zk} 
is bounded by Theorem  3.3, there exists M > 0 such that 2�⟨zk − z, zk − z0⟩� ≤ M. 
Moreover, it follows that there exist N ∈ ℕ and 𝛾1 > 0 such that 1 − 3�k+1 − �k ≥ �1 
for all k ≥ N . Therefore, for k ≥ N , we obtain from (36) that

Hence

Together with �k → 0 , the boundedness of {zk} , and the convergence of {uk} , we 
therefore obtain from the definition of uk that the limit

exists and is equal to limk→∞ uk+1 . In particular, Lemma 3.4 therefore implies that 
� ≥ 0 . We will show that � = 0 holds; then (37) together with the fact that 𝜃k ≤ 𝜃 < 1 
for all k ∈ ℕ yields the strong convergence of the sequence {zk} to the solution z.

By contradiction, assume that 𝜆 > 0 . Since {zk} is bounded by Theorem 3.3, it is 
easy to see that we can choose a subsequence {zkj} which converges weakly to an 
element p ∈ H and such that

We show that p ∈ S . Observe that the updating rule for yk implies

This yields

(36)
uk+1 − uk + (1 − 3�k+1 − �k)‖zk − zk+1‖2

≤ −2�k⟨zk − z, zk − z0⟩.

�1‖zk+1 − zk‖2 ≤�kM + uk − uk+1

→0 for k → ∞.

lim
k→∞

‖zk+1 − zk‖ → 0.

(37)� ∶= lim
k→∞

�‖zk+1 − z‖2 − �k‖zk − z‖2�

lim inf
k→∞

⟨zk − z, z − z0⟩ = lim
j→∞

⟨zkj − z, z − z0⟩ = ⟨p − z, z − z0⟩.

‖yk − zk‖ = ‖�k(z0 − zk) + �k(zk − zk−1)‖
≤ �k‖z0 − zk‖ + �k‖zk − zk−1‖ → 0, k → ∞.

‖e(yk, �)‖ ≤
1

�
‖zk+1 − yk‖ ≤ ‖zk − yk‖ + ‖zk+1 − zk‖ → 0, k → ∞.
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Let Ty ∶= 1

2
y +

1

2
R�
A
oR�

B
(y), y ∈ H . Then it is clear that T is nonexpansive and 

z ∈ F(T) ∶= {x ∈ H ∶ x = Tx} if and only if z = R�
A
oR�

B
(z) . Similarly, it is easy to 

see that e(yk, �) =
1

2
(yk − R�

A
oR�

B
(yk)) = yk − Tyk . Therefore,

Demiclosedness Principle of T implies that p ∈ F(T) . Hence, p ∈ S . This implies 
that

where the inequality follows from the characterization (12) of a projection applied to 
z = PSz0 and p ∈ S . Since (37) yields

and since 𝜆 > 0 by assumption, we have

for some sufficiently large k1 ∈ ℕ . Using the identity

we therefore get

from (38). Using once again the assumption that 𝜆 > 0 , this implies

for some sufficiently large k2 ∈ ℕ, k2 ≥ k1 . From (36), we therefore obtain

This implies

lim
k→∞

‖yk − Tyk‖ = lim
k→∞

‖e(yk, �)‖ = 0.

(38)lim inf
k→∞

⟨zk − z, z − z0⟩ = ⟨p − z, z − z0⟩ ≥ 0,

lim inf
k→∞

‖zk+1 − z‖2 ≥ lim
k→∞

�‖zk+1 − z‖2 − �k‖zk − z‖2� = �,

‖zk+1 − z‖2 ≥ 1

2
� ∀k ≥ k1

⟨zk − z, zk − z0⟩ = ‖zk − z‖2 + ⟨zk − z, z − z0⟩,

lim inf
k→∞

⟨zk − z, zk − z0⟩ = lim inf
k→∞

�‖zk − z‖2 + ⟨zk − z, z − z0⟩
�

≥ lim inf
k→∞

�
1

2
� + ⟨zk − z, z − z0⟩

�

=
1

2
� + lim inf

k→∞
⟨zk − z, z − z0⟩

≥
1

2
�

⟨zk − z, zk − z0⟩ ≥ 1

4
� ∀k ≥ k2

uk+1 − uk ≤ −
1

2
�k� ∀k ≥ k2.

1

2
�

k∑
j=k2

�j ≤ uk2 − uk+1 ≤ uk2 ∀k ≥ k2,
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where the second inequality follows from Lemma 3.4. Since 𝜆 > 0 , this gives the 
summability of the sequence {�k} , a contradiction to our assumption. Hence we 
must have � = 0 , and this yields the strong convergence of the sequence {zk} to z.

Case 2 Assume that {uk} is not eventually monotonically decreasing. Then let 
� ∶ ℕ → ℕ be the map defined for all k ≥ k0 (for some k0 ∈ ℕ large enough) by

Clearly, �(k) is a non-decreasing sequence such that �(k) → ∞ for k → ∞ and 
u�(k) ≤ u�(k)+1 for all k ≥ k0 . Hence, similar to the proof of Case 1, we therefore 
obtain from (36) that

for some constant M > 0 . Thus,

Using the same technique of the proof as in Case 1, one can also derive the limits

Again observe that for j ≥ 0 by (36), we have uj+1 < uj when 
xj ∉ Ω ∶= {x ∈ H ∶ ⟨x − z0, x − z⟩ ≤ 0} (note that this Ω is the same set as in 
Lemma 2.1). Hence x�(k) ∈ Ω for all k ≥ k0 since u�(k) ≤ u�(k)+1 . Since {x�(k)} is 
bounded, we may choose a subsequence (which we again call {x�(k)} ) which con-
verges weakly to some x∗ ∈ H . As Ω is a closed and convex set, it is then weakly 
closed and so x∗ ∈ Ω . Using (43), one can see as in Case 1 that z�(k) ⇀ x∗ and 
x∗ ∈ S . Consequently, we have x∗ ∈ Ω ∩ S . In view of Lemma 2.1, however, the 
intersection Ω ∩ S contains z as its only element. We therefore get x∗ = z . Further-
more, we have

since x�(k) ∈ Ω . Taking lim sup in this last inequality gives

Hence

We claim that this implies limk→∞ u�(k)+1 = 0 . By definition, u�(k)+1 is equal to

(39)�(k) ∶= max{j ∈ ℕ ∶ j ≤ k, uj ≤ uj+1}.

(40)�1‖x�(k)+1 − x�(k)‖2 ≤ ��(k)M → 0

(41)‖x�(k)+1 − x�(k)‖ → 0, k → ∞.

(42)
‖x�(k)+1 − w�(k)‖ →0, k → ∞,

‖w�(k) − x�(n)‖ →0, k → ∞,

(43)‖x�(k) − z�(k)‖ →0, k → ∞.

‖x�(k) − z‖2 = ⟨x�(k) − z0, x�(k) − z⟩ − ⟨z − z0, x�(k) − z⟩
≤ − ⟨z − z0, x�(k) − z⟩

lim sup
k→∞

‖x�(k) − z‖ ≤ 0.

(44)‖x�(k) − z‖ → 0, k → ∞.
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Adding and subtracting x�(k) inside the norm of the first term, and using (41), (44), 
we see that the first term goes to zero. The second term converges to zero also in 
view of (44), taking into account the boundedness of {�k} . The third term vanishes 
in the limit because of (41) and noting once again that {�k} is a bounded sequence. 
Finally, the last term goes to zero since {�k} converges to zero and the sequence {zk} 
is bounded by Theorem 3.3.

We next show that we actually have limk→∞ uk = 0 . To this end, first observe that, 
for k ≥ k0, one has uk ≤ u�(k)+1 if k ≠ �(k) (that is, if 𝜏(k) < k ) because we neces-
sarily have uj > uj+1 for �(k) + 1 ≤ j ≤ k − 1 . It follows that for all k ≥ k0 , we have 
uk ≤ max{u�(k), u�(k)+1} = u�(k)+1 → 0 , hence lim supk→∞ uk ≤ 0 . On the other hand, 
Lemma 3.4 implies that lim infk→∞ uk ≥ 0 . Together we obtain limk→∞ uk = 0.

Consequently, the boundedness of {zk} , assumptions on our iterative parameters 
and (36) show that

Hence the definition of uk yields

Using our assumption, it is not difficult to see that this implies the strong conver-
gence of the entire sequence {zk} to the particular solution z. The statement therefore 
follows from Lemma 3.5. 	�  ◻

In the special case when B is a set-valued maximal monotone operator and A 
is a single-valued �-inverse strongly monotone operator in problem (1), iterative 
procedure (9) reduces to the following: z0, z1 ∈ H,

with 0 < 𝜆 < 2𝜅 . Moreover, we obtain strong convergence for this special case of 
monotone inclusion for which its proof can be easily obtained by following line of 
arguments of previous lemmas and Theorem 3.6.

Corollary 3.7  Suppose B is a set-valued maximal monotone operator and 
A is a single-valued �-inverse strongly monotone operator. Assume that 
S ∶= {x ∈ H ∶ 0 ∈ Ax + Bx} ≠ � . Let {zk} be the sequence generated by (45) with 
0 < 𝛽 ≤ 𝛽k ≤

1

2
 , 0 < 𝜆 < 2𝜅 and 0 ≤ 𝜃k ≤ 𝜃k+1 ≤ 𝜃 <

1

3
 . Then {zk} strongly con-

verges to z, where z = PSz0.

We next relate our results to some existing results from the literature.

‖x�(k)+1 − z‖2 − ��(k)‖x�(k) − z‖2 + 2��(k)+1‖x�(k)+1 − x�(k)‖2 + ��(k)+1‖x�(k)+1 − z0‖2.

‖zk − zk+1‖ → 0, k → ∞.

lim
k→∞

�‖zk+1 − z‖2 − �k‖zk − z‖2� = 0.

(45)
{

yk = �kz0 + (1 − �k)zk + �k(zk − zk−1)

zk+1 = (1 − �k)yk + �k(I + �B)−1(I − �A)yk,
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Remark 3.8 

(a)	 In the results of Thong and Vinh (see Thong and Vinh 2019, Thm. 3.5), strong 
convergence for monotone inclusion was obtained under some assumptions 
on the iterative sequence. The monotone inclusion studied in Thong and Vinh 
(2019) involves sum of a set-valued maximal monotone operator and single-
valued inverse-strongly monotone operator. In this paper, our method is proposed 
such that no assumption is made on the iterative sequence even for a more gen-
eral result considered here.

(b)	 The Algorithm (45) could be taken as the inertial strong convergence version 
of some recent results in Attouch and Cabot (2019), Boţ and Csetnek (2016), 
Lorenz and Pock (2015) and Villa et al. (2013). ◊

4 � Numerical experiments

In all the examples in this section, we compare our proposed method (9) with the 
non-inertial version (when �n = 0 ), Thong and Vinh results (see Thong and Vinh 
2019, Thm. 3.5) and Shehu (2016). Our aim is to compare our method with other 
relevant strong convergence methods in the literature.

Example 4.1  Let H = L2([0, 1]) . Let A ∶= �‖.‖ and B = NC in (1), where 
NC is the normal cone of nonempty closed and convex subset C of H 
( NC(x) ∶= {x∗ ∈ H ∶ ⟨y − x, x∗⟩ ≤ 0,∀y ∈ C} ), . Then problem (1) reduces to the 
following minimization problem: find x∗ ∈ L2([0, 1]) such that

Note that S ≠ ∅ since 0 ∈ S. Furthermore, the resolvent J�
B
= (I + �NC)

−1 = PC , and 
J�
A
 is given by the Moreau decomposition

where Prox�‖.‖(x) ∶= argminy
�‖y‖ + 1

2
‖y − x‖2� , PB‖.‖∗

 is the projection operator 
and B‖.‖∗ is the norm unit ball(of the dual norm). Note that in this case, L2([0, 1]) is 
self dual. Moreover, the projection PB‖.‖∗

 (see Bauschke and Combettes 2011; Cegiel-
ski 2012) is given by:

Therefore,

(46)0 ∈ �‖x∗‖ + NC(x
∗).

J�
A
(x) = (I + ��‖.‖)−1(x)

=Prox�‖.‖(x) = x − �PB‖.‖∗
(
x

�
),

PB‖.‖∗
(x) =

� x

‖x‖ , ‖x‖ > 1

x, ‖x‖ ≤ 1.
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We take C as the ball C ∶= {x ∈ H ∶ ‖x − z‖ ≤ r} , then

In particular, C = {x ∈ L2([0, 1]) ∶ ∫ 1

0
|x(t) − sin(

t

2�
)|2dt ≤ 16}.

Set � = 0.02 , �k = 0.6 and �k = 100∕k . Take ‖zk − zk−1‖ ≤ 10−3 as the stopping 
criterion (Fig. 1).

Example 4.2  Suppose A ∶ ℝ
3
→ ℝ

3 and B ∶ ℝ
3
→ ℝ

3 are given by

It can be shown that Ω = {(0, 0, 0)}.
Let z0 be randomly selected. In Algorithm 3 of Thong and Vinh (2019), we chose 

� = 0.1 , �k = 1∕(k + 1) and �k = 1∕(k + 1)2 . In Algorithm (26) of Shehu (2016), we 
chose �k = 1∕k , �k = k∕(2k + 1) and rk = 0.1 . Take ‖zk‖ ≤ 0.005 as the stopping 
criterion.

For Examples 4.2 and 4.3, we take � = 0.2 , �k = 0.5 , �k =
1

25k
 in Algorithm (9) 

and � = 0.2 in Algorithm 3 of Thong and Vinh (2019).

We compared the algorithm (9), Algorithm 3 in Thong and Vinh (2019) and the 
algorithm (26) in Shehu (2016). From Fig. 2, we know that the performance of the 
algorithm (9) is better than that of the other two algorithms.

Example 4.3  Let us consider the following well known �1-regularized least squares 
problem, which consists of finding a sparse solution to an underdetermined linear 
system. Suppose that we solve the following problem:

where D ∈ ℝ
m×n and b ∈ ℝ

m . In this case,

while

We remark that there is a commercial software, based on the projected gradient 
method for solving problem (47), for example SPGL1 (van den Berg and Friedlander 

J𝜆
A
(x) = x − 𝜆PB‖.‖ (

x

𝜆
) =

�
x − 𝜆

x

‖x‖ , ‖
x

𝜆
‖ > 1

0, ‖ x

𝜆
‖ ≤ 1.

PC(x) =

�
x, ‖x − z‖ ≤ r

z +
r(x−z)

‖x−z‖ , ‖x − z‖ > r

A

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

8 0 0

0 5 0

0 0 10

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
, B

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

7 0 0

0 6 0

0 0 4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x

y

z

⎞
⎟⎟⎠
,

(47)min
1

2
‖Dx − b‖2

2
+ �‖x‖1,

J�
A
(x) = (DtD + �−1I)−1(Dtb + �−1x)

J�
B
(x) = (sign(xi). max{0, |xi| − ��})i, i = 1, 2,… , n.
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2007; Lorenz 2013) and FISTA (Beck and Teboulle 2009), but this is beyond the 
scope of this paper. Our interest here is to demonstrate the efficiency of our pro-
posed method (9) using problem (47).

We generate random problems using different choices of � for m = 100 and 
n = 1000 . In Algorithm  3 of Thong and Vinh (2019) and the algorithm (26) of 
Shehu (2016), we chose � = 1 and � = 1.9∕(max(eig(DTD))) , and in the algorithm 
(9), we chose � = 0.5 . In addition, select rk = 0.2 in algorithm (26) of Shehu (2016).

Table  3 shows that the algorithm (9) is better when �k = 0.33 . The numerical 
result is described in Fig.  3, it illustrates that the performance of Algorithm (9) is 
better than the other two algorithms.

Remark 4.4 

(a)	 It can be seen from the numerical examples that Algorithm (9) outperforms 
the methods in Shehu (2016) and Thong and Vinh (2019) (see Figs. 2, 3) for 
strong convergence of sum of maximal monotone operators. Furthermore, the 
additional of inertial term improves the acceleration of the proposed method as 
can be seen in the numerical examples that Algorithm (9) converges faster than 
the non-inertial case when �k = 0 (please see, Tables 1, 2, 3). Also, the optimum 
choice of �k = 0 should be close to the upper bound 1

3
 from our examples.

(b)	 Algorithm (9) is sensitive to the choice of the initial point z0 as can be seen in 
our examples in Tables  1, 2 and 3.

Fig. 1   Error attenuation trend of Algorithm (9)
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Remark 4.5 

(a)	 We point out that there are different strategies in the current literature to enforce 
strong convergence on proximal-like algorithms (in particular, DR splitting); see, 
e.g., Solodov and Svaiter (2000) and Hirstoaga (2006). In this regard, the results 

Table 1   Comparing the change of �
k
 under the same initial value for Example 4.1

z0 �
k

0 0.05 0.1 0.15 0.2 0.25 0.3 0.33

t Iter. 76 70 66 64 64 67 67 71
CPU time 0.0331 0.0516 0.0482 0.0490 0.0503 0.0473 0.0490 0.0493

20 ∗ e
t Iter. 4501 4501 4501 4501 4501 4501 4501 4501

CPU time 1.9981 1.8217 1.8206 1.7393 1.7787 1.7789 1.7985 1.8972
−1000 ∗ sin(�t) Iter. 21603 21603 21603 21603 21603 21603 21603 21603

CPU time 9.4897 8.2634 8.1801 8.2655 8.2255 8.3546 8.2791 8.2253

Table 2   Comparing the change of �
k
 under the same initial value for Example 4.2

z0 �
k

0 0.05 0.1 0.15 0.2 0.25 0.3 0.33

[1, 1, 1]T Iter. 45 45 45 45 45 44 44 44
CPU time 0.0261 0.0274 0.0255 0.0248 0.0254 0.0266 0.0249 0.0252

[100, 100, 10]T Iter. 3497 3497 3496 3496 3496 3496 3496 3496
CPU time 0.3556 0.3515 0.3595 0.3807 0.3761 0.3802 0.3981 0.3782

[−100, 20, 1000]T Iter. 23005 23005 23004 23004 23004 23004 23004 23004
CPU time 2.3476 2.3244 2.2244 2.2110 2.2698 2.2905 2.2292 2.2087

Fig. 2   Comparison of three algorithms
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of Hirstoaga (2006) is concerned with ”anchor-point” algorithms as employed 
in our proposed method (9). One can see in Algorithm 2.1 of Hirstoaga (2006), 
there is no presence of inertial extrapolation term, �k(zk − zk−1) , which has been 
proved in the literature to increase the speed of convergence of non-inertial 
counterpart in most optimization methods. From our proposed method (9), we 
see that when �k ≠ 0 (in this paper, we assume that 0 ≤ 𝜃k ≤ 𝜃 <

1

3
 ), then our 

method (9) cannot be reduced to Algorithm 2.1 of Hirstoaga (2006) applied to 
the splitting operator of Eckstein and Bertsekas (1992). As confirmed in our 
numerical examples in Sect. 4, our method (9) outperforms Algorithm 2.1 of 
Hirstoaga (2006) when applied to the splitting operator of Eckstein and Bert-
sekas (1992). Also, our method of proof is different from the method of proof 
given in Hirstoaga (2006).

(b)	 The essence of our numerical examples in Sect. 4 is to drive home the imple-
mentations and effectiveness of our proposed method (9). As discussed in Mac-
Namara and Strang (2016) and other related chapters in the book, applications 
of our method (9) to solve problems arising from wireless communications, 
imaging, networking, finance, hemodynamics, free-surface flows, and other sci-
ence and engineering problems in infinite-dimensional Hilbert spaces would be 
discussed separately as a future project. ◊

5 � Final remarks

In this paper we propose a Douglas–Rachford splitting method with inertial extrapo-
lation step and give strong convergence analysis of the method. The method is much 
more applicable for a general class of maximal monotone operators and no uniform 

Fig. 3   Comparison of three algorithms
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monotonicity on any of the involved maximal monotone operators is assumed. Fur-
thermore, the analysis of the algorithm is obtained under the natural condition of 
the inertial factor �k being monotone non-decreasing and bounded away from 1/3. 
Some numerical illustrations are given to test the efficiency and implemnetation of 
the proposed scheme. The results obtained in this paper could serve as the strong 
convergence counterpart of already obtained weak convergence methods for iner-
tial Douglas–Rachford splitting methods (Bauschke and Combettes 2011; Beck and 
Teboulle 2009; Boţ et al. 2015; Lorenz and Pock 2015; Thong and Vinh 2019) in the 
literature.

Our future project include the following:

•	 to modify the proposed method (9) in this paper so that the bound of the inertial 
factor �k could exceed 1/3 and possibly lead to a faster convergence; and

•	 to obtain the rate of convergence of method (9). As far as we know, this has not 
been obtained before in the literature.
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