54,350 research outputs found

    Association-based image retrieval

    Get PDF
    With advances in the computer technology and the World Wide Web there has been an explosion in the amount and complexity of multimedia data that are generated, stored, transmitted, analyzed, and accessed. In order to extract useful information from this huge amount of data, many content-based image retrieval (CBIR) systems have been developed in the last decade. A typical CBIR system captures image features that represent image properties such as color, texture, or shape of objects in the query image and try to retrieve images from the database with similar features. Recent advances in CBIR systems include relevance feedback based interactive systems. The main advantage of CBIR systems with relevance feedback is that these systems take into account the gap between the high-level concepts and low-level features and subjectivity of human perception of visual content. In this paper, we propose a new approach for image storage and retrieval called association-based image retrieval (ABIR). We try to mimic human memory. The human brain stores and retrieves images by association. We use a generalized bi-directional associative memory (GBAM) to store associations between feature vectors. The results of our simulation are presented in the paper

    Content-Based Image Retrieval Using Associative Memories

    Get PDF
    The rapid growth in the number of large-scale repositories has brought the need for efficient and effective content-based image retrieval (CBIR) systems. The state of the art in the CBIR systems is to search images in database that are โ€œcloseโ€ to the query image using some similarity measure. The current CBIR systems capture image features that represent properties such as color, texture, and/or shape of the objects in the query image and try to retrieve images from the database with similar features. In this paper, we propose a new architecture for a CBIR system. We try to mimic the human memory. We use generalized bi-directional associative memory (BAMg) to store and retrieve images from the database. We store and retrieve images based on association. We present three topologies of the generalized bi-directional associative memory that are similar to the local area network topologies: the bus, ring, and tree. We have developed software to implement the CBIR system. As an illustration, we have considered three sets of images. The results of our simulation are presented in the paper

    Image annotation and retrieval based on multi-modal feature clustering and similarity propagation.

    Get PDF
    The performance of content-based image retrieval systems has proved to be inherently constrained by the used low level features, and cannot give satisfactory results when the user\u27s high level concepts cannot be expressed by low level features. In an attempt to bridge this semantic gap, recent approaches started integrating both low level-visual features and high-level textual keywords. Unfortunately, manual image annotation is a tedious process and may not be possible for large image databases. In this thesis we propose a system for image retrieval that has three mains components. The first component of our system consists of a novel possibilistic clustering and feature weighting algorithm based on robust modeling of the Generalized Dirichlet (GD) finite mixture. Robust estimation of the mixture model parameters is achieved by incorporating two complementary types of membership degrees. The first one is a posterior probability that indicates the degree to which a point fits the estimated distribution. The second membership represents the degree of typicality and is used to indentify and discard noise points. Robustness to noisy and irrelevant features is achieved by transforming the data to make the features independent and follow Beta distribution, and learning optimal relevance weight for each feature subset within each cluster. We extend our algorithm to find the optimal number of clusters in an unsupervised and efficient way by exploiting some properties of the possibilistic membership function. We also outline a semi-supervised version of the proposed algorithm. In the second component of our system consists of a novel approach to unsupervised image annotation. Our approach is based on: (i) the proposed semi-supervised possibilistic clustering; (ii) a greedy selection and joining algorithm (GSJ); (iii) Bayes rule; and (iv) a probabilistic model that is based on possibilistic memebership degrees to annotate an image. The third component of the proposed system consists of an image retrieval framework based on multi-modal similarity propagation. The proposed framework is designed to deal with two data modalities: low-level visual features and high-level textual keywords generated by our proposed image annotation algorithm. The multi-modal similarity propagation system exploits the mutual reinforcement of relational data and results in a nonlinear combination of the different modalities. Specifically, it is used to learn the semantic similarities between images by leveraging the relationships between features from the different modalities. The proposed image annotation and retrieval approaches are implemented and tested with a standard benchmark dataset. We show the effectiveness of our clustering algorithm to handle high dimensional and noisy data. We compare our proposed image annotation approach to three state-of-the-art methods and demonstrate the effectiveness of the proposed image retrieval system

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System

    ๋‹ค์–‘ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ํ•™์Šต ํ™˜๊ฒฝ ํ•˜์˜ ์ปจํ…์ธ  ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ์กฐ๋‚จ์ต.๋ฐฉ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์งˆ์˜์— ๋Œ€ํ•œ ๊ด€๋ จ ์ด๋ฏธ์ง€๋ฅผ ์ฐพ๋Š” ์ฝ˜ํ…์ธ  ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์€ ์ปดํ“จํ„ฐ ๋น„์ „ ๋ถ„์•ผ์˜ ๊ทผ๋ณธ์ ์ธ ์ž‘์—… ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ํŠนํžˆ ๋น ๋ฅด๊ณ  ์ •ํ™•ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•˜๊ธฐ ์œ„ํ•ด ํ•ด์‹ฑ (Hashing) ๋ฐ ๊ณฑ ์–‘์žํ™” (Product Quantization, PQ) ๋กœ ๋Œ€ํ‘œ๋˜๋Š” ๊ทผ์‚ฌ์ตœ๊ทผ์ ‘ ์ด์›ƒ (Approximate Nearest Neighbor, ANN) ๊ฒ€์ƒ‰ ๋ฐฉ์‹์ด ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์ปค๋ฎค๋‹ˆํ‹ฐ์—์„œ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ๋”ฅ ๋Ÿฌ๋‹ (CNN-based deep learning) ์ด ๋งŽ์€ ์ปดํ“จํ„ฐ ๋น„์ „ ์ž‘์—…์—์„œ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€ ์ดํ›„๋กœ, ํ•ด์‹ฑ ๋ฐ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ ๋ชจ๋‘ ๊ฐœ์„ ์„ ์œ„ํ•ด ๋”ฅ ๋Ÿฌ๋‹์„ ์ฑ„ํƒํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ ์ ˆํ•œ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜๊ธฐ ์œ„ํ•ด ๋‹ค์–‘ํ•œ ๋”ฅ ๋Ÿฌ๋‹ ํ•™์Šต ํ™˜๊ฒฝ์•„๋ž˜์—์„œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๊ตฌ์ฒด์ ์œผ๋กœ, ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๋ชฉ์ ์„ ๊ณ ๋ คํ•˜์—ฌ ์˜๋ฏธ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ํ•ด์‹ฑ ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์ง€๋„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๊ณ , ์˜๋ฏธ์ , ์‹œ๊ฐ์ ์œผ๋กœ ๋ชจ๋‘ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๋ฅผ ๊ฒ€์ƒ‰ํ•˜๋Š” ๋”ฅ ๋Ÿฌ๋‹ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜์˜ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•˜๊ธฐ ์œ„ํ•œ ์ค€์ง€๋„, ๋น„์ง€๋„ ํ•™์Šต ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ, ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ, ๋ถ„๋ฅ˜ํ•ด์•ผํ•  ํด๋ž˜์Šค (class category) ๊ฐ€ ๋งŽ์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ ์„ธํŠธ์™€ ํ•˜๋‚˜ ์ด์ƒ์˜ ๋ ˆ์ด๋ธ” (label) ์ด ์ง€์ •๋œ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ์„ธํŠธ๋ฅผ ๋ถ„๋ฆฌํ•˜์—ฌ ๋”ฐ๋กœ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ๋จผ์ € ์ด๋ฏธ์ง€์— ๋ถ€์—ฌ๋œ ์˜๋ฏธ๋ก ์  ๋ ˆ์ด๋ธ”์„ ์‚ฌ์šฉํ•˜๋Š” ์ง€๋„ ํ•™์Šต์„ ๋„์ž…ํ•˜์—ฌ ํ•ด์‹ฑ ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ํด๋ž˜์Šค ๊ฐ„ ์œ ์‚ฌ์„ฑ (๋‹ค๋ฅธ ์‚ฌ๋žŒ ์‚ฌ์ด์˜ ์œ ์‚ฌํ•œ ์™ธ๋ชจ) ๊ณผ ํด๋ž˜์Šค ๋‚ด ๋ณ€ํ™”(๊ฐ™์€ ์‚ฌ๋žŒ์˜ ๋‹ค๋ฅธ ํฌ์ฆˆ, ํ‘œ์ •, ์กฐ๋ช…) ์™€ ๊ฐ™์€ ์–ผ๊ตด ์ด๋ฏธ์ง€ ๊ตฌ๋ณ„์˜ ์–ด๋ ค์›€์„ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ ์ด๋ฏธ์ง€์˜ ํด๋ž˜์Šค ๋ ˆ์ด๋ธ”์„ ์‚ฌ์šฉํ•œ๋‹ค. ์–ผ๊ตด ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ํ’ˆ์งˆ์„ ๋”์šฑ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•ด SGH (Similarity Guided Hashing) ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜๋ฉฐ, ์—ฌ๊ธฐ์„œ ๋‹ค์ค‘ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ• ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•œ ์ž๊ธฐ ์œ ์‚ฌ์„ฑ ํ•™์Šต์ด ํ›ˆ๋ จ ์ค‘์— ์‚ฌ์šฉ๋œ๋‹ค. ๊ทธ๋ฆฌ๊ณ  ํ•ด์‹ฑ ๊ธฐ๋ฐ˜์˜ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๊ธฐ ์œ„ํ•ด DHD(Deep Hash Distillation) ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. DHD์—์„œ๋Š” ์ง€๋„ ์‹ ํ˜ธ๋ฅผ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•ด ํด๋ž˜์Šค๋ณ„ ๋Œ€ํ‘œ์„ฑ์„ ๋‚˜ํƒ€๋‚ด๋Š” ํ›ˆ๋ จ ๊ฐ€๋Šฅํ•œ ํ•ด์‹œ ํ”„๋ก์‹œ (proxy) ๋ฅผ ๋„์ž…ํ•œ๋‹ค. ๋˜ํ•œ, ํ•ด์‹ฑ์— ์ ํ•ฉํ•œ ์ž์ฒด ์ฆ๋ฅ˜ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์—ฌ ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ์˜ ์ž ์žฌ๋ ฅ์„ ์ผ๋ฐ˜์ ์ธ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์ ์šฉํ•œ๋‹ค. ๋‘˜์งธ๋กœ, ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ํ™œ์šฉํ•˜๋Š” ์ค€์ง€๋„ ํ•™์Šต์„ ์กฐ์‚ฌํ•˜์—ฌ ๊ณฑ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์ถ•ํ•œ๋‹ค. ์ง€๋„ ํ•™์Šต ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•๋“ค์€ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ด๋ ค๋ฉด ๊ฐ’๋น„์‹ผ ๋ ˆ์ด๋ธ” ์ •๋ณด๊ฐ€ ์ถฉ๋ถ„ํ•ด์•ผ ํ•œ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ์ˆ˜๋งŽ์€ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋Š” ํ›ˆ๋ จ์—์„œ ์ œ์™ธ๋œ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ฒกํ„ฐ ์–‘์žํ™” ๊ธฐ๋ฐ˜ ๋ฐ˜์ง€๋„ ์˜์ƒ ๊ฒ€์ƒ‰ ๋ฐฉ์‹์ธ GPQ (Generalized Product Quantization) ๋„คํŠธ์›Œํฌ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋œ ๋ฐ์ดํ„ฐ ๊ฐ„์˜ ์˜๋ฏธ๋ก ์  ์œ ์‚ฌ์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฉ”ํŠธ๋ฆญ ํ•™์Šต (Metric learning) ์ „๋žต๊ณผ ๋ ˆ์ด๋ธ”์ด ์ง€์ •๋˜์ง€ ์•Š์€ ๋ฐ์ดํ„ฐ์˜ ๊ณ ์œ ํ•œ ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€ํ•œ ํ™œ์šฉํ•˜๋Š” ์—”ํŠธ๋กœํ”ผ ์ •๊ทœํ™” ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ฒ€์ƒ‰ ์‹œ์Šคํ…œ์„ ๊ฐœ์„ ํ•œ๋‹ค. ์ด ์†”๋ฃจ์…˜์€ ์–‘์žํ™” ๋„คํŠธ์›Œํฌ์˜ ์ผ๋ฐ˜ํ™” ์šฉ๋Ÿ‰์„ ์ฆ๊ฐ€์‹œ์ผœ ์ด์ „์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๊ฒŒํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋”ฅ ๋Ÿฌ๋‹ ๋ชจ๋ธ์ด ์‚ฌ๋žŒ์˜ ์ง€๋„ ์—†์ด ์‹œ๊ฐ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๊ธฐ ์œ„ํ•ด ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํƒ์ƒ‰ํ•œ๋‹ค. ๋น„๋ก ๋ ˆ์ด๋ธ” ์ฃผ์„์„ ํ™œ์šฉํ•œ ์‹ฌ์ธต ์ง€๋„ ๊ธฐ๋ฐ˜์˜ ๋ฐฉ๋ฒ•๋“ค์ด ๊ธฐ์กด ๋ฐฉ๋ฒ•๋“ค์— ๋Œ€๋น„ ์šฐ์ˆ˜ํ•œ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ์„ ๋ณด์ผ์ง€๋ผ๋„, ๋ฐฉ๋Œ€ํ•œ ์–‘์˜ ํ›ˆ๋ จ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด ์ •ํ™•ํ•˜๊ฒŒ ๋ ˆ์ด๋ธ”์„ ์ง€์ •ํ•˜๋Š” ๊ฒƒ์€ ํž˜๋“ค๊ณ  ์ฃผ์„์—์„œ ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•˜๊ธฐ ์‰ฝ๋‹ค๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋ ˆ์ด๋ธ” ์—†์ด ์ž์ฒด ์ง€๋„ ๋ฐฉ์‹์œผ๋กœ ํ›ˆ๋ จํ•˜๋Š” SPQ (Self-supervised Product Quantization) ๋„คํŠธ์›Œํฌ ๋ผ๋Š” ์‹ฌ์ธต ๋น„์ง€๋„ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ƒˆ๋กญ๊ฒŒ ์„ค๊ณ„๋œ ๊ต์ฐจ ์–‘์žํ™” ๋Œ€์กฐ ํ•™์Šต ๋ฐฉ์‹์œผ๋กœ ์„œ๋กœ ๋‹ค๋ฅด๊ฒŒ ๋ณ€ํ™˜๋œ ์ด๋ฏธ์ง€๋ฅผ ๋น„๊ตํ•˜์—ฌ ๊ณฑ ์–‘์žํ™”์˜ ์ฝ”๋“œ์›Œ๋“œ์™€ ์‹ฌ์ธต ์‹œ๊ฐ์  ํ‘œํ˜„์„ ๋™์‹œ์— ํ•™์Šตํ•œ๋‹ค. ์ด ๋ฐฉ์‹์„ ํ†ตํ•ด ์ด๋ฏธ์ง€์— ๋‚ด์ œ๋œ ๋‚ด์šฉ์„ ๋ณ„๋„์˜ ์‚ฌ๋žŒ ์ง€๋„ ์—†์ด ๋„คํŠธ์›Œํฌ๊ฐ€ ์Šค์Šค๋กœ ์ดํ•ดํ•˜๊ฒŒ ๋˜๊ณ , ์‹œ๊ฐ์ ์œผ๋กœ ์ •ํ™•ํ•œ ๊ฒ€์ƒ‰์„ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ๋Š” ์„ค๋ช… ๊ธฐ๋Šฅ์„ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ ์„ธํŠธ์— ๋Œ€ํ•œ ๊ด‘๋ฒ”์œ„ํ•œ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ํ‰๊ฐ€ ํ”„๋กœํ† ์ฝœ์—์„œ ๋›ฐ์–ด๋‚œ ๊ฒฐ๊ณผ๋ฅผ ์‚ฐ์ถœํ•จ์„ ํ™•์ธํ–ˆ๋‹ค. ์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์–ผ๊ตด ์˜์ƒ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ SGH๋Š” ์ €ํ•ด์ƒ๋„ ๋ฐ ๊ณ ํ•ด์ƒ๋„ ์–ผ๊ตด ์˜์ƒ ๋ชจ๋‘์—์„œ ์ตœ๊ณ ์˜ ๊ฒ€์ƒ‰ ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑํ•˜์˜€๊ณ , DHD๋Š” ์ตœ๊ณ ์˜ ๊ฒ€์ƒ‰ ์ •ํ™•๋„๋กœ ์ผ๋ฐ˜ ์˜์ƒ ๊ฒ€์ƒ‰ ์‹คํ—˜์—์„œ ํšจ์œจ์„ฑ์„ ์ž…์ฆํ•œ๋‹ค. ์ค€์ง€๋„ ์ผ๋ฐ˜ ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ GPQ๋Š” ๋ ˆ์ด๋ธ”์ด ์žˆ๋Š” ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์™€ ๋ ˆ์ด๋ธ”์ด ์—†๋Š” ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•˜๋Š” ํ”„๋กœํ† ์ฝœ์— ๋Œ€ํ•œ ์ตœ์ƒ์˜ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ค€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋น„์ง€๋„ ํ•™์Šต ์ด๋ฏธ์ง€ ๊ฒ€์ƒ‰์˜ ๊ฒฝ์šฐ ์ง€๋„ ๋ฐฉ์‹์œผ๋กœ ๋ฏธ๋ฆฌ ํ•™์Šต๋œ ์ดˆ๊ธฐ ๊ฐ’ ์—†์ด๋„ SPQ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ƒ์˜ ๊ฒ€์ƒ‰ ์ ์ˆ˜๋ฅผ ์–ป์—ˆ์œผ๋ฉฐ ์‹œ๊ฐ์ ์œผ๋กœ ์œ ์‚ฌํ•œ ์ด๋ฏธ์ง€๊ฐ€ ๊ฒ€์ƒ‰ ๊ฒฐ๊ณผ๋กœ ์„ฑ๊ณต์ ์œผ๋กœ ๊ฒ€์ƒ‰๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ๋‹ค.Content-based image retrieval, which finds relevant images to a query from a huge database, is one of the fundamental tasks in the field of computer vision. Especially for conducting fast and accurate retrieval, Approximate Nearest Neighbor (ANN) search approaches represented by Hashing and Product Quantization (PQ) have been proposed to image retrieval community. Ever since neural network based deep learning has shown excellent performance in many computer vision tasks, both Hashing and product quantization-based image retrieval systems are also adopting deep learning for improvement. In this dissertation, image retrieval methods under various deep learning conditions are investigated to suggest the appropriate retrieval systems. Specifically, by considering the purpose of image retrieval, the supervised learning methods are proposed to develop the deep Hashing systems that retrieve semantically similar images, and the semi-supervised, unsupervised learning methods are proposed to establish the deep product quantization systems that retrieve both semantically and visually similar images. Moreover, by considering the characteristics of image retrieval database, the face image sets with numerous class categories, and the general image sets of one or more labeled images are separated to be explored when building a retrieval system. First, supervised learning with the semantic labels given to images is introduced to build a Hashing-based retrieval system. To address the difficulties of distinguishing face images, such as the inter-class similarities (similar appearance between different persons) and the intra-class variations (same person with different pose, facial expressions, illuminations), the identity label of each image is employed to derive the discriminative binary codes. To further develop the face image retrieval quality, Similarity Guided Hashing (SGH) scheme is proposed, where the self-similarity learning with multiple data augmentation results are employed during training. In terms of Hashing-based general image retrieval systems, Deep Hash Distillation (DHD) scheme is proposed, where the trainable hash proxy that presents class-wise representative is introduced to take advantage of supervised signals. Moreover, self-distillation scheme adapted for Hashing is utilized to improve general image retrieval performance by exploiting the potential of augmented data appropriately. Second, semi-supervised learning that utilizes both labeled and unlabeled image data is investigated to build a PQ-based retrieval system. Even if the supervised deep methods show excellent performance, they do not meet the expectations unless expensive label information is sufficient. Besides, there is a limitation that a tons of unlabeled image data is excluded from training. To resolve this issue, the vector quantization-based semi-supervised image retrieval scheme: Generalized Product Quantization (GPQ) network is proposed. A novel metric learning strategy that preserves semantic similarity between labeled data, and a entropy regularization term that fully exploits inherent potentials of unlabeled data are employed to improve the retrieval system. This solution increases the generalization capacity of the quantization network, which allows to overcome previous limitations. Lastly, to enable the network to perform a visually similar image retrieval on its own without any human supervision, unsupervised learning algorithm is explored. Although, deep supervised Hashing and PQ methods achieve the outstanding retrieval performances compared to the conventional methods by fully exploiting the label annotations, however, it is painstaking to assign labels precisely for a vast amount of training data, and also, the annotation process is error-prone. To tackle these issues, the deep unsupervised image retrieval method dubbed Self-supervised Product Quantization (SPQ) network, which is label-free and trained in a self-supervised manner is proposed. A newly designed Cross Quantized Contrastive learning strategy is applied to jointly learn the PQ codewords and the deep visual representations by comparing individually transformed images (views). This allows to understand the image content and extract descriptive features so that the visually accurate retrieval can be performed. By conducting extensive image retrieval experiments on the benchmark datasets, the proposed methods are confirmed to yield the outstanding results under various evaluation protocols. For supervised face image retrieval, SGH achieves the best retrieval performance for both low and high resolution face image, and DHD also demonstrates its efficiency in general image retrieval experiments with the state-of-the-art retrieval performance. For semi-supervised general image retrieval, GPQ shows the best search results for protocols that use both labeled and unlabeled image data. Finally, for unsupervised general image retrieval, the best retrieval scores are achieved with SPQ even without supervised pre-training, and it can be observed that visually similar images are successfully retrieved as search results.Abstract i Contents iv List of Tables vii List of Figures viii 1 Introduction 1 1.1 Contribution 3 1.2 Contents 4 2 Supervised Learning for Deep Hashing: Similarity Guided Hashing for Face Image Retrieval / Deep Hash Distillation for General Image Retrieval 5 2.1 Motivation and Overview for Face Image Retrieval 5 2.1.1 Related Works 9 2.2 Similarity Guided Hashing 10 2.3 Experiments 16 2.3.1 Datasets and Setup 16 2.3.2 Results on Small Face Images 18 2.3.3 Results on Large Face Images 19 2.4 Motivation and Overview for General Image Retrieval 20 2.5 Related Works 22 2.6 Deep Hash Distillation 24 2.6.1 Self-distilled Hashing 24 2.6.2 Teacher loss 27 2.6.3 Training 29 2.6.4 Hamming Distance Analysis 29 2.7 Experiments 32 2.7.1 Setup 32 2.7.2 Implementation Details 32 2.7.3 Results 34 2.7.4 Analysis 37 3 Semi-supervised Learning for Product Quantization: Generalized Product Quantization Network for Semi-supervised Image Retrieval 42 3.1 Motivation and Overview 42 3.1.1 Related Work 45 3.2 Generalized Product Quantization 47 3.2.1 Semi-Supervised Learning 48 3.2.2 Retrieval 52 3.3 Experiments 53 3.3.1 Setup 53 3.3.2 Results and Analysis 55 4 Unsupervised Learning for Product Quantization: Self-supervised Product Quantization for Deep Unsupervised Image Retrieval 58 4.1 Motivation and Overview 58 4.1.1 Related Works 61 4.2 Self-supervised Product Quantization 62 4.2.1 Overall Framework 62 4.2.2 Self-supervised Training 64 4.3 Experiments 67 4.3.1 Datasets 67 4.3.2 Experimental Settings 68 4.3.3 Results 71 4.3.4 Empirical Analysis 71 5 Conclusion 75 Abstract (In Korean) 88๋ฐ•

    Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination

    Get PDF
    We consider the Rao geodesic distance (GD) based on the Fisher information as a similarity measure on the manifold of zero-mean multivariate generalized Gaussian distributions (MGGD). The MGGD is shown to be an adequate model for the heavy-tailed wavelet statistics in multicomponent images, such as color or multispectral images. We discuss the estimation of MGGD parameters using various methods. We apply the GD between MGGDs to color texture discrimination in several classification experiments, taking into account the correlation structure between the spectral bands in the wavelet domain. We compare the performance, both in terms of texture discrimination capability and computational load, of the GD and the Kullback-Leibler divergence (KLD). Likewise, both uni- and multivariate generalized Gaussian models are evaluated, characterized by a fixed or a variable shape parameter. The modeling of the interband correlation significantly improves classification efficiency, while the GD is shown to consistently outperform the KLD as a similarity measure

    The application of user log for online business environment using content-based Image retrieval system

    Get PDF
    Over the past few years, inter-query learning has gained much attention in the research and development of content-based image retrieval (CBIR) systems. This is largely due to the capability of inter-query approach to enable learning from the retrieval patterns of previous query sessions. However, much of the research works in this field have been focusing on analyzing image retrieval patterns stored in the database. This is not suitable for a dynamic environment such as the World Wide Web (WWW) where images are constantly added or removed. A better alternative is to use an image's visual features to capture the knowledge gained from the previous query sessions. Based on the previous work (Chung et al., 2006), the aim of this paper is to propose a framework of inter-query learning for the WWW-CBIR systems. Such framework can be extremely useful for those online companies whose core business involves providing multimedia content-based services and products to their customers

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661
    • โ€ฆ
    corecore