

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Deep Content-based Image Retrieval
Under Various Learning Conditions

다양한딥러닝학습환경하의컨텐츠기반이미지검색

BY

JANG YOUNG KYUN

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Deep Content-based Image Retrieval
Under Various Learning Conditions

다양한딥러닝학습환경하의컨텐츠기반이미지검색

BY

JANG YOUNG KYUN

FEBRUARY 2022

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Abstract

Content-based image retrieval, which finds relevant images to a query from a huge

database, is one of the fundamental tasks in the field of computer vision. Especially for

conducting fast and accurate retrieval, Approximate Nearest Neighbor (ANN) search

approaches represented by Hashing and Product Quantization (PQ) have been pro-

posed to image retrieval community. Ever since neural network based deep learning

has shown excellent performance in many computer vision tasks, both Hashing and

product quantization-based image retrieval systems are also adopting deep learning for

improvement. In this dissertation, image retrieval methods under various deep learning

conditions are investigated to suggest the appropriate retrieval systems. Specifically, by

considering the purpose of image retrieval, the supervised learning methods are pro-

posed to develop the deep Hashing systems that retrieve semantically similar images,

and the semi-supervised, unsupervised learning methods are proposed to establish the

deep product quantization systems that retrieve both semantically and visually similar

images. Moreover, by considering the characteristics of image retrieval database, the

face image sets with numerous class categories, and the general image sets of one or

more labeled images are separated to be explored when building a retrieval system.

First, supervised learning with the semantic labels given to images is introduced

to build a Hashing-based retrieval system. To address the difficulties of distinguish-

ing face images, such as the inter-class similarities (similar appearance between dif-

ferent persons) and the intra-class variations (same person with different pose, facial

expressions, illuminations), the identity label of each image is employed to derive the

discriminative binary codes. To further develop the face image retrieval quality, Sim-

ilarity Guided Hashing (SGH) scheme is proposed, where the self-similarity learn-

ing with multiple data augmentation results are employed during training. In terms of

Hashing-based general image retrieval systems, Deep Hash Distillation (DHD) scheme

i

is proposed, where the trainable hash proxy that presents class-wise representative is

introduced to take advantage of supervised signals. Moreover, self-distillation scheme

adapted for Hashing is utilized to improve general image retrieval performance by

exploiting the potential of augmented data appropriately.

Second, semi-supervised learning that utilizes both labeled and unlabeled image

data is investigated to build a PQ-based retrieval system. Even if the supervised deep

methods show excellent performance, they do not meet the expectations unless expen-

sive label information is sufficient. Besides, there is a limitation that a tons of unlabeled

image data is excluded from training. To resolve this issue, the vector quantization-

based semi-supervised image retrieval scheme: Generalized Product Quantization (GPQ)

network is proposed. A novel metric learning strategy that preserves semantic similar-

ity between labeled data, and a entropy regularization term that fully exploits inherent

potentials of unlabeled data are employed to improve the retrieval system. This solu-

tion increases the generalization capacity of the quantization network, which allows to

overcome previous limitations.

Lastly, to enable the network to perform a visually similar image retrieval on its

own without any human supervision, unsupervised learning algorithm is explored. Al-

though, deep supervised Hashing and PQ methods achieve the outstanding retrieval

performances compared to the conventional methods by fully exploiting the label an-

notations, however, it is painstaking to assign labels precisely for a vast amount of

training data, and also, the annotation process is error-prone. To tackle these issues,

the deep unsupervised image retrieval method dubbed Self-supervised Product Quan-

tization (SPQ) network, which is label-free and trained in a self-supervised manner is

proposed. A newly designed Cross Quantized Contrastive learning strategy is applied

to jointly learn the PQ codewords and the deep visual representations by comparing

individually transformed images (views). This allows to understand the image content

and extract descriptive features so that the visually accurate retrieval can be performed.

ii

By conducting extensive image retrieval experiments on the benchmark datasets,

the proposed methods are confirmed to yield the outstanding results under various eval-

uation protocols. For supervised face image retrieval, SGH achieves the best retrieval

performance for both low and high resolution face image, and DHD also demonstrates

its efficiency in general image retrieval experiments with the state-of-the-art retrieval

performance. For semi-supervised general image retrieval, GPQ shows the best search

results for protocols that use both labeled and unlabeled image data. Finally, for unsu-

pervised general image retrieval, the best retrieval scores are achieved with SPQ even

without supervised pre-training, and it can be observed that visually similar images are

successfully retrieved as search results.

keywords: Image retrieval, Face image retrieval, Convolutional Neural Network,

Deep learning, Approximate nearest neighbor search, Hashing, Product quantization,

Metric learning, Semi-supervised learning, Unsupervised learning

student number: 2016-20967

iii

Contents

Abstract i

Contents iv

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Contribution . 3

1.2 Contents . 4

2 Supervised Learning for Deep Hashing: Similarity Guided Hashing for

Face Image Retrieval / Deep Hash Distillation for General Image Retrieval 5

2.1 Motivation and Overview for Face Image Retrieval 5

2.1.1 Related Works . 9

2.2 Similarity Guided Hashing . 10

2.3 Experiments . 16

2.3.1 Datasets and Setup . 16

2.3.2 Results on Small Face Images 18

2.3.3 Results on Large Face Images 19

2.4 Motivation and Overview for General Image Retrieval 20

2.5 Related Works . 22

iv

2.6 Deep Hash Distillation . 24

2.6.1 Self-distilled Hashing . 24

2.6.2 Teacher loss . 27

2.6.3 Training . 29

2.6.4 Hamming Distance Analysis 29

2.7 Experiments . 32

2.7.1 Setup . 32

2.7.2 Implementation Details . 32

2.7.3 Results . 34

2.7.4 Analysis . 37

3 Semi-supervised Learning for Product Quantization: Generalized Prod-

uct Quantization Network for Semi-supervised Image Retrieval 42

3.1 Motivation and Overview . 42

3.1.1 Related Work . 45

3.2 Generalized Product Quantization 47

3.2.1 Semi-Supervised Learning 48

3.2.2 Retrieval . 52

3.3 Experiments . 53

3.3.1 Setup . 53

3.3.2 Results and Analysis . 55

4 Unsupervised Learning for Product Quantization: Self-supervised Prod-

uct Quantization for Deep Unsupervised Image Retrieval 58

4.1 Motivation and Overview . 58

4.1.1 Related Works . 61

4.2 Self-supervised Product Quantization 62

4.2.1 Overall Framework . 62

4.2.2 Self-supervised Training . 64

v

4.3 Experiments . 67

4.3.1 Datasets . 67

4.3.2 Experimental Settings . 68

4.3.3 Results . 71

4.3.4 Empirical Analysis . 71

5 Conclusion 75

Abstract (In Korean) 88

vi

List of Tables

2.1 Dataset configuration used to perform face image retrieval experiments.

Ids and Resol. are short for identities and resolution, respectively. . . . 16

2.2 mAP scores of different Hashing approaches on small face image datasets. 18

2.3 mAP scores of different Hashing approaches on large face image dataset. 19

2.4 Description of the image retrieval datasets. 32

2.5 mAP scores for different bits on three benchmark image datasets. . . . 33

2.6 Ablation study on my work with ImageNet. Xindicates that the corre-

sponding element is used. T denotes types of augmentation, and Eud.

is the abbreviation of Euclidean distance. 35

2.7 mAP scores with or without Self-distilled Hashing (SdH). 37

2.8 mAP scores on unseen deformations. 39

3.1 Detailed composition of two benchmark datasets. 54

3.2 mAP scores of different Hashing algorithms on experimental protocol 1. 55

3.3 mAP scores of different Hashing algorithms on experimental protocol 2. 55

4.1 Detailed composition of three benchmark datasets. 67

4.2 mAP scores of different retrieval methods on three benchmark datasets. 68

4.3 mAP scores of SPQ and its variants on three benchmark datasets @

32-bits. 72

vii

List of Figures

1.1 Comparison of distance calculation. 2

2.1 Example of inter-identity resemblance and intra-identity difficulties. . 6

2.2 A simple visualization of proposed method. x̃1, x̃2, x̃3 are the trans-

formed output of x1, x2, x3, respectively, and I only illustrate the case

of x1 for simplicity. x1 forms a positive pair with x̃1, and x̃3 derived

from the same identity, and forms a negative pair with x̃2 derived from

the different identity. With this similarity information learned in the la-

tent space, the final output hash codes h1,h2,h3 which are originated

from x1, x2, x3, respectively, can preserve pairwise similarity near the

Hamming space (cubic) to achieve high retrieval performance. 7

2.3 The overall training process of SGH. 10

2.4 Examples of face images with various augmentation techniques applied. 12

2.5 Block Hashing layer. 14

2.6 An illustration of different quantization loss functions. 15

2.7 Visualization of possible problems with deep hashing due to transfor-

mations. The continuous hash code generated by a deep hashing model

H(·) is changed when the input is transformed. In consequence, the bi-

nary code quantized with sign operation can also be shifted. However,

the degree of transformation cannot be properly reflected in the quan-

tized representation. 21

viii

2.8 The overall training process of Deep Hash Distillation (DHD) frame-

work. (Left) From two different augmentation groups: Teacher TT and

Student TS , randomly sampled transformations (tT ∼ TT , tS ∼ TS)

are individually applied on the input image x to produce x̃T and x̃S .

The deep hashing modelH(·) constructed with the deep encoder Eθ(·)

and the hash function Hθ(·) of one Fully-Connected (FC) layer and

Layer Normalization (LN) yields two hash codes hT and hS which are

learned with LSdH . I apply stop gradient operation on hT for stable

training. (Right) Additionally, I employ trainable hash proxies Pθ(·)

which are used to calculate the class-wise prediction pT with hT to

optimize with LHP , and pre-defined Gaussian estimator G(·) to regu-

larize hT with Lbce-Q. 25

2.9 Precision-Recall curves on benchmarks with binary codes @ 64-bits. . 35

2.10 Precision@top-1000 curves on benchmarks with binary codes @ 64-bits. 35

2.11 Average Hamming distance difference between the original and trans-

formed images of ImageNet query set. By varying the sT , I measure

the sensitivity to transformation of ResNet backbone methods where

the numbers in legend indicate mAP. Solid lines present DHD variants,

and dotted lines present others. +TS denotes strong student augmen-

tation is applied during training. A low slope indicates insensitivity to

various transformations. 36

2.12 3D visualized histograms to verify the impact of Lbce-Q. Gallery sets

of (i) ImageNet, (ii) NUS-WIDE, and (iii) MS COCO are utilized. x-

axis presents value of hash element h, y-axis presents bit position, and

z-axis presents frequency counts. 38

2.13 Visualized augmentation results of different groups: weakly-transformed

teacher TT and strongly-transformed student TS 40

ix

2.14 Above: Examples of various transformations applied to the original

image. The green box indicates the same search result as the original,

and the red box indicates otherwise. Below: Retrieved images on Im-

ageNet dataset. The image output form the strongly transformed TT

and the image transformed to gray scale show different retrieval re-

sults. Nevertheless, it can be seen that visually similar images of the

same content are retrieved well. 41

3.1 Above: an illustration of the overall framework of GPQ and its three

components: feature extractor F , PQ table Z, and classifier C, where

C contributes to build Z. 43

3.2 A two class (+: blue, −: orange) visualized examples of my train-

ing objectives. 1) The left part shows the learning process of N-pair

Product Quantization loss LN -PQ. When I define an anchor as x̂+
1 , the

semantically similar points (q̂+
1 , x̂

+
4 , q̂

+
4) are pulled together while the

semantically dissimilar points (x̂−2 , q̂
−
2 , x̂

−
3 , q̂

−
3) are pushing the an-

chor. 2) The right part shows the learning process of classification loss

Lcls and subspace entropy mini-max loss LSEM . For the data points

constrained on the unit hypersphere, the cross entropy of labeled data

points is minimized to find prototypes (white stars). Then, the entropy

between the prototypes and the unlabeled data points is maximized

to move prototypes toward unlabeled data points and find new proto-

types (yellow stars). Finally, the entropy of the unlabeled data points

is minimized to cluster them near the new prototypes. 48

3.3 The comparison results of GPQ and its variants. 56

3.4 The sensitivity investigation of two balancing parameters: λ1 and λ2. . 57

3.5 The t-SNE visualization of deep representations learned by GPQ-T,

GPQ-H and GPQ on CIFAR-10 dataset respectively. 57

x

4.1 A simple framework comparison between contrastive learning (a) and

cross quantized contrastive learning (b). The separately sampled two

transformations (t, t′ ∼ T) are applied on an image x to generate two

different views x̃i and x̃j , and corresponding deep descriptor x̂i and

x̂j are obtained with the feature extractor F(·), respectively. The fea-

ture representations in contrastive learning are achieved by compar-

ing the similarity between the projection head outputs ẑi and ẑj . In-

stead of projection, I introduce the quantization head, which collects

codebooks of product quantization. By maximizing cross-similarity

between the deep descriptor of one view and the product quantized de-

scriptor of the other, both codewords and deep descriptors are jointly

trained to contain discriminative image content representations. 59

4.2 An illustration of feature extraction and quantization procedure in SPQ.

Randomly sampled data augmentation techniques (tn ∼ T) are ap-

plied on x1 and x2 to produce transformed images (different views).

There are two trainable components; 1) CNN-based feature extractor

F , and 2) quantization head Q, which collects multiple codebooks to

conduct product quantization. For example, I set up two codebooks

C1 and C2, and illustrate 2D conceptual Voronoi diagram in Q. The

original feature space of deep descriptor (feature vector x̂n ∈ RD)

is divided into two subspaces and generates subvectors; xnk where

k = {1, 2} and xnk ∈ RD/2. By employing soft quantizer qk(·) on

each xnk, the sub-quantized descriptor znk = qk(xnk) is approx-

imated with the combination of the codewords. Notably, subvectors

representing similar features are allocated to the same codeword. The

output product quantized descriptor ẑn ∈ RD is obtained by [·]D op-

eration which concatenates the sub-quantized descriptors along theD-

dimension. 63

xi

4.3 A visualized example of proposed cross quantized contrastive learning

strategy. For simplicity, I take the examples x1 7→ {x̂1, x̂2, ẑ1, ẑ2},

and x2 7→ {x̂3, x̂4, ẑ3, ẑ4} from Figure 2.2 LaTeX Error: Can be used

only in preambleSee the LaTeX manual or LaTeX Companion for ex-

planation.Your command was ignored.Type I ¡command¿ ¡return¿ to

replace it with another command,or ¡return¿ to continue without it.2.2,

and paint the feature representations related to x1 in blue, and x2

in red. Taking into account the cross-similarity between x̂ and ẑ as:

x̂1 ↔ {ẑ2, ẑ4}, x̂2 ↔ {ẑ1, ẑ3}, x̂3 ↔ {ẑ2, ẑ4},and x̂4 ↔ {ẑ1, ẑ3},

the network is trained to understand the discriminative image con-

tents, while simultaneously collecting frequently occurring local pat-

terns into the codewords. 64

4.4 Precision-Recall curves on benchmarks with binary codes @ 64-bits. . 70

4.5 Precision@top-1000 curves on benchmarks with binary codes @ 64-bits. 70

4.6 t-SNE visualization of deep representations learned by BinGAN, TBH,

and SPQ on CIFAR-10 query set respectively. 72

4.7 Sensitivity investigation of two temperature hyper-parameters: τq and

τcqc on CIFAR-10 dataset. 73

4.8 SPQ retrieval results on CIFAR-10 @ 32-bits. 74

xii

Chapter 1

Introduction

The amount of multimedia data, including images and videos, increases exponentially

on a daily basis. Hence, retrieving relevant content from a large-scale database has be-

come a more complicated problem. There have been many kinds of fast and accurate

search algorithms, and the Approximate Nearest Neighbor (ANN) search is known

to have high retrieval accuracy and computational efficiency. Recent ANN methods

mainly focused on deep Hashing and product quantization based schemes [27], be-

cause of their low storage cost and fast retrieval speed. To be specific, an image is

represented by a binary-valued compact hash code (binary code) with only a few tens

of bits, and it is utilized to build a database and compute distances for ranking.

The fast image retrieval methods using bit-wise binary code representation can

be categorized as Hashing and Product Quantization (PQ) [45]. Hashing-based meth-

ods employ a hash function that maps a high-dimensional vector space to a Hamming

space, where the distance between two codes can be measured extremely fast via bit-

wise XOR operation. However, Hashing has a limitation in describing the distance

between data points because it can produce only a limited number of distinct values.

PQ, which is a kind of vector quantization approach that enables to compute distance

between the binary representation in the real valued space, has been introduced to

alleviate this problem in information retrieval.

1

(a) Hashing (b) Vector Quantization

Figure 1.1: Comparison of distance calculation.

PQ is performed by decomposing the input feature space into a Cartesian product

of several disjoint subspaces (codebooks) and find the centroid (codeword) of each

subspace. Then, from the sub-vectors of the input feature vector, sub-binary code is

obtained by replacing each sub-vector with the index of the nearest codeword in the

codebook. Since codeword consists of real numbers, PQ allows asymmetric distance

calculation in real space using the binary codes, resulting in richer distance represen-

tations than Hashing as shown in Figure 1.1.

In comparison, Hashing has the advantage of using discrete and compact binary

code to perform fast retrieval, and PQ has the advantage of utilizing complex distance

representations to perform accurate retrieval with comparable speed. Briefly, Hashing

shows relatively fast search speed and low accuracy, whereas PQ shows slow search

speed and high accuracy. According to this analysis, in this dissertation, Hashing is

employed for semantically similar image retrieval for face and general image sets,

which requires distinctiveness between hash codes of a large number of categories.

Besides, PQ is considered for building image retrieval system that searches visually

similar general images in which various contents exist with multi label annotations.

2

Specifically, the proposed methods aim to properly integrate hashing and PQ into

the image retrieval system which is configured with the deep learning model. Under

the various deep model training conditions, supervised learning that utilizes a training

set where the category label information is annotated to each image is introduced to

face and general image retrieval systems. Further, to utilize the unlabeled data for the

deep model training, semi-supervised and unsupervised learning methods are proposed

to construct a general image retrieval system.

1.1 Contribution

In this dissertation, several solutions that can be taken when constructing content-based

image retrieval system using deep learning are proposed. First, novel deep hashing

methods with supervised learning are proposed for a system that aims to search for

semantically similar images at the top. In Similarity Guided Hashing (SGH), a new

non-trainable Block Hashing and a metric learning strategy that uses differently aug-

mented images are proposed to obtain discriminative binary hash codes for face image

retrieval. In Deep Hash Distillation (DHD), a method that transforms self-distillation

to fit deep hashing learning is proposed so that strong data augmentation can be used

for hash code learning while hash code acts as binary-like and discriminative.

Second, in order to utilize both labeled and unlabeled data for deep image retrieval

model training, semi-supervised learning method is proposed. Although the vector

quantization-based ANN search method is a little slower than the Hashing-based one,

it has the advantage that the distance can be expressed diversely, so PQ is used for

both visually and semantically similar retrieval. In Generalized Product Quantization

(GPQ), a novel metric learning scheme that learns PQ codewords and the deep image

representation simultaneously with the labeled data, and an entropy mini-max loss

function that regularizes labeled data points with unlabeled ones are introduced to

fully exploit the inherent potentials of input data.

3

Lastly, an unsupervised learning-based image retrieval method that can exclude

labeled data from training. Since obtaining labeled data is expensive and can cause se-

rious performance degradation if mislabeled, self-supervised fashioned unsupervised

training is proposed in Self-supervised Product Quantization (SPQ). This has the ad-

vantage of deriving a deep model to generate a image representation that discriminates

the content of an image by contrasting data augmentation results, allowing semanti-

cally and visually similar image retrieval without other human annotations.

1.2 Contents

The rest of the dissertation is organized as follows. Chapter 2 introduces supervised

learning to build two separate Hashing based image retrieval systems, one is SGH

approach for face image retrieval, and the other is DHD method for general image

retrieval. Chapter 3 presents semi-supervised learning to configure PQ based image

retrieval system, GPQ strategy for general image retrieval. Chapter 4 demonstrates

self-supervised learning to construct PQ based image retrieval system, SPQ scheme

for general image retrieval. Finally, chapter 5 concludes this dissertation.

4

Chapter 2

Supervised Learning for Deep Hashing: Similarity Guided

Hashing for Face Image Retrieval / Deep Hash Distilla-

tion for General Image Retrieval

2.1 Motivation and Overview for Face Image Retrieval

Learning to hash for image retrieval has made significant progress since the introduc-

tion of deep learning. In particular, many researchers attempted to produce compact bi-

nary hash codes through supervised learning with image class labels [19, 34, 17, 2, 10],

which are shown to provide superior performance to existing methods. Face image re-

trieval is also being advanced using deep learning [25, 18, 26, 44, 31] to learn facial

representations of each identity.

Face image retrieval can be considered a sub-problem of general image retrieval,

finding images of the same identity (class label) to the query. Still, face retrieval has

subtle differences from the general task due to some particular properties of facial im-

age datasets. To be specific, 1) the variance of the data distribution within a class is

often high due to makeup, facial expression, glasses, view-points, etc. (intra-identity

difficulties), 2) the similarity between the two different classes is comparatively high

because there are many similar faces (inter-identity resemblance), and 3) there are

5

Figure 2.1: Example of inter-identity resemblance and intra-identity difficulties.

relatively many classes to distinguish. Therefore, deep network models for face im-

age retrieval attempt to increase retrieval performance by increasing discriminativity

among binary hash codes assigned to each identity.

For this purpose, existing deep face image retrieval methods usually employ com-

mon classification losses such as cross-entropy, and utilize the intermediate feature

vector as a hash code. Although this approach provides moderate retrieval perfor-

mance, there exists a limitation in representing the semantic similarity between im-

ages because the hash codes are learned only with discrete labels (0 and 1 if one-hot

encoded). Therefore, if the similarity between face images is elaborately considered in

hash code generation, the retrieval performance can be improved.

To consider similarity more precisely, I refer self-supervised learning [11, 33,

4, 12, 15], which has been widely explored for diverse image feature representa-

6

Latent Space

Hash Space

𝐡1

𝐡2

𝐡3

𝑥1

෤𝑥3

෤𝑥2

෤𝑥1

𝐡1

𝐡2

𝐡3

෤𝑥3

෤𝑥2

෤𝑥1

𝑥1

Original:

Transformed:

Positive pair:

Negative pair:

Knowledge Shift:

Training:

Figure 2.2: A simple visualization of proposed method. x̃1, x̃2, x̃3 are the transformed
output of x1, x2, x3, respectively, and I only illustrate the case of x1 for simplicity. x1
forms a positive pair with x̃1, and x̃3 derived from the same identity, and forms a neg-
ative pair with x̃2 derived from the different identity. With this similarity information
learned in the latent space, the final output hash codes h1,h2,h3 which are originated
from x1, x2, x3, respectively, can preserve pairwise similarity near the Hamming space
(cubic) to achieve high retrieval performance.

tion understanding. my method is inspired by the concept of contrastive learning [4,

12], which aims to find similarity between images by contrasting them. Specifically,

transformed images originating from the same image are considered similar (self-

similarity), and the other transformed images from different images are considered

dissimilar (pairwise-similarity). In this case, I exploit the allocated label information

when determining the pairwise-similarity, and the transformed images that originate

from different images of the same identity are regarded as positive pairs.

7

For better understanding, I illustrate my conceptual scheme in Figure 2.2. The

combination of random data augmentations such as crop and resize, flip, color distor-

tion, and Gaussian blurring is applied to face images with the consideration of facial

properties. The self-similarity and the pairwise similarities are considered simultane-

ously in the latent space during training. Then, the learned similarity knowledge is

shifted into the hash space to obtain the discriminative hash codes.

In this dissertation, I propose a new self-similarity assisted convolutional neural

network-based Hashing framework; named Similarity Guided Hashing (SGH), which

generates binary-like hash codes for fast and accurate retrieval. Specifically, I introduce

two novel training objectives. First, a novel Self-similarity Pairing loss is introduced

on transformed face images with human supervision (identity label annotations). This

approach allows a more sophisticated understanding of the correlations between im-

ages. Second, to alleviate the gap between discrete binary code and the hash code, I

suggest a squared Quantization loss to minimize it fast and moderately. Additionally,

a l2-regularization is utilized to avoid severe deviations between the original and the

transformed image feature representations, and a standard Cross-Entropy function for

classification is employed to enhance the general discriminability between hash codes.

The entire loss functions are applied to SGH in an end-to-end manner, without any

complex training batch configuration strategy.

To demonstrate that my method excels previous methods in various conditions, I

construct a new experimental protocol using a face detection algorithm (DSFD) [16]

on VGGFace2 [1] test set, a large scale image dataset for face recognition. The dataset

I configure holds three times higher resolution images than the existing protocols,

thus containing richer facial feature representations. Furthermore, I conduct identity-

disjoint experiments proposed in [31] with the subset of VGGFace2 training set. The

results show that my SGH encodes face images into the Hamming space properly,

despite the absence of the identity information for the network training.

8

2.1.1 Related Works

This section presents a brief introduction to the deep hashing methods for general

images and face images. Refer to the survey [27] to see the early works in non-deep

learning binary hashing (ITQ [5], SH [28], KSH [20], SDH [22]) which can be utilize

as hashing system for face image retrieval.

General image hashing methods Convolutional Neural Network (CNN)-based hash-

ing approaches with fully supervised learning [30, 19, 87] are leading the mainstream

with promising outcomes. For example, CNN Hashing (CNNH) [30] utilizes a CNN

to generate compact hash codes by training the network with the given pairwise label

information. Deep Supervised Hashing (DSH) [19] learns hash codes by approximat-

ing discrete values with relaxation and training them with the supervised signals. Most

recently, the method that exploits the global similarity metric [87] shows outstand-

ing performance in the supervised scheme. Meanwhile, for hashing with few labels

or without labels, deep semi-supervised learning [76] and deep unsupervised learning

[82] also attracted attention with high scores.

Face image hashing methods In terms of face images, there have been several

CNN-based hashing approaches [25, 18, 26, 44, 31] that take into account face char-

acteristics. In [25], they proposed an end-to-end framework that simultaneously learns

face features and the binary hash codes by minimizing classification and quantization

loss at once, named Deep Hashing based on Classification and Quantization errors

(DHCQ). Discriminative Deep Hashing (DDH) method [18] integrated divide-and-

encode modules to reduce the redundancies among hash codes and the network pa-

rameters to improve DHCQ. Discriminative Deep Quantization Hashing (DDQH) [26]

upgraded DDH by expanding the number of channels in layers, replacing the divide-

and-encode module with a fully-connected layer, and applied a batch normalization

quantization module. Discrete Attention Guided Hashing (DAGH) [31] employed dis-

9

crete identity loss and a multi-attention cascade network to capture face features.

SGH is the first work to split the latent space and the hash space, and introduce a

self and pairwise-similarity learning. By assisting deep hashing model training with

complicated similarity knowledge, SGH is able to surpass existing algorithms with

state-of-the-art experimental outcomes. Furthermore, especially to precisely assess the

advantage of my proposal in face image retrieval protocols, I configure a new dataset

with larger images than the previous ones, and SGH also shows the best results.

2.2 Similarity Guided Hashing

The goal of deep Hashing for face image retrieval is to map an input image x to an

identity-wise discriminative K-bits binary code b ∈ {−1, 1}K . However, the network

training process does not include binarization, since the sign function used for binary

encoding is non-differentiable. Instead, my deep model is trained in the real-valued

space with the self-similarity and pairwise-similarity to learn continuous facial repre-

sentations. At the same time, I minimize the quantization error that occurs during the

binary conversion to reduce the gap between discrete binary code and real-valued hash

code. Also, the knowledge learned in the latent space is shifted into the hash space

while minimizing the classification error of hash codes to increase retrieval accuracy.

Training Data

𝑡~
𝒯

෤𝑥

𝑥

y

ℱ(∙)

⋯

CNN

⋯

FC

𝒢(∙)

FC

ℋ(∙)

FC BN
tanh(∙)

𝐟 ሚ𝐟

𝐠 ෤𝐠

𝐪 ෥𝐪 𝐡 ሚ𝐡

[𝑥, ෤𝑥]𝐵

ℒ𝑆𝑃, ℒ𝑟𝑒𝑔

ℒ𝑠𝑄 ℒ𝑐𝑙𝑠

𝐿𝑎𝑡𝑒𝑛𝑡 𝑆𝑝𝑎𝑐𝑒

𝐻𝑎𝑠ℎ 𝑆𝑝𝑎𝑐𝑒

Figure 2.3: The overall training process of SGH.

10

As illustrated in Figure 2.3, my Self-supervision Guided Hashing (SGH) consists

of three components with trainable parameters. From a face image input x, feature

extractorF(·) outputs the face feature vector f . Any CNN architecture commonly used

for image retrieval such as AlexNet [14], VGG-F [38] or ResNet [6] can be employed

as a feature extractor. I select ResNet as my baseline with a simple modification in the

number of convolutional filter channels.

Following the observations in [4, 12], I introduce projection head G(·) to learn the

self and pairwise-similarity with the dimension-reduced vector g, rather than directly

utilizing f for training. Note that, I only apply a single fully-connected layer (FC)

without non-linearity. This has the advantage of being able to transfer the knowledge

learned from g to f without redundancy.

Hashing head H(·) is similar to the BNQ module proposed in [26]. The FC layer

embeds the latent space into the hash space of the desired bit length, and the batch

normalization layer [7] (BN) speeds up the convergence and improves the stability of

learning. The output of the Hashing head, q, is mapped to h consisting of real values

between -1 and 1 through the tanh(·) function. When I conduct retrieval, the input

image x is converted to the hash code h by passing through the SGH framework, and

finally becomes a discrete binary code with the sign function.

Following the works presented in [4, 12], I apply various data augmentation tech-

niques on the face image for training. As illustrated in Figure 2.4, I choose five meth-

ods to transform images. Most of the hyperparameters for augmentation are directly

taken from [4] except for color jitter strength as 1/5, to take into account the skin color

characteristics between different races. As listed in Figure 2.4, all transformations are

applied with random probabilities in a sequential manner, starting with the resized crop

and ending with the Gaussian blur, to build augmentation family T .

The advantages that can be considered from each augmentation technique are: 1)

local, global and adjacent views with the resized crop, 2) mirrored inputs with the

horizontal flip, 3) color distortions with color jitter, 4) color independent facial repre-

11

Original

Resized Crop

Horizontal Flip

Color Jitter

Grayscale

Gaussian Blur

Figure 2.4: Examples of face images with various augmentation techniques applied.

sentations with grayscale, and 5) noise in image with Gaussian blur. As a result, the

contents included in the face image are robustly compared between the original and

the transformed one in a self-supervised way to find the discriminative facial image

representations.

Suppose, we are given a dataset withN training samples;X = {(x1,y1), ..., (xN ,yN)}

where each image xi is assigned a one-hot encoded label yi ∈ {0, 1}c of c identities.

Transformed images are obtained as x̃i = t(xi) for all samples {x̃i}Ni=1, where t is

from t ∼ T . I propose three training objectives that learn complex facial representa-

tions in a high-dimensional latent space and make the hash code discriminative near

the Hamming space. To cope with difficult-to-distinguish features of the face images

such as similar appearance among different people, and variations in one person (fa-

cial expression, makeup, pose, illumination), I introduce Self-similarity Pairing loss

that trains F(·) and G(·) as:

12

LSP (g,y) =
1

NB

NB∑
i=1

(LCE(Si, Yi)) (2.1)

where NB denotes the number of images in a training batch. Similar to the concept

proposed in [24] to conduct metric learning, I employ a standard cross-entropy loss

LCE , where Si denotes cosine similarity between the i-th g and every g̃ in a batch;

Si =
[
gTi g̃1, ...,g

T
i g̃NB

]
, and Yi denotes a similarity between the i-th label and every

label in a batch; Yi =
[
yTi y1, ...,y

T
i yNB

]
, and I apply normalization as Yi/‖Yi‖1 to

balance the contribution. The self-similarity part gTi g̃i can solve intra-identity difficul-

ties, and the remaining parts contribute to inter-identity discriminability.

Additional l2-regularization of embedding vectors is employed as:

Lreg(g) =
1

NB ·Dg

NB∑
i=1

Dg∑
j=1

(
g2ij
)

(2.2)

where Dg is the dimensionality of g, and gij are the j-th element of gi. This regular-

ization term forces the norm of g and g̃ to be small, avoiding severe deviation.

The last element of my architecture is the “Block Hashing,” which converts a large

real-valued feature vector into a binary hash code. The structure of the block Hashing

is detailed in Figure 2.5, which receives the descriptor as the input and produces the

hash code as the output. The final hash code is set to have K bits where K can be set

bigger for the larger database. For the pre-defined hash size K, I set the size of the

fully connected layer to K ×M where M is called the block size. As shown in the

figure, I divide the K ×M descriptor (d̂ = [d1, . . . , dK×M]) into M blocks, and I

extract the maximum of the Softmax of the elements in the i-th block as

zi = max(Softmax(elements of descriptor in the i-th block)). (2.3)

13

Figure 2.5: Block Hashing layer.

Then, these are concatenated to be a vector ẑ = [z1, z2, · · · , zK], and the final hash

code ĥ is obtained as

ĥ = [hi | hi = tanh(zi − β), i = 1, . . . ,K] (2.4)

where β is a balancing parameter.

In this approach, each block is generated from a face image descriptor of a separate

slice. Hence, blocks can effectively contain some characteristics of facial representa-

tions which are less relevant to each other. Unlike divide-and-encode module in [?],

my block Hashing layer does not have any trainable parameters, which can greatly re-

duce the redundancy. In addition, since I extract the maximum of the block-wise output

during the back propagation, the gradient from the next layer is passed back to only

that neuron which achieved the max. As a result, discriminative information of the

large real-valued descriptor is well maintained while each element of the block is ef-

fectively trained to be a representative value of the block according to the classification

result of the descriptor.

14

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.6: An illustration of different quantization loss functions.

Moving on to hash code learning, I present two loss functions to train F(·) and

H(·). First, to cut down the gap between the discrete binary code and the real-valued

hash code, I compute and minimize the squared Quantization loss as:

LsQ(q) =
1

NB ·K

NB∑
i=1

K∑
j=1

(
|1− q2ij |

)
(2.5)

where qij is the j-th element of qi, and | · | is the operation to return the absolute value.

This term aims to minimize the quantization error and contributes to approximate the

discrete binary code b with q. Following [26], I compute the loss before non-linear

activation to increase the convergence speed and accuracy.

To compare with previously proposed quantization loss functions [18, 44], I plot

each one, including mine in Figure 2.6. The double squared one ((1 − q2)2, orange

dotted line) has a convex shape near −1 and 1, which makes it difficult to be strictly

approximated, and the double absolute one (|1 − |q||, yellow dashed line) generates

relatively small error values, making a weak contribution. Therefore, I utilize the loss

function (blue line) that can complement each other’s shortcomings by combining the

two.

15

Second, to make the binary code discriminative with the identity labels, I estimate

the class probability on h, which is the relaxed version of b as:

Lcls(h,y) =
1

NB

NB∑
i=1

LCE(FCcls(hi),yi) (2.6)

where FCcls is a fully connected layer that outputs the probability prediction for all

identities. In summary, high retrieval accuracy is achieved by taking into account the

self and pairwise-similarity in latent space, as well as the general classification perfor-

mance of the hash codes generated from the original and transformed images.

2.3 Experiments

2.3.1 Datasets and Setup

Table 2.1: Dataset configuration used to perform face image retrieval experiments. Ids
and Resol. are short for identities and resolution, respectively.

Dataset # Retrieval # Test #Ids Resol.

closed-set Protocol

YouTube Faces 63,800 7,975 1,595 32× 32
FaceScrub 67,177 2,650 530 32× 32

VGGFace2-Test 75,296 2,500 500 96× 96

Open-set Protocol

VGGFace2-Train 17,940 500 100 96× 96

Datasets . Following the closed-set protocol proposed in [25, 18, 26, 44] where

the retrieval database includes training samples, I conduct experiments on two well-

organized face image retrieval datasets and a high-resolution face image dataset that

I constructed. The YouTube Faces dataset (Y.T.F) [29] is composed of video frames

containing faces, which is designed to study unconstrained face recognition problems.

There are 1,595 different identities to classify, where 40 images for each person are

16

randomly selected to be the training data, and five images per person are utilized for

the test data. A total of 63,800 images are used to build a training set and a retrieval

database, and 7,975 images are used as a query dataset for the experiment. The Face-

Scrub dataset (F.S) [21] consists of 106,863 face images which are collected from

the Internet. There are 530 celebrity classes to distinguish with about 200 images per

person. I choose five images for each person to utilize a total of 2,650 images in the

experiment, and the remaining images are used for training and constructing a retrieval

database. For both datasets above, the size of the image is fixed at 32× 32.

In addition, I configure a new higher resolution face image retrieval dataset with

VGGFace2 (V.F2) [1], which contains over 3.3 million images of more than 9,000

identities in the training set, and about 0.15 million images of 500 identities in the test

set. I apply a fast and accurate deep learning-based face detection algorithm DSFD [16]

to the images in the test set of V.F2 to extract strict face images. I select the images

whose width and height do not exceed 1,024 for detection and utilize the output face

images that have confidence scores over 0.99 to build a dataset. Also, all extracted

images have been resized to 96× 96, and images that do not exceed 96 in either width

and height are discarded during this process. As a result, I could collect a total of

75,296 face images of 500 different identities. Similar to existing dataset protocols,

I split the dataset into two as 72,796 images for the training set, and the rest 2,500

images for the test (5 images per identity).

Following the identity-disjoint (open-set) protocol proposed in [31], I randomly

sample 100 identities from the training set of V.F2 with a total of 17,940 images,

which do not participate in the training process. The same face detection and resizing

method are applied to conduct retrieval with the model trained from V.F2 closed-set

protocol. Five images per identity are randomly selected for testing, and the remaining

images are utilized to build a retrieval database. The exact numbers are reported in

Table 2.1.

17

Table 2.2: mAP scores of different Hashing approaches on small face image datasets.

Method
YouTube Faces FaceScrub

12-bits 24-bits 36-bits 48-bits 12-bits 24-bits 36-bits 48-bits

ITQ [5] + CNN 0.0248 0.1900 0.3420 0.4394 0.0186 0.0352 0.0504 0.0667

SH [28] + CNN 0.0154 0.0851 0.1603 0.2421 0.0036 0.0081 0.0114 0.0145

KSH [20] + CNN 0.0481 0.2663 0.4167 0.5047 0.0230 0.0348 0.0767 0.1026

SDH [22] + CNN 0.5474 0.7676 0.8100 0.8331 0.1281 0.2388 0.2934 0.3291

DSH [19] 0.5034 0.6011 0.7132 0.7354 0.5341 0.5955 0.6112 0.6234

DHCQ [25] 0.8108 0.8892 0.9122 0.9258 0.4986 0.5834 0.6215 0.6387

DDH [18] 0.8808 0.9212 0.9340 0.9412 0.5985 0.6121 0.6445 0.6765

DDH-Deep 0.9322 0.9455 0.9580 0.9718 0.6215 0.6479 0.6883 0.6983

DDQH [26] 0.9002 0.9553 0.9684 0.9820 0.6452 0.6824 0.7120 0.7355

DDQH-Deep 0.9580 0.9782 0.9790 0.9834 0.6618 0.7122 0.7654 0.7798

DCBH [44] 0.9753 0.9899 0.9914 0.9922 0.7182 0.7317 0.7696 0.7862

DAGH [31] 0.9744 0.9926 0.9938 0.9946 0.7284 0.7919 0.8172 0.8204

SGH 0.9902 0.9933 0.9955 0.9966 0.8970 0.9219 0.9319 0.9345

Setup . To evaluate face retrieval quality, I employ four metrics: 1) mean average

precision (mAP), 2) precision within Hamming distance 2 (P@H≤2) for different bit-

lengths, 3) precision-recall curves (PR curves), and 4) precision with respect to top-M

returned image (P@Top-M). In terms of calculating mAP scores, I select the top 50

images from the retrieval ranked-list results. The retrieval accuracy is estimated based

on whether the returned images and the query image have the same identity label or

not. I set the length of binary codes as 12, 24, 36, and 48 to examine the performance

according to the number of bits.

2.3.2 Results on Small Face Images

As shown in Table 2.1, I calculate the mAP scores on small face-image datasets; Y.T.F

and F.S for both non-deep learning-based and deep learning-based Hashing approach

over four types of bit-lengths. Deep Hashing methods generally outperform non-deep

Hashing ones because elaborately labeled identity information is fully utilized during

deep model training and makes deep hash codes discriminative. In the case of SDH,

18

Table 2.3: mAP scores of different Hashing approaches on large face image dataset.
VGGFace2

Method 12-bits 24-bits 36-bits 48-bits

closed-set Protocol

DDH-Deep 0.3385 0.3815 0.4120 0.4424
DDQH-Deep 0.3507 0.3934 0.4324 0.4658

DCBH 0.6612 0.6882 0.7084 0.7254
DAGH 0.6576 0.6998 0.7273 0.7556
SGH 0.8521 0.8886 0.9046 0.9174

Open-set Protocol

DDH-Deep 0.2154 0.2689 0.3413 0.3995
DDQH-Deep 0.2193 0.2872 0.3736 0.4285

DCBH 0.2456 0.3013 0.3885 0.4313
DAGH 0.2334 0.3126 0.3906 0.4425
SGH 0.3342 0.4380 0.4920 0.5594

which employs supervised signals, it also shows promising outcomes even though deep

learning is not exploited.

To verify that my self-similarity training scheme and squared Quantization loss are

effective, I conduct experiments with DDH-Deep and DDQH-Deep, which share the

same network architecture with SGH, noting that network architecture is the only fac-

tor that contributes to improvement. In addition, since DCBH and DAGH have claimed

their contributions to the network architecture, I do not add any modification to them.

Following the experimental results shown in Table 2.2 and Figure 2.3, 2.4, my SGH

can achieve the best performance over all bit-lengths, and accurately retrieves relevant

images more in the top ranks.

2.3.3 Results on Large Face Images

The images included in Y.T.F and F.S are too small to represent detail facial character-

istics. Therefore, I construct a new dataset with VGGFace2 where the resolution of all

images is three times higher to compare the retrieval performance of SGH with the ex-

isting deep face image retrieval algorithms. As observed in Table 2.3, SGH surpasses

19

all compared methods by large margins in both the closed-set and open-set protocols,

even if the network architecture is the same (DDH-Deep, DDQH-Deep). In a nutshell,

the proposed loss functions and training strategy of SGH can make the network gener-

ate descriptive face hash codes from large face images to conduct accurate retrieval.

2.4 Motivation and Overview for General Image Retrieval

Learning to hash has been one of the most important tasks in the image retrieval com-

munity. Especially for retrieval from large-scale databases, hashing is essential due to

its high search speed and low storage cost. By converting high-dimensional data points

into compact binary codes with a hash function, the retrieval system can utilize a sim-

ple bit-wise XOR operation to define a distance between the images. A wide variety

of works have been studied for this purpose [5, 28, 20, 22], and are still being actively

pursued.

In recent years, techniques for hash learning have been significantly advanced by

deep learning, which is called deep hashing. By integrating the hash function into the

deep framework, deep encoder and hash function are simultaneously learned to gener-

ate image hash codes. Regarding the training of deep hashing, the leading techniques

are pairwise similarity approaches that use sets of similar or dissimilar image pairs

[30, 34, 2, 76], and global similarity in company with classification approaches that

use class labels assigned to images [44, 10, 87].

Since hash-based retrieval systems compute the distance between images with bi-

nary codes, corresponding codes need to be quantized with sign operation, from the

continuous real space to the discrete Hamming space of {−1, 1}. In this process, the

continuously optimized image representation is altered, and quantization error occurs,

which in turn degrades the discriminative capability of the hash code. This becomes

even more problematic when an input image is transformed and deviated from the

original distribution.

20

0.7 0.6 -1.2 0.1

W
ea

k
ly

 -
T

ra
n

sf
o

rm
ed

1 -1 -1 1

0.8 0.5 -1.4 -0.1 1 -1 -1 -1

ℋ ∙ sign

O
ri

gi
n

al

1.0 0.8 -0.9 -1.1 1 -1 -1 -1

St
ro

n
gl

y
-

T
ra

n
sf

o
rm

ed

Hash code Binary code

large diff. of 1.0 same binary

small diff. of 0.2 different binary

Figure 2.7: Visualization of possible problems with deep hashing due to transforma-
tions. The continuous hash code generated by a deep hashing model H(·) is changed
when the input is transformed. In consequence, the binary code quantized with sign op-
eration can also be shifted. However, the degree of transformation cannot be properly
reflected in the quantized representation.

To avoid performance degradation due to transformations, the most common solu-

tion is to generalize the deep model by training it with augmented data having various

transformations. However, it is challenging to apply this augmentation strategy to deep

hashing training since discrepancy in the representation may occur. Figure 2.7 shows

an example case that may appear: 1) The sign of the hash code can be shifted with a

slight change. Specifically, the last element of the weakly-transformed image’s hash

code differs by 0.2 (−0.1 → 0.1) from the original, but it results in −1 → 1 shift in

the Hamming space. 2) The sign of the quantized hash code does not shift even with

the big change in the hash code. The last element of a strongly transformed image’s

hash code differs by 1.0 (−0.1 → −1.1) from the original, resulting in no shifts in

the Hamming space. Namely, the direct use of data augmentation in deep hashing in-

creases the discrepancy between Hamming and real space, which hinders finding the

optimal binary code.

To resolve this issue, I introduce a novel concept dubbed Self-distilled Hashing,

which customizes self-distillation [92, 93] to prevent severe discrepancy in deep hash-

21

ing training. Specifically, based on the understanding of the relation between cosine

distance and Hamming agreement, I minimize the cosine distance between the hash

codes of two different views (transformed results) of one image to maximize the Ham-

ming agreement between their binary outcomes. Further for stable learning, I separate

the difficulties of transformations as easy and difficult, and transfer the hash knowledge

from easy to difficult.

Moreover, I propose two additional training objectives that optimize hash codes to

enhance the self-distilled hashing: 1) a hash proxy-based similarity learning, and 2) a

binary cross entropy-based quantization loss. The first term allows the deep hashing

model to learn global (inter-class) discriminative hash codes with temperature-scaled

cosine similarity. The second term contributes to making the hash code naturally move

away from the binary threshold in a classification manner with likelihood estimators.

By combining all of my proposals, I construct a Deep-Hash Distillation frame-

work (DHD), which yields discriminative hash codes for fast image retrieval. I con-

duct extensive experiments on single and multi-labeled benchmark datasets for image

hashing evaluation. In addition, I validate the effectiveness of self-distilled hashing

using data augmentation on the existing methods [2, 94, 95, 87] and show the perfor-

mance improvements. Furthermore, I establish that DHD is applicable with a variety

of deep backbone architectures including vision transformers [96, 93, 97]. Experimen-

tal results confirm that DHD significantly improves the retrieval performance with the

state-of-the-art scores.

2.5 Related Works

For a better understanding, I present a brief introduction to the deep hashing methods

and the research that inspired my proposal. Refer [27] to see more details of the early

works in non-deep hashing approaches (ITQ [5], SH [28], KSH [20], SDH [22]).

22

Deep hashing methods. Hashing algorithms using deep learning techniques such

as Convolutional Neural Network (CNN) are leading the mainstream with striking re-

sults. For example, CNNH [30] utilizes a CNN to generate compact hash codes by

training a network with given pairwise label information. DHN [34] learns hash codes

by approximating discrete values with relaxation and trains them with supervised sig-

nals. HashNet [2] adopts the inner product to measure pairwise similarity between hash

codes and tackles the data imbalance problem by employing weighted maximum like-

lihood estimation. DCH [94] employs Cauchy distribution to minimize the Hamming

distance of the images with the same class label.

Hash center-based methods. There have been several approaches to find out class-

wise hash representatives (centers), which can provide global similarity to hash codes

by including the process of predicting image class labels with hash codes during train-

ing [44, 10, 76, 87]. CSQ [87] uses pre-defined orthogonal binary hash targets to guar-

antee distant Hamming distance between classes and makes hash codes to follow the

targets. DPN [95] employs randomly assigned target vectors with maximal inter-class

similarity and utilizes bit-wise hinge-like loss. Unlike DPN and CSQ, which use a hash

target that is not trainable, in DHD, the hash center is set as a trainable proxy which

jointly learns the similarity with the hash codes during training.

Self-distillation. Inspired by knowledge distillation, self-distillation emerges as a

concept that employs a single network to generalize itself in a self-taught fashion,

and plenty of works demonstrate its benefits in improving deep model performance

[92, 93]. Many of them utilize a simple Siamese architecture to explore and learn the

visual representation with data augmentation, by contrasting two different augmented

results of one image. Similarly, I conduct the self-distillation with augmentations in

deep hashing to see the hash codes of two different views of one image simultaneously.

Additionally, in accordance with the characteristics of hashing, I consider a method of

minimizing the cosine distance that behaves similarly to the distance in the Hamming

23

space to reduce the representation discrepancy during model training.

2.6 Deep Hash Distillation

The goal of a deep hashing model H of Deep Hash Distillation (DHD) is to map an

input image x to a K-dimensional binary code b ∈ {−1, 1}K in Hamming space. For

this purpose, H is optimized to find a high quality real-valued hash code h, and then

sign operation is utilized to quantize h as b. Instead of including non-differentiable

quantization process in model training, I learn H in the real space to estimate optimal

b with continuously relaxed h while fully exploiting the power of data augmentation.

I notate trainable component with θ as a subscript.

2.6.1 Self-distilled Hashing

In general,H is trained in the real space to obtain discriminative h, which should main-

tain its property in the Hamming space even if quantized to b. Therefore, it is important

to align h and b to carry a similar representation during training. However, when data

augmentation is applied to the training input and the following change occurs in h,

there can be misalignment between h and b. Thus, direct use of augmentations can

cause discrepancies in representation between h and b, which degrades performance.

Hamming distance as cosine distance. It is noteworthy that the Hamming distance

between the binary codes can be interpreted as cosine distance (1-cosine similarity).

That is, for deep hashing, the cosine similarity between hash codes hi and hj can be

utilized to approximate the Hamming distance between the binary codes bi and bj as:

DH(bi,bj) '
K

2
(1− S (hi, hj)) (2.7)

where bi = sign(hi), bj = sign(hj), DH(·, ·) denotes Hamming distance, S(·, ·) de-

24

Figure 2.8: The overall training process of Deep Hash Distillation (DHD) framework.
(Left) From two different augmentation groups: Teacher TT and Student TS , randomly
sampled transformations (tT ∼ TT , tS ∼ TS) are individually applied on the input im-
age x to produce x̃T and x̃S . The deep hashing model H(·) constructed with the deep
encoder Eθ(·) and the hash function Hθ(·) of one Fully-Connected (FC) layer and
Layer Normalization (LN) yields two hash codes hT and hS which are learned with
LSdH . I apply stop gradient operation on hT for stable training. (Right) Additionally,
I employ trainable hash proxies Pθ(·) which are used to calculate the class-wise pre-
diction pT with hT to optimize with LHP , and pre-defined Gaussian estimator G(·) to
regularize hT with Lbce-Q.

notes cosine similarity. That is, the minimized cosine distance between the hash codes

minimizes the Hamming distance between the binary codes.

Easy-teacher and difficult-student. As shown in Figure 2.8, I propose a self-distilled

hashing scheme, which supports the training of deep hashing models with augmenta-

tions. I employ weight-sharing Siamese structure to contrast hash codes of two differ-

ent views (augmentation results) of one image at once. According to the observations

in self-distillation works [93], keeping the output representation of one side steady has

a significant impact on performance gain. Therefore, I configure two separate augmen-

tation groups to provide input views with different difficulties of transformation: one

is weakly-transformed easy teacher TT , and the other is strongly-transformed difficult

student TS . Here, I control the difficulty in a stochastic sampling manner as: employ-

25

ing the same hyper-parameter sT to all transformations in the group, and make them

occur less (weakly) or more (strongly) by scaling their own probability of occurrence.

While this manner makes the teacher representation stable, it has the advantage that

few extreme examples that produce unstable results are not completely ruled out and

contribute to learning. Besides,I stop the gradient of the teacher view’s corresponding

hash codes to avoid collapsing into trivial solutions.

Loss computation. For a given image x, self-distillation is conducted with image

views as: x̃T = tT (x) and x̃S = tS(x), where tT , tS are randomly sampled trans-

formations from TT , TS , respectively. The deep encoder Eθ and the hash function Hθ

take x̃T and x̃S as inputs and produce corresponding hash code hT and hS . Then, the

proposed Self-distilled Hashing (SdH) loss is computed as:

LSdH(hT , hS) = 1− S(hT ,hS) (2.8)

Optimizing H with LSdH results in the alignment of hT and hS , and thus bT and bS

as follows Eqn. 2.7, which in turn reduces the discrepancy in representation between

two differently transformed output binary codes.

Flexibility. Note that self-distilled hashing is applicable to the other common deep

hashing models [2, 94, 95, 87] with regard to exploiting data augmentation during

training. Furthermore, various backbones [14, 6, 96, 93, 97] can be utilized as deep

encoder, and any hash function Hθ configuration is compatible. For simplicity, I em-

ploy a single FC layer with a layer normalization to address overly dominant binary

bits and balance the intra-binary representation, and apply tanh operation at the end to

be bound in [−1, 1].

26

2.6.2 Teacher loss

Besides self-distilled hashing, additional training signals such as supervised learning

loss, and quantization loss are required to obtain the discriminative hash codes. I only

employ teacher hash codes to compute the losses, in order to transfer the learned hash

knowledge to the student’s codes.

Proxy-based similarity learning. Supervised hash similarity learning with pre-defined

non-trainable binary hash targets has shown great performance [87, 95]. However, the

hash target has limitations in that it requires a complex initialization process, and can-

not contain semantic similarity by itself. Therefore, as shown in Figure 2.8, I introduce

a collection of trainable hash proxies Pθ that can simply be initialized along with deep

parameters ofH, and use this to compute class-wise prediction pT with hT as:

pT = [S(pθ1,hT),S(pθ2,hT), ...,S(pθNcls
, hT)] (2.9)

where pθ is a hash proxy assigned to each of the i category and Ncls denotes the

number of categories. Then, I use pT to learn the similarity with class label y by

computing Hash Proxy (HP) loss as:

LHP (y,pT , τ) = H (y,Softmax(pT /τ)) (2.10)

where τ is a temperature scaling hyper-parameter, H(u, v) = −
∑

k uk log vk is a

cross entropy, and Softmax operation is applied along the dimension of pT . Although

other hashing losses [2, 94, 95, 87] are available, I employ LHP since it shares the

property of cosine similarity with the self-distilled hashing. Note that, similar to Eqn

2.7, LHP can learn Hamming agreement if scaled with τ .

27

Reducing quantization error. To make continuous hash code elements act like bi-

nary bits, the deep hashing methods [94, 2, 44, 87] aim to reduce the quantization error

by minimizing the distance (e.g. Euclidean) between the hash code bit and its closest

binary goal (+1 or−1) in a regression manner. However, since the purpose of hashing

is to classify the sign of each bit, it is a more natural choice to view it as a binary

classification: maximum likelihood problem. Hence, I adopt a pre-defined Gaussian

distribution estimator g(h) of mean m and standard deviation σ as:

g(h) = exp

(
−(h−m)2

2σ2

)
(2.11)

to evaluate the binary likelihood of hash code element h. By employing two estimators:

g+ of m = 1, and g− of m = −1 with the same σ, I compute the likelihoods and a

Binary Cross Entropy-based (BCE) quantization loss as:

Lbce-Q(hT) =
1

K

K∑
k=1

(
Hb

(
b+k , g

+
k

)
+Hb

(
b−k , g

−
k

))
(2.12)

where Hb(u, v) = −u log v + (1 − u) log(1 − v) is a binary cross entropy, g+k , g−k

denotes k-th hash code element’s estimated likelihood: g+k = g+(hk), g−k = g−(hk),

and b+k , b−k denotes binary likelihood labels which are obtained as:

b+k =
1

2
(sign(hk) + 1) , b−k = 1− b+k (2.13)

As a result, quantization error is reduced by a binary classification loss with the given

estimators, allowing to use the merits of cross entropy.

28

2.6.3 Training

Total training loss. Suppose we are given a training mini-batch of NB data points:

XB = {(x1, y1), ..., (xNB
, yNB

)} where each image xi is assigned a label yi ∈

{0, 1}Ncls . Training views are obtained as x̃T i = tT i(xi) and x̃Si = tSi(xi) for all

data points, where tT i ∼ TT and tSi ∼ TS . Total loss LT for DHD is computed with

XB as:

LT (XB) =
1

NB

NB∑
n=1

(LHP + λ1LSdH + λ2Lbce-Q) (2.14)

where λ1 and λ2 are hyper-parameters that balance the influence of the training objec-

tives. The entire DHD framework is trained in an end-to-end fashion.

Multi-label case. In the case of determining semantic similarity between multi-hot

labeled images, the previous works [30, 34, 87] simply checked whether the images

share at least one positive label or not. However, learning with the above similarity

has limitations in that the label dependency is ignored. Thus, I aim to capture the

intelligence that appears in label dependency by utilizing the Softmax cross entropy

with the normalized multi-hot label y. Specifically, y is converted as y = y/‖y‖1 to

balance the contribution of each label, and the same LHP is computed to optimize the

deep hashing model for multi-label image retrieval.

Algorithm. Detailed training process is provided in Algorithm 1 for reproducibility

of DHD framework.

2.6.4 Hamming Distance Analysis

For a given input image xi and xj , a deep hashing model H produces corresponding

hash codes hi and hj , which are quantized to binary codes bi and bj in {−1, 1}K with

29

Algorithm 1 DHD training for batch size NB

1: Initialize θE with pretrained model weights.

2: Initialize θH and θP with Xavier initialization.

3: g+(h) = exp (− (h−1)2
2σ2)

4: g−(h) = exp (− (h+1)2

2σ2)

Input: Parameters of each component: θE , θH , θP

Input: XB = {(x1, y1), ..., (xNB
, yNB

)}
5: for n in {1,. . . ,NB} do

6: draw two transformations t2n−1 ∼ TT , t2n ∼ TS
7: x̃2n−1 ← t2n−1(xn)

8: x̃2n ← t2n(xn)

9: h2n−1 ← tanh(HθH (EθE (x̃2n−1)))

10: h2n ← tanh((HθH (EθE (x̃2n)))

11: p2n−1 ← PθP (h2n−1)

12: end for

13: `SdH ← LSdH with {h2n−1,h2n}NB
n=1

14: `HP ← LHP with {p2n−1, yn}NB
n=1

15: `bce-Q ← Lbce-Q with g+, g−, {h2n−1}NB
n=1

16: θE,H ← θE,H − γ
(
∂`SdH
∂θE,H

+ ∂`HP
∂θE,H

+
∂`BCE-Q
∂θE,H

)
17: θP ← θP − γ ∂`HP

∂θP

Output: Updated θE , θH , θP

sign operation (bi = sign(hi), bj = sign(hj)), respectively. For retrieval, Hamming

distance DH is computed with the binary codes as:

DH(bi,bj) = XOR (bi, bj) , (2.15)

where XOR is a bit-wise count operation that outputs in the range [0, K]. From a

mathematical point of view, XOR can be interpreted as:

30

XOR (bi,bj) =
1

2

(
K − bTi · bj

)
=

1

2

(
K − ‖bi‖2 ‖bj‖2 S (bi,bj)

)
=
K

2
(1− S (bi, bj)) ,

(2.16)

where ‖bi‖2 = ‖bj‖2 =
√
K, and S (·, ·) denotes cosine similarity which also can be

notated as:

S (bi, bj) = cosαij

=
bTi · bj

‖bi‖2 ‖bj‖2
,

(2.17)

where αij is the angle between bi and bj . It should be noted that 1−S (bi,bj) presents

a cosine distance between bi and bj and can be approximated with hi and hj as:

1− S (bi, bj) ' 1− S (hi,hj) (2.18)

where 1 − S (hi, hj) is a cosine distance between hi and hj . Therefore, minimizing

the cosine distance allows to reduce the Hamming distance.

31

2.7 Experiments

To evaluate my DHD, I conduct image retrieval experiments against several conven-

tional and modern methods. Three hashing based image retrieval benchmark datasets

are explored, and I explain the composition of each dataset in Table 2.4.

Dataset # Database # Train # Query Nc

ImageNet 128,503 13,000 5,000 100

NUS-WIDE 149,736 10,500 2,100 21

MS COCO 117,218 10,000 5,000 80

Table 2.4: Description of the image retrieval datasets.

2.7.1 Setup

Following the protocol utilized in deep hashing methods [2, 94, 87], I adopt three

benchmark datasets: single-labeled ImageNet, and multi-labeled NUS-WIDE, and MS

COCO with the same compositions.

Evaluation metrics. To evaluate retrieval quality, I employ three metrics: 1) mean

average precision (mAP), 2) precision-recall curves (PR curves), and 3) precision with

respect to top-M returned image (P@Top-M). Regarding mAP score computation, I

select the top-M images from the retrieval ranked-list results. The returned images

and the query image are considered relevant whether one or more category labels are

the same. I set binary code length: hash code dimensionality K as 16, 32, and 64, to

examine the performance according to the code size.

2.7.2 Implementation Details

Data augmentation. Following the works presented in [4], I choose family T of five

image transformations: 1) resized crop, 2) horizontal flip, 3) color jitter, 4) grayscale,

and 5) blur, where all of each are sampled uniformly with a given probability and se-

32

Method Backbone
ImageNet NUS-WIDE MS COCO

16-bit 32-bit 64-bit 16-bit 32-bit 64-bit 16-bit 32-bit 64-bit

ITQ [5]

Non-deep

0.266 0.436 0.576 0.435 0.396 0.365 0.566 0.562 0.502
SH [28] 0.210 0.329 0.418 0.401 0.421 0.423 0.495 0.507 0.510

KSH [28] 0.160 0.298 0.394 0.394 0.407 0.399 0.521 0.534 0.536
SDH [22] 0.299 0.455 0.585 0.575 0.590 0.613 0.554 0.564 0.580

CNNH [30]

AlexNet [14]

0.315 0.473 0.596 0.655 0.659 0.647 0.599 0.617 0.620
DHN [34] 0.367 0.522 0.627 0.712 0.739 0.751 0.701 0.710 0.735

HashNet [2] 0.425 0.559 0.649 0.720 0.745 0.758 0.685 0.714 0.742
DCH [94] 0.636 0.645 0.656 0.740 0.752 0.763 0.695 0.721 0.748

DHD(Mine) 0.657 0.701 0.721 0.780 0.805 0.820 0.749 0.781 0.792

DPN [95]
ResNet [6]

0.828 0.863 0.872 0.783 0.816 0.838 0.796 0.838 0.861
CSQ [87] 0.851 0.865 0.873 0.810 0.825 0.839 0.750 0.824 0.852

DHD(Mine) 0.864 0.891 0.901 0.820 0.839 0.850 0.839 0.873 0.889

ViT [96] 0.927 0.938 0.944 0.837 0.862 0.870 0.886 0.919 0.939
DeiT [93] 0.932 0.943 0.948 0.839 0.861 0.867 0.883 0.913 0.925DHD(Mine)

SwinT [97] 0.944 0.955 0.956 0.848 0.867 0.875 0.894 0.930 0.945

Table 2.5: mAP scores for different bits on three benchmark image datasets.

quentially applied to the inputs. I keep the internal parameters of each transformation

equal to [4]. For self-distilled hashing, I configure two groups with T , where the diffi-

cult student group is TS = T , and the easy teacher group TT is configured by scaling

all transform occurrence with sT , which is in the range of (0, 1]. I set TT as the default

for the methods trained without SdH.

Experiments. Retrieval experiments are conducted by dividing backbones as: Non-

deep, AlexNet [14], ResNet (ResNet50) [6] , and vision transformers [96, 93, 97]. For

non-deep hashing approaches: ITQ [5], SH [28], KSH [20] and SDH [22], I report

the results directly from the latest works [2, 94, 87] for comparison. I set up the same

training environment by leveraging PyTorch framework and the image transformation

functions of korina [72] library for augmentation. I employ Adam optimizer [13] and

decay the learning rate with cosine scheduling [79] for training deep hashing methods.

Especially for DHD hyper-parameters, sT is set to 0.2 for AlexNet, and 0.5 for other

backbones. τ is set by consideringNcls as {0.2, 0.6, 0.4} for {ImageNet, NUS-WIDE,

MS COCO}, respectively. λ1 and λ2 are set equal to 0.1 for a balanced contributions

each training objective, and σ in Lbce-Q is set to 0.5 as default.

33

2.7.3 Results

The mAP scores are calculated by varying the top-M for each dataset as: ImageNet@1000,

NUS-WIDE@5000 and MS COCO@5000 to make a fair comparison with previous

works [2, 94, 87]. The results are listed in Table 2.2, where the highest score for each

backbone is shown in bold, and I my DHD method. Among the non-deep hashing

methods, SDH shows the best retrieval results by employing supervised label signals

in hash function learning. Deep hashing methods generally outperform non-deep hash-

ing ones, since elaborately labeled annotations are fully utilized during training. For

ImageNet, NUS-WIDE, and MS COCO, averaging the mAP scores of all bit lengths

yields 36.3%p, 33.7%p, and 25.0%p differences between the non-deep and deep meth-

ods, respectively.

Notably, my DHD shows the best mAP scores for all datasets in every bit length

with every deep backbone architecture. In particular for AlexNet backbone hashing

approaches, DHD shows performance improvement of 16.3%p, 7.9%p, and 9.2%p by

averaging the mAP scores of all bit lengths in three dataset results orderly, compared

to others. In comparison with ResNet backbone methods, DHD also achieves 2.7%p,

1.8%p, and 4.7%p higher retrieval scores on average. In line with the trend of other

computer vision tasks, I introduce transformer-based image representation learning

architectures: ViT [96], DeiT [93], and SwinT [97] to the hashing community and

perform retrieval experiments. As reported, when the transformer is integrated into the

DHD framework, it delivers outstanding results for the benchmark image datasets with

the increase of 5.8%p, 2.2%p, and 4.8%p, in the same as above, compared to ResNet

backbone DHD.

To further demonstrate that DHD genuinely provides quality search outcomes, I

plot graph of the PR curve and the precision for the top 1,000 retrieved images at 64

bits in Figures 2.9 and 2.10. As shown in the experimental results, I can confirm that

the proposed DHD establishes the state-of-the-art retrieval performance.

34

LHP LSdH Lbce-Q T mAP

16-bit 64-bit

(1) X TT 0.640 0.702
(2) X X TT 0.645 0.709
(3) X TS 0.569 0.639
(4) X X TS 0.585 0.647
(5) X X TT + TS 0.650 0.712
(6) X Eud . X TT + TS 0.640 0.698
(7) X X X TT + TS 0.657 0.721

Table 2.6: Ablation study on my work with ImageNet. Xindicates that the correspond-
ing element is used. T denotes types of augmentation, and Eud. is the abbreviation of
Euclidean distance.

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

(a) CIFAR-10

0 0.2 0.4 0.6 0.8 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

(b) FLICKR25K

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n

(c) NUS-WIDE

Figure 2.9: Precision-Recall curves on benchmarks with binary codes @ 64-bits.

0 200 400 600 800 1000

Number of top returned images

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

c
is

io
n

(a) CIFAR-10

0 200 400 600 800 1000

Number of top returned images

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

P
re

c
is

io
n

(b) FLICKR25K

0 200 400 600 800 1000

Number of top returned images

0.65

0.7

0.75

0.8

0.85

0.9

P
re

c
is

io
n

(c) NUS-WIDE

Figure 2.10: Precision@top-1000 curves on benchmarks with binary codes @ 64-bits.

Ablation study. In Table 2.6, I show the experimental results according to the pres-

ence or absence of my contributions. To minimize the dependency on the network

architecture and explore my contribution correctly, I use AlexNet as the backbone. In

(1), even when only LHP is applied, it shows good results compared to the AlexNet

backbone existing methods in Table 2.2. In (2, 6, 7), search accuracy is improved in all

35

transformation𝑤𝑒𝑎𝑘 𝑠𝑡𝑟𝑜𝑛𝑔

+𝒯𝑆

+ℒ𝑆𝑑𝐻

𝑠𝑇

Figure 2.11: Average Hamming distance difference between the original and trans-
formed images of ImageNet query set. By varying the sT , I measure the sensitivity
to transformation of ResNet backbone methods where the numbers in legend indicate
mAP. Solid lines present DHD variants, and dotted lines present others. +TS denotes
strong student augmentation is applied during training. A low slope indicates insensi-
tivity to various transformations.

cases where Lbce-Q is applied. In (3, 4) the results with strong student augmentation TS

show that simply applying it to training degrades the performance due to the emerged

discrepancy in representation between Hamming and real space, while SdH mitigates

this problem and improves performance by properly exploiting the power of data aug-

mentation, as shown in (5, 6, 7). In order to check whether the cosine distance is the

best choice for SdH or not, I replace the cosine distance in Eqn 2.8 with the Euclidean

distance and report the results in (6), but the results in (7) demonstrates that the cosine

distance is better. To summarize the ablation, every proposal affects the performance

improvement, and the best is achieved when all of them are combined as in (7).

36

Method
ImageNet NUS-WIDE MS COCO

with SdH without SdH with SdH without SdH with SdH without SdH

16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit 16-bit 64-bit

HashNet [2] 0.501 0.661 0.337 0.502 0.745 0.769 0.705 0.762 0.695 0.753 0.655 0.727
DCH [94] 0.640 0.673 0.571 0.597 0.754 0.771 0.748 0.767 0.703 0.746 0.669 0.697
DPN [95] 0.630 0.708 0.562 0.656 0.757 0.801 0.753 0.787 0.710 0.772 0.672 0.760
CSQ [87] 0.634 0.711 0.570 0.662 0.759 0.804 0.757 0.793 0.707 0.765 0.670 0.752

DHD(Mine) 0.657 0.721 0.583 0.671 0.780 0.820 0.775 0.806 0.749 0.792 0.731 0.766

Table 2.7: mAP scores with or without Self-distilled Hashing (SdH).

2.7.4 Analysis

Insensitivity to transformations. To investigate the sensitivity to transformations, I

examine how the binary code shifts when transformed images are fed to ResNet back-

bone methods, by using ImageNet query set. I measure the average Hamming distance

between the untransformed (sT = 0) binary codes and the transformed (sT in (0, 1]),

binary codes. As observed in Figure 2.3, CSQ DPN, and a model learned with LHP

are trained with TT , showing sensitivity to transformations due to barely used aug-

mentation. When the augmentation is applied (LHP + TS), model is improved to be

more robust to transformations, however, the map score decreases due to the discrep-

ancy in representation between Hamming and Real space during training. On the other

hand, the combined LHP + LSdH exhibits the highest robustness while achieving the

best mAP score, by minimizing discrepancy and successfully exploring the potential

of strong augmentation.

Self-distilled Hashing with other methods. In order to prove that SdH can be ap-

plied to other deep hashing baselines [2, 94, 95, 87], I perform retrieval experiments

with AlexNet backbone and show the results in Table 3.1. With SdH setup, I employ

TT and TS groups to produce input views, and for without SdH setup, I only use TS to

generate input views. By comparing the reported results of [2, 94] and DHD in Table

2.2 and the results without SdH in Table 3.1, I can see that the deep hashing model

learned with TS is inferior to the model learned with TT , which shows that the direct

use of TS degrades performance. Otherwise, if the model uses SdH to leverage the

37

(iii)

(i)

(ii)

(a) without Lbce-Q (b) with Lbce-Q

Figure 2.12: 3D visualized histograms to verify the impact of Lbce-Q. Gallery sets of
(i) ImageNet, (ii) NUS-WIDE, and (iii) MS COCO are utilized. x-axis presents value
of hash element h, y-axis presents bit position, and z-axis presents frequency counts.

power of strong augmentation, then the retrieval performance can be improved.

38

Quantization. The effect of Lbce-Q is plotted in Figure 2.12. The binary bits are

observed to be distributed more evenly and binary-like when Lbce-Q is applied. This

implies that the bit entropy is much higher, which shows better retrieval quality by

representing diverse binary codes.

Deformation with SdH without SdH

None 0.891 (2.3% ↑) 0.871
Cutout 0.862 (3.7% ↑) 0.827
Dropout 0.810 (7.9% ↑) 0.765
Zoom in 0.658 (19.0% ↑) 0.552
Zoom out 0.816 (1.4% ↑) 0.805
Rotation 0.856 (2.4% ↑) 0.836
Shearing 0.842 (2.7% ↑) 0.815
Gaussian noise 0.768 (10.5% ↑) 0.673

Table 2.8: mAP scores on unseen deformations.

Robustness to unseen deformations. To further examine the generalization capac-

ity of DHD, I conduct experiments with unseen (not seen during training) transforma-

tions to inputs following the evaluation protocol utilized in [98]. As reported in Table

3.2, deep hashing model with SdH significantly outperforms the model without SdH at

all deformations, showing a performance difference of up to 19% (zoom in). In partic-

ular, SdH makes deep hashing model robust to per-pixel deformations such as dropout

and Gaussian noise, even though SdH has not included any pixel-level transformations.

Qualitative Results. In order to see whether the difficulty of transformation is really

different according to sT , I illustrate Figure 2.13. For TT , images do not significantly

deviated from the original. However, for TS , some images are distorted to the point

of being hard to recognize. Figure 2.14 shows what images are actually retrieved as

results when transformation is applied. I can confirm that DHD is robust to transfor-

mation and achieves high quality results.

39

O
ri
g

in
a
l

𝒯 𝑆𝒯 𝑇

Fi
gu

re
2.

13
:V

is
ua

liz
ed

au
gm

en
ta

tio
n

re
su

lts
of

di
ff

er
en

tg
ro

up
s:

w
ea

kl
y-

tr
an

sf
or

m
ed

te
ac

he
rT

T
an

d
st

ro
ng

ly
-t

ra
ns

fo
rm

ed
st

ud
en

t
T S

.

40

Q
u

e
ry

T
o

p
-1

0
 R

e
tr

ie
v
e

d
 I

m
a

g
e

s

O
ri
g

in
a
l

R
e

s
iz

e
d
 c

ro
p

F
lip

C
o

lo
r

jit
te

r
B

lu
r

C
u

to
u

t
D

ro
p
o

u
t

Z
o

o
m

-i
n

R
o

ta
te

S
h
e
a
r

N
o

is
e

Z
o

o
m

-o
u
t

𝒯 𝑇
G

ra
y

s
c
a

le

Fi
gu

re
2.

14
:A

bo
ve

:E
xa

m
pl

es
of

va
ri

ou
s

tr
an

sf
or

m
at

io
ns

ap
pl

ie
d

to
th

e
or

ig
in

al
im

ag
e.

T
he

gr
ee

n
bo

x
in

di
ca

te
s

th
e

sa
m

e
se

ar
ch

re
su

lt
as

th
e

or
ig

in
al

,a
nd

th
e

re
d

bo
x

in
di

ca
te

s
ot

he
rw

is
e.

B
el

ow
:R

et
ri

ev
ed

im
ag

es
on

Im
ag

eN
et

da
ta

se
t.

T
he

im
ag

e
ou

tp
ut

fo
rm

th
e

st
ro

ng
ly

tr
an

sf
or

m
ed
T T

an
d

th
e

im
ag

e
tr

an
sf

or
m

ed
to

gr
ay

sc
al

e
sh

ow
di

ff
er

en
tr

et
ri

ev
al

re
su

lts
.N

ev
er

th
el

es
s,

it
ca

n
be

se
en

th
at

vi
su

al
ly

si
m

ila
ri

m
ag

es
of

th
e

sa
m

e
co

nt
en

ta
re

re
tr

ie
ve

d
w

el
l.

41

Chapter 3

Semi-supervised Learning for Product Quantization: Gen-

eralized Product Quantization Network for Semi-supervised

Image Retrieval

3.1 Motivation and Overview

The amount of multimedia data, including images and videos, increases exponentially

on a daily basis. Hence, retrieving relevant content from a large-scale database has

become a more complicated problem. There have been many kinds of fast and accurate

search algorithms, and the Approximate Nearest Neighbor (ANN) search is known

to have high retrieval accuracy and computational efficiency. Recent ANN methods

mainly focused on Hashing scheme [27], because of its low storage cost and fast

retrieval speed. To be specific, an image is represented by a binary-valued compact

hash code (binary code) with only a few tens of bits, and it is utilized to build database

and distance computation.

The methods using binary code representation can be categorized as Binary Hash-

ing (BH) and Product Quantization (PQ) [45]. BH-based methods [28, 5, 22] employ

a hash function that maps a high-dimensional vector space to a Hamming space, where

the distance between two codes can be measured extremely fast via bitwise XOR op-

42

Figure 3.1: Above: an illustration of the overall framework of GPQ and its three com-
ponents: feature extractor F , PQ tableZ, and classifierC, whereC contributes to build
Z.

eration. However, BH has a limitation in describing the distance between data points

because it can produce only a limited number of distinct values. PQ, which is a kind

of vector quantization, has been introduced to alleviate this problem in information

retrieval [45, 40, 47].

To perform PQ, I first need to decompose the input feature space into a Cartesian

product of several disjoint subspaces (codebooks) and find the centroid (codeword) of

each subspace. Then, from the sub-vectors of the input feature vector, sub-binary code

is obtained by replacing each sub-vector with the index of the nearest codeword in the

codebook. Since codeword consists of real numbers, PQ allows asymmetric distance

calculation in real space using the binary codes, making many PQ-based approaches

outperform BH-based ones.

43

Along with millions of elaborately labeled data, deep Hashing for both BH [30,

67, 43, 44, 46] and PQ [37, 49, 64, 48] has been introduced to take advantage of

deep representations for image retrieval. By employing supervised deep neural net-

works, deep Hashing outperforms conventional ones on many benchmark datasets.

Nevertheless, there still is a great deal of potential for improvement, since a signif-

icant amount of unlabeled data with abundant knowledge is not utilized. To resolve

these issue, some recent methods are considering the Deep Semi-Supervised Hash-

ing, based on BH [66, 62, 42]. However, even if PQ generally outperforms BH for

both supervised and unsupervised settings, it has not yet been considered for learning

in a semi-supervised manner. In this dissertation, I propose the first PQ-based deep

semi-supervised image retrieval approach: Generalized Product Quantization (GPQ)

network, which significantly improves the retrieval accuracy with lots of image data

and just a few labels per category (class).

Existing deep semi-supervised BH methods construct graphs [66, 62] or apply ad-

ditional generative models [42] to encode unlabeled data into the binary code. How-

ever, due to the fundamental problem in BH; a deviation that occurs when embedding

a continuous deep representation into a discrete binary code restricts extensive infor-

mation of unlabeled data. In my GPQ framework, this problem is solved by including

quantization process into the network learning. I adopt intra-normalization [36] and

soft assignment [64] to quantize real-valued input sub-vectors, and introduce an effi-

cient metric learning strategy; N-pair Product Quantization loss inspired from [57].

By this, I can embed multiple pair-wise semantic similarity between every feature vec-

tors in a training batch into the codewords. It also has an advantage of not requiring

any complex batch configuration strategy to learn pairwise relations.

The key point of deep semi-supervised retrieval is to avoid overfitting to labeled

data and increase the generalization toward unlabeled one. For this, I suggest a Sub-

space Entropy Mini-max Loss for every codebook in GPQ, which regularizes the net-

work using unlabeled data. Precisely, I first learn a cosine similarity-based classifier,

44

which is commonly used in few-shot learning [56, 60]. The classifier has as many

weight matrices as the number of codebooks, and each matrix contains class-specific

weight vector, which can be regarded as a sub-prototype that indicates class repre-

sentative centroid of each codebook. Then, I compute the entropy between the distri-

butions of sub-prototypes and unlabeled sub-vectors by measuring their cosine simi-

larity. By maximizing the entropy, the two distributions become similar, allowing the

sub-prototypes to move closer to the unlabeled sub-vectors. At the same time, I also

minimize the entropy of the distribution of the unlabeled sub-vectors, making them

assemble near the moved sub-prototypes. With the gradient reversal layer generally

used for deep domain adaptation [39, 54], GPQ can simultaneously minimize and

maximize the entropy during the network training.

3.1.1 Related Work

Existing Hashing Methods Referring to the survey [27], early works in Binary

Hashing (BH) [28, 5, 22, 59] and Product Quantization (PQ) [45, 40, 47, 41, 51, 63,

58] mainly focused on unsupervised settings. Specifically, Spectral Hashing (SH) [28]

considered correlations within hash functions to obtain balanced compact codes. Itera-

tive Quantization (ITQ) [5] addressed the problem of preserving the similarity of orig-

inal data by minimizing the quantization error in hash functions. There were several

studies to improve PQ, for example, Optimized Product Quantization (OPQ) [40] tried

to improve the space decomposition and codebook learning procedure to reduce the

quantization error. Locally Optimized Product Quantization (LOPQ) [47] employed a

coarse quantizer with locally optimized PQ to explore more possible centroids. These

methods might reveal some distinguishable results, however, they still have disadvan-

tage of not exploiting expensive label signals.

Deep Hashing Methods After Supervised Discrete Hashing (SDH) [22] has shown

the capability to improve using labels, supervised Convolutional Neural Network (CNN)-

45

based BH approaches [30, 67, 43, 44, 46] are leading the mainstream. For examples,

CNN Hashing (CNNH) [30] utilized a CNN to simultaneously learn feature represen-

tation and hash functions with the given pairwise similarity matrix. Network in Net-

work Hashing (NINH) [67] introduced a sub-network, divide-and-encode module, and

a triplet ranking loss for the similarity-preserving hashing. A Supervised, Structured

Binary Code (SUBIC) [43], used a block-softmax nonlinear function and computed

batch-based entropy error to embed the structure into a binary form. There also have

been researches on supervised learning that uses PQ with CNN [37, 49, 64, 48]. Pre-

cisely, Deep Quantization Network (DQN) [37] simultaneously optimizes a pairwise

cosine loss on semantic similarity pairs to learn feature representations and a product

quantization loss to learn the codebooks. Deep Triplet Quantization (DTQ) [49] de-

signed a group hard triplet selection strategy and trained triplets by triplet quantization

loss with weak orthogonality constraint. Product Quantization Network (PQN) [64]

applied the asymmetric distance calculation mechanism to the triplets and exploited

softmax function to build a differentiable soft product quantization layer to train the

network in an end-to-end manner. My method is also based on PQ, but I try a semi-

supervised PQ scheme that had not been considered previously.

Deep Semi-supervised Image Retrieval Assigning labels to images is not only ex-

pensive but also has the disadvantage of restricting the data structure to the labels.

Deep semi-supervised hashing based on BH is being considered in the image retrieval

community to alleviate this problem, with the use of a small amount of labeled data

and a large amount of unlabeled data. For example, Semi-supervised Deep Hashing

(SSDH) [66] employs an online graph construction strategy to train a network using

unlabeled data. Deep Hashing with a Bipartite Graph (BGDH) [62] improved SSDH

by using the bipartite graph, which is more efficient in building a graph and learn-

ing the embeddings. Since Generative Adversarial Network (GAN) had been used for

BH and showed good performance as in [46], Semi-supervised Generative Adversar-

46

ial Hashing (SSGAH) also employed the GAN to fully utilize triplet-wise information

of both labeled and unlabeled data. In this dissertation, I propose GPQ, the first deep

semi-supervised image retrieval method applying PQ. In my work, I endeavor to gen-

eralize the whole network by preserving the semantic similarity with N-pair Product

Quantization loss and extracting the underlying structure of unlabeled data with the

Subspace Entropy Mini-max loss.

3.2 Generalized Product Quantization

Given a dataset X that is composed of individual images, I split this into two sub-

sets as a labeled dataset XL = {(ILi , yi)|i = 1, ..., NL} and an unlabeled dataset

XU = {IUi |i = 1, ..., NU} to establish a semi-supervised environment. The goal of

my work is learning a quantization function q : I → b̂ ∈ {0, 1}B which maps a

high-dimensional input I to a compact B-bits binary code b̂, by utilizing both labeled

and unlabeled datasets. I propose a semi-supervised deep Hashing framework: GPQ,

which integrates q into the deep network as a form of Product Quantization (PQ) [45]

to learn the deep representations and the codewords jointly. In the learning process, I

aim to preserve the semantic similarity of labeled data and simultaneously explore the

structures of unlabeled data to obtain high retrieval accuracy.

GPQ contains three trainable components: 1) a standard deep convolutional neu-

ral network-based feature extractor F , e.g. AlexNet [14], CNN-F [38] or modified

version of VGG [44] to learn deep representations; 2) a PQ table Z that collects code-

books which are used to map an extracted feature vector to a binary code; 3) a cosine

similarity-based classifier C to classify both labeled and unlabeled data. GPQ network

is designed to train all these components in an end-to-end manner. In this section, I

will describe each component and how GPQ is learned in a semi-supervised way.

47

Figure 3.2: A two class (+: blue,−: orange) visualized examples of my training objec-
tives. 1) The left part shows the learning process of N-pair Product Quantization loss
LN -PQ. When I define an anchor as x̂+

1 , the semantically similar points (q̂+
1 , x̂

+
4 , q̂

+
4)

are pulled together while the semantically dissimilar points (x̂−2 , q̂
−
2 , x̂

−
3 , q̂

−
3) are

pushing the anchor. 2) The right part shows the learning process of classification loss
Lcls and subspace entropy mini-max loss LSEM . For the data points constrained on
the unit hypersphere, the cross entropy of labeled data points is minimized to find
prototypes (white stars). Then, the entropy between the prototypes and the unlabeled
data points is maximized to move prototypes toward unlabeled data points and find
new prototypes (yellow stars). Finally, the entropy of the unlabeled data points is min-
imized to cluster them near the new prototypes.

3.2.1 Semi-Supervised Learning

The feature extractor F generates D-dimensional feature vector x̂ ∈ RD. Under semi-

supervised learning condition, I aim to train the F to extract discriminative x̂L and x̂U

from labeled image IL and unlabeled image IU , respectively. Also, I leverage the PQ

concept to utilize these feature vectors for image retrieval, which requires appropriate

codebooks with distinct codewords to replace and store the feature vectors. I introduce

three training objectives for my GPQ approach to fully exploit the data structure of

labeled and unlabeled images, and I illustrate a conceptual visualization of each loss

function in Figure 3.2 for better understanding.

Following the observation of [56, 60, 64, 49], I normalize the feature vectors and

48

constrain them on a unit hypersphere to focus on the angle rather than the magni-

tude in measuring the distance between two different vectors. In this way, every data

is mapped to the nearest class representative direction, and better performs for the

semi-supervised scheme because the distribution divergence between labeled and un-

labeled data can be reduced within the constraint. Especially for PQ, I apply intra-

normalization [36] for a feature vector x̂ by dividing it into M -sub-vectors x̂ =

[x1, ...,xM], where xm ∈ Rd, d = D/M , and l2-normalize each sub-vector as:

xm ← xm/||xm||2. In the rest of the dissertation, x̂ for GPQ denotes the intra-

normalized feature vector.

N-pair Product Quantization The PQ tableZ collectsM -codebooksZ = [Z1, ...,ZM]

and each codebook has K-codewords Zm = [zm1, ..., zmK] where zmk ∈ Rd, which

are used to replace x̂ with the quantized vector q̂. Every codeword is l2-normalized

to simplify the measurement of cosine similarity as multiplication. I employ the soft

assignment sm(·) [64] to obtain a qm from xm as:

qm =

K∑
k

e−α(xm·zmk)∑K
k′ e
−α(xm·zmk′)

zmk (3.1)

where α represents a scaling factor to approximate hard assignment, and qm =

sm(xm;α,Zm) is the sub-quantized vector of q̂ = [q1, ...,qM]. I multiply xm with

the every codeword in Zm to measure the cosine similarity between them.

Quantization error occurs through the encoding process; therefore, I need to find

the codewords that will minimize the error. In addition, the conventional PQ scheme

has a limitation that it ignores label information since the sub-vectors are clustered to

find codewords without any supervised signals. To fully exploit the semantic labels

and reduce the quantization error, I revise the metric learning strategy proposed in [57]

from N-pair Product Quantization loss: LN -PQ to learn the F and Z, and set it as one

of the training objectives.

49

Deep metric learning [61, 55] aims to learn an embedding representation of the

data with the semantic labels. From a labeled image IL, I can generate a unique fea-

ture vector x̂L and its nearest quantized vector q̂L, which can be regarded as shar-

ing the same semantic information. Thus, for randomly sampled B training examples

{(IL1 , y1), ..., (ILB, yB)}, the objective function which is based on a standard cross en-

tropy loss LCE , can be formulated as:

LN -PQ =
1

B

B∑
b=1

LCE(Sb,Yb) (3.2)

where Sb =
[
(x̂Lb)

T q̂L1 , ..., (x̂
L
b)
T q̂LB

]
denotes a cosine similarity between b-th fea-

ture vector and every quantized vector, and Yb =
[
(yb)

Ty1, ..., (yb)
TyB

]
denotes a

similarity between b-th label and every label in a batch. In this case, y represents one-

hot-encoded semantic label, and column-wise normalization is applied to YB . LN -PQ

has an advantage in that no complicated batch construction method is required, and it

also allows us to jointly learn the deep feature representation for both feature vectors

and the codewords on the same embedding space.

Cosine Similarity-based Classification To embed semantic information into the code-

words while reducing correlation between each codebook, I learn a cosine similarity-

based classifier C containing M -weight matrices [W1, ...,WM], where each matrix

includes sub-prototypes as Wm = [cm1, ..., cmNc], Wm ∈ Rd×N
c

and N c is the

number of class. Every sub-prototype is l2-normalized to hold a class-specific angu-

lar information. With the m-th sub-vector xLm of xL and m-th weight matrix Wm, I

can obtain the labeled class prediction as: pLm = WT
mx

L
m. I use LCE again to train

the F and C for classification using p̂L = [pL1 , ...,p
L
M] computed from xL with the

corresponding semantic label y as:

50

Lcls =
1

M

M∑
m=1

LCE(β · pLm, y) (3.3)

where β is a scaling factor and y is a label corresponding to xL. This classification loss

ensures the feature extractor to generate the discriminative features with respect to the

labeled examples. In addition, each weight matrix in the classifier is derived to include

the class-specific representative sub-prototypes of related subspace.

Subspace Entropy Mini-max On the assumption that the distribution is not severely

different between the labeled data and the unlabeled data, I aim to propagate the gradi-

ents derived from the divergence between them. To calculate the error arising from the

distribution difference, I adopt an entropy in information theory. In particular for PQ

setting, I compute the entropy for each subspace to balance the amount of gradients

propagating into each subspace. With the m-th sub-vector xUm of the unlabeled feature

vector xU , and them-th weight matrix of C that embraces sub-prototypes, I can obtain

a class prediction using cosine similarity as: pUm = WT
mx

U
m. By using it, the subspace

entropy mini-max loss is calculated as:

LSEM = − 1

M

M∑
m=1

Nc∑
l=1

(β · pUml) log(β · pUml) (3.4)

where β is the same as that in Equation 3.3 and pUml denotes the probability of pre-

diction to k′-th class; l-th element of pUm. The generalization capacity of the network

can increase by maximizing the LSEM because high entropy ensures that the sub-

prototypes are regularized toward unlabeled data. Explicitly, entropy maximization

makes sub-prototypes have a similar distribution with the unlabeled sub-vectors, mov-

ing sub-prototypes near the unlabeled sub-vectors. To further improve, I aim to cluster

unlabeled sub-vectors near the moved sub-prototype, by applying gradient reversal

51

layer [39, 54] before intra-normalization. Flipped gradients induce F to be learned in

the direction of minimizing the entropy, resulting in a skewed distribution of unlabeled

data.

From the Equations 4.2 to 3.4, total objective functionLT forB randomly sampled

training pairs of IL and IU , can be formulated as:

LT (B) = LN -PQ +
1

B

B∑
b=1

(λ1Lcls − λ2LSEM) (3.5)

where B = {(IL1 , y1, IU1), ..., (ILB, yB, I
U
B)} and λ1 and λ2 are the hyper-parameters

that balance the contribution of each loss function. I force training optimizer to mini-

mize the LT , so that the LN−PQ and Lcls is minimized while the LSEM is maximized,

simultaneously. In this way, F can learn the deep representation of both labeled and

unlabeled data. However, to make the codewords robust against unlabeled data, it is

necessary to reflect the unlabeled data signals directly into Z. Accordingly, I apply

another soft assignment to embed sub-prototype intelligence of Wm into the of m-th

codebook by updating codewords as z′mk = sm (zmk;α,Wm). As a result, high re-

trieval performance can be expected by exploiting the potential of unlabeled data for

quantization.

3.2.2 Retrieval

Building Retrieval Database After learning the entire GPQ framework, I can build

a retrieval database using images in XU . Given an input image IR ∈ XU , I first

extract x̂R from F . Then, I find the nearest codeword zmk∗ of each sub-vector xRm

from the corresponding codebook Zm, by computing the cosine similarity. After that,

formatting a index k∗ of the nearest codeword as binary to generate a sub-binary code

bR. Finally, concatenate all the sub-binary codes to obtain a M · log2(K)-bits binary

code b̂R, where b̂R = [bR1 , ...,b
R
M]. This procedure is repeated for all images to store

52

them as binary, and Z is also stored for distance calculation.

Asymmetric Search For a given query image IQ, x̂Q is extracted from F . To con-

duct the image retrieval, I take the m-th sub-vector xQm as an example, compute the

cosine similarity between xQm and every codeword belonging to the m-th codebook,

and store measured similarities on the look-up-table (LUT). Similarly, the same op-

eration is done for the other sub-vectors, and the results are also stored on the LUT.

The distance between the query image and a binary code in the database can be cal-

culated asymmetrically, by loading the pre-computed distance from the LUT using a

sub-binary codes, and aggregating all the loaded distances.

3.3 Experiments

GPQ is evaluated for two semi-supervised image retrieval protocols against several

Hashing approaches. I conduct experiments on the two most popular image retrieval

benchmark datasets. Extensive experimental results show that GPQ achieves superior

performance to existing methods.

3.3.1 Setup

Evaluation Protocols and Metrics Following the semi-supervised retrieval experi-

ments in [66, 62, 42], I adopt two protocols as follows.

- Protocol 1: Single Category Image Retrieval Assuming all categories (classes)

used for image retrieval are known and only a small number of label data is provided

for each class. The labeled data is used for training, and the unlabeled data is used for

building the retrieval database and the query dataset. In this case, labeled data and

the unlabeled data belonging to the retrieval database are used for semi-supervised

learning.

- Protocol 2: Unseen Category Image Retrieval In line with semi-supervised learn-

ing, suppose that the information of the categories in the query dataset is unknown,

53

and consider building a retrieval database using both known and unknown cate-

gories. For this situation, I divide image dataset into four parts: train75, test75,

train25, and test25, where train75 and test75 are the data of 75% categories, while

train25 and test25 are the data of the remaining 25% categories. I use train75 for

training, train25 and test75 for the retrieval database, and test25 for the query dataset.

In this case, train75 with labels, and train25, test75 without labels are used for semi-

supervised learning.

The retrieval performance of Hashing method is measured by mAP (mean Average

Precision) with bit lengths of 12, 24, 32, and 48 for all images in the query dataset. In

particular, I set Protocol 1 as the primary experiment and observe the contribution of

each training objective.

Datasets I set up two benchmark datasets, different for each protocol as shown in the

Table 3.1, and each dataset is configured as follows.

CIFAR-10 NUS-WIDE
Protocol 1 Protocol 2 Protocol 1 Protocol 2

Query 1,000 9,000 2,100 35,272
Training 5,000 21,000 10,500 48,956
Retrieval
Database 54,000 30,000 157,043 85,415

Table 3.1: Detailed composition of two benchmark datasets.

- CIFAR-10 is a dataset containing 60,000 color images with the size of 32×32. Each

image belongs to one of 10 categories, and each category includes 6,000 images.

- NUS-WIDE [?] is a dataset consisting nearly 270,000 color images with various

resolutions. Images in the dataset associate with one or more class labels of 81 se-

mantic concepts. I select the 21 most frequent concepts for experiments, where each

concept has more than 5,000 images, with a total of 169,643.

54

Concept Method CIFAR-10 NUS-WIDE
12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

Deep Semi-supervised

GPQ (Mine) 0.858 0.869 0.878 0.883 0.852 0.865 0.876 0.878
SSGAH [42] 0.819 0.837 0.847 0.855 0.838 0.849 0.863 0.867
BGDH [62] 0.805 0.824 0.826 0.833 0.810 0.821 0.825 0.829
SSDH [66] 0.801 0.813 0.812 0.814 0.783 0.788 0.791 0.794

Deep Quantization
PQN [64] 0.795 0.819 0.823 0.830 0.803 0.818 0.822 0.824
DTQ [49] 0.785 0.789 0.790 0.792 0.791 0.798 0.808 0.811
DQN [37] 0.527 0.551 0.558 0.564 0.764 0.778 0.785 0.793

Deep Binary Hashing
SUBIC [43] 0.635 0.689 0.713 0.721 0.652 0.783 0.792 0.796
NINH [67] 0.600 0.667 0.689 0.702 0.597 0.627 0.647 0.651
CNNH [30] 0.496 0.580 0.582 0.583 0.536 0.522 0.533 0.531

Product Quantization
LOQP [47] 0.279 0.324 0.366 0.370 0.436 0.452 0.463 0.468
OPQ [40] 0.265 0.315 0.323 0.345 0.429 0.433 0.450 0.458
PQ [45] 0.237 0.265 0.268 0.266 0.398 0.406 0.413 0.422

Binary Hashing
SDH [22] 0.255 0.330 0.344 0.360 0.414 0.465 0.451 0.454
ITQ [5] 0.158 0.163 0.168 0.169 0.428 0.430 0.432 0.435
SH [28] 0.124 0.125 0.125 0.126 0.390 0.394 0.393 0.396

Table 3.2: mAP scores of different Hashing algorithms on experimental protocol 1.

Concept Method CIFAR-10 NUS-WIDE
12-bits 24-bits 32-bits 48-bits 12-bits 24-bits 32-bits 48-bits

Deep Hashing

GPQ (Mine) 0.321 0.333 0.350 0.358 0.554 0.565 0.578 0.586
SSGAH [42] 0.309 0.323 0.341 0.339 0.539 0.553 0.565 0.579
SSDH [66] 0.285 0.291 0.311 0.325 0.510 0.533 0.549 0.551
NINH [67] 0.241 0.249 0.253 0.272 0.484 0.483 0.485 0.487
CNNH [30] 0.210 0.225 0.227 0.231 0.445 0.463 0.471 0.477

CNN features +
non-Deep Hashing

SDH [22] 0.185 0.193 0.199 0.213 0.471 0.490 0.489 0.507
ITQ [5] 0.157 0.165 0.189 0.201 0.488 0.493 0.508 0.503

LOPQ [47] 0.134 0.127 0.126 0.124 0.416 0.386 0.380 0.379
OPQ [40] 0.107 0.119 0.125 0.138 0.341 0.358 0.371 0.373

Table 3.3: mAP scores of different Hashing algorithms on experimental protocol 2.

3.3.2 Results and Analysis

Overview Experimental results for protocol 1 and protocol 2 are shown in Tables

3.2 and 3.3, respectively. In each Table, the methods are divided into several basic

concepts and listed by group. I investigate the variants of GPQ for ablation study,

and the results can be seen in Figures 3.3 to 3.5. From the results, I can observe that

my GPQ scheme outperforms other Hashing methods, demonstrating that the proposed

loss functions effectively improve the GPQ network by training it in a semi-supervised

fashion.

Comparison with Others As shown in Table 3.2, the proposed GPQ performs sub-

stantially better over all bit lengths than compared methods. Specifically, when I aver-

aged mAP scores for all bit lengths, GPQ are 4.8%p and 4.6%p higher than the previ-

ous semi-supervised retrieval methods on CIFAR-10 and NUS-WIDE respectively. In

particular, the performance gap is more pronounced as the number of bits decreases.

55

12 24 32 48

Number of bits

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

m
A

P

(a) CIFAR-10

12 24 32 48

Number of bits

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

m
A

P
(b) NUS-WIDE

Figure 3.3: The comparison results of GPQ and its variants.

This tendency is intimately related to the baseline Hashing concepts. Comparing the

results of the PQ-based and BH-based methods, I can identify that PQ-based ones are

generally superior for both deep and non-deep cases especially for smaller bits. This

is because unlike BH, PQ-based methods have the codewords of real values which en-

able mitigating the deviations generated during the encoding time, and they also allow

more diverse distances through asymmetric calculation between database and query

inputs. For the same reason, PQ-based GPQ with these advantages is able to achieve

the state-of-the-art results in semi-supervised image retrieval.

56

0 0.1 0.2 0.3 0.4 0.5

2

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

m
A

P

1
=0.1

1
=0.3

1
=0.5

(a) 12-bits

0 0.1 0.2 0.3 0.4 0.5

2

0.83

0.84

0.85

0.86

0.87

0.88

0.89

m
A

P
1
=0.1

1
=0.3

1
=0.5

(b) 48-bits

Figure 3.4: The sensitivity investigation of two balancing parameters: λ1 and λ2.

(a) GPQ-T (b) GPQ-H (c) GPQ

Figure 3.5: The t-SNE visualization of deep representations learned by GPQ-T, GPQ-
H and GPQ on CIFAR-10 dataset respectively.

57

Chapter 4

Unsupervised Learning for Product Quantization: Self-

supervised Product Quantization for Deep Unsupervised

Image Retrieval

4.1 Motivation and Overview

Approximate Nearest Neighbor (ANN) search has received much attention in image

retrieval research due to its low storage cost and fast search speed. There are two

mainstream approaches in the ANN research community, where one is Hashing [27],

and the other is Vector Quantization (VQ). Both methods aim to transform high-

dimensional data into compact binary codes while preserving the semantic similarity,

and the difference lies in measuring the distance between two different binary codes.

In the case of Hashing methods [91, 28, 75, 5, 78], the distance between two dif-

ferent binary codes is calculated using Hamming distance, i.e., simple XOR operation.

However, there exists a limitation that the distance between data points can be repre-

sented with only a few discrete values. To alleviate this problem, VQ based methods

[45, 40, 47, 68, 88, 69, 89] have been proposed, which exploits quantized real-valued

vectors in distance measurement. Among these, Product Quantization (PQ) [45] is the

most prototypical method due to its fast retrieval speed and high accuracy.

58

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛ො𝐱𝑖 ො𝐳𝑖෤𝑥𝑖

𝑥

ℱ(∙)

𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛ො𝐱𝑗 ො𝐳𝑗෤𝑥𝑗 ℱ(∙)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

(a) Contrastive Learning

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛ො𝐱𝑖 ො𝐳𝑖෤𝑥𝑖

𝑥

ℱ(∙)

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛ො𝐱𝑗 ො𝐳𝑗෤𝑥𝑗 ℱ(∙)

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒
𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦

(b) Cross Quantized Contrastive Learning (Mine)

Figure 4.1: A simple framework comparison between contrastive learning (a) and
cross quantized contrastive learning (b). The separately sampled two transformations
(t, t′ ∼ T) are applied on an image x to generate two different views x̃i and x̃j ,
and corresponding deep descriptor x̂i and x̂j are obtained with the feature extractor
F(·), respectively. The feature representations in contrastive learning are achieved by
comparing the similarity between the projection head outputs ẑi and ẑj . Instead of
projection, I introduce the quantization head, which collects codebooks of product
quantization. By maximizing cross-similarity between the deep descriptor of one view
and the product quantized descriptor of the other, both codewords and deep descriptors
are jointly trained to contain discriminative image content representations.

The essence of PQ is to decompose the high-dimensional vector space of the rep-

resentative feature vector (image descriptor) into the Cartesian product of several sub-

spaces. To be specific, the image descriptor is divided into several subvectors accord-

ing to the subspaces, and the subvectors are clustered to form centroids. Codebook

of each subspace is configured with corresponding centroids; codewords, which are

regarded as quantized representations of the images. The distance calculation in PQ

is asymmetrically approximated by utilizing the real-valued codewords, resulting in

59

richer distance representations than the Hashing.

Recently, supervised deep image retrieval is the most popular approach to imple-

menting image retrieval systems. Deep Hashing methods [30, 2, 44, 17, 87] show

promising results, however, since binary codes for Hashing cannot be directly ap-

plied to learn deep continuous representations, there occurs an inevitable deviation.

To address this problem, quantization-based deep image retrieval approaches have

been proposed [37, 64, 49, 48, 76], showing superior performance. By introducing

differentiable quantization methods on continuous deep image feature vectors (deep

descriptors), the direct learning of deep representations is allowed in the real-valued

space.

Despite the outstanding performance of the deep supervised learning-based image

retrieval schemes, the problem remains that expensive label information is indispens-

able. In this respect, deep unsupervised Hashing methods have been proposed [77, 73,

84, 90, 85, 74, 81, 86, 82], which investigate the image similarity to discover semanti-

cally distinguishable binary codes without annotations. However, while quantization-

based methods have advantages over Hashing-based ones in deep image retrieval, only

limited studies exist that adopt quantization for deep unsupervised retrieval [80], which

employs pre-extracted visual descriptors instead of images.

In this dissertation, I propose the first unsupervised end-to-end deep quantization-

based image retrieval method; Self-supervised Product Quantization (SPQ) network,

which jointly learns the feature extractor and the codewords. As shown in Fig 4.1,

the main idea of SPQ is based on self-supervised learning. Similar to a concept of

contrastive learning [4, 15, 70], I regard that two different “views” (individually trans-

formed outputs) of a single image are correlated, and conversely, the views generated

from different images are uncorrelated. Especially to train PQ codewords, I introduce

Cross Quantized Contrastive learning, which maximizes the cross-similarity between

the correlated deep descriptor and the product quantized descriptor. This strategy leads

both deep descriptors and PQ codewords to become discriminative, allowing the SPQ

60

framework to achieve high retrieval accuracy.

To demonstrate the efficiency of my proposal, I conduct experiments under various

training conditions. Specifically, unlike previous methods that utilize pretrained model

weights learned from a large labeled dataset, I carry out experiments with “truly”-

unsupervised settings where human supervision is excluded. Despite the absence of

label information, SPQ achieves the state-of-the-art performance.

4.1.1 Related Works

This section categorizes image retrieval algorithms regarding whether or not deep

learning is utilized (conventional versus deep methods) and briefly explains the ap-

proaches. For a more comprehensive understanding, refer to a survey paper [27].

Conventional methods. One of the most common strategies for fast image retrieval

is hashing. For some examples, Locality Sensitivity Hashing (LSH) [91] employed

random linear projections to hash. Spectral Hashing (SH) [28] and Discrete Graph

Hashing (DGH) [78] exploited graph-based approaches to preserve data similarity of

the original feature space. K-means Hashing (KMH) [75] and Iterative Quantization

(ITQ) [5] focused on minimizing quantization errors that occur when mapping the

original feature to discrete binary codes. Another fast image retrieval strategy is vec-

tor quantization. There are Product Quantization (PQ) [45] and its improved variants;

Optimized PQ (OPQ) [40], Locally Optimized PQ (LOPQ) [47], and methods with dif-

ferent quantizers, such as Additive [68], Composite [88], Tree [69], and Sparse Com-

posite Quantizers [89]. My SPQ belongs to the PQ family, where the deep feature data

space is divided into several disjoint subspaces. The divided deep subvectors are then

trained with the proposed loss function to find the optimal codewords.

Deep methods. Supervised deep convolutional neural network (CNN)-based hash-

ing approaches [30, 2, 44, 17, 87] have shown superior performance in many image re-

trieval tasks. There are also quantization-based deep image retrieval methods [37, 48],

61

which use pretrained CNNs and fine-tune the network to train robust codewords to-

gether. For improvement, the metric learning schemes are applied in [64, 49, 76] to

learn codewords and deep representations together with the pairwise semantic similar-

ity. Note that I also utilize a type of metric learning, i.e., contrastive learning; however,

my method requires no label information in learning the codewords. Regarding un-

supervised deep image retrieval, most works are based on hashing. To be specific,

generative mechanisms are utilized in [73, 84, 90, 74], and graph-based techniques are

employed in [81, 82]. Notably, DeepBit [77] has a similar concept to SPQ in that the

distance between the transformed image and the original one is minimized. However,

the hash code representation has a limitation in that only a simple rotational transfor-

mation is exploited. In terms of deep quantization, there only exists a study dubbed

Unsupervised Neural Quantization (UNQ) [80], which uses pre-extracted visual de-

scriptors instead of employing the image itself to find the codewords.

To improve the quality of image descriptors and codewords for unsupervised deep

PQ-based retrieval, I configure SPQ with a feature extractor to explore the entire im-

age information. Then, I jointly learn every component of SPQ in a self-supervised

fashion. Similar to [4, 70], the full knowledge of the dataset is augmented with several

transformations such as crop and resize, flip, color distortion, and Gaussian blurring.

By cross-contrasting differently augmented images, both image descriptors and code-

words become discriminative to achieve a high retrieval score.

4.2 Self-supervised Product Quantization

4.2.1 Overall Framework

The goal of an image retrieval model is to learn a mapping R : x → b where R de-

notes the overall system, x is an image included in a dataset X = {xn}Nn=1 of N train-

ing samples, and b̂ is a B-bits binary code b̂ ∈ {0, 1}B. As illustrated in Figure 4.2,

62

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟: ℱ

ො𝐱1

𝑥1 ො𝐱2

ො𝐱3

𝑥2 ො𝐱4

𝐶1

𝐱11

𝐱21

𝐱31

𝐱41

𝐱32

𝐱12

𝐱42

𝐱22

𝐶2

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐻𝑒𝑎𝑑: 𝒬

𝐶𝑜𝑛𝑐𝑎𝑡

[𝑞1(𝐱11), 𝑞2(𝐱12)]𝐷

[𝑞1(𝐱21), 𝑞2(𝐱22)]𝐷

[𝑞1(𝐱31), 𝑞2(𝐱32)]𝐷

[𝑞1(𝐱41), 𝑞2(𝐱42)]𝐷

𝐷𝑖𝑣𝑖𝑑𝑒

𝐱11, 𝐱12

𝐱21, 𝐱22

𝐱31, 𝐱32

𝐱41, 𝐱42

ො𝐳1

ො𝐳2

ො𝐳4

ො𝐳3

Codeword: 𝐜𝑚𝑘

Figure 4.2: An illustration of feature extraction and quantization procedure in SPQ.
Randomly sampled data augmentation techniques (tn ∼ T) are applied on x1 and x2
to produce transformed images (different views). There are two trainable components;
1) CNN-based feature extractorF , and 2) quantization headQ, which collects multiple
codebooks to conduct product quantization. For example, I set up two codebooks C1

and C2, and illustrate 2D conceptual Voronoi diagram inQ. The original feature space
of deep descriptor (feature vector x̂n ∈ RD) is divided into two subspaces and gener-
ates subvectors; xnk where k = {1, 2} and xnk ∈ RD/2. By employing soft quantizer
qk(·) on each xnk, the sub-quantized descriptor znk = qk(xnk) is approximated with
the combination of the codewords. Notably, subvectors representing similar features
are allocated to the same codeword. The output product quantized descriptor ẑn ∈ RD
is obtained by [·]D operation which concatenates the sub-quantized descriptors along
the D-dimension.

R of Self-supervised Product Quantization (SPQ) contains deep convolutional neural

network based feature extractor F(x; θF) which outputs a compact deep descriptor

(feature vector) x ∈ RD. Any CNN architecture can be exploited as a feature extrac-

tor, as long as it can handle length-scalable fully connected layer, e.g. AlexNet [14],

VGG [83], or ResNet [6]. I configure the baseline network architecture with ResNet50

that generally shows outstanding performance in image representation learning.

In terms of applying quantization for fast image retrieval, R employs K code-

books in the quantization head Q(x̂; θQ) of {C1, ..., CK} ⊂ Q, where Ci consists

of M codewords c ∈ RD/K as Ck = {c1k, ..., cMk}. Product Quantization (PQ) is

conducted in Q by dividing the deep feature space into the Cartesian product of mul-

tiple subspaces. Every codebook of corresponding subspace induces to exhibit several

63

Cross Quantized Contrastive Learning

UncorrelatedCorrelated

Deep descriptor Product Quantized descriptor

ො𝐱3

ො𝐳2

ො𝐱1

ො𝐳3

ො𝐳1

ො𝐳4

ො𝐱2

ො𝐱4

ො𝐱3

ො𝐳2ො𝐱1

ො𝐳3

ො𝐳1

ො𝐳4

ො𝐱2

ො𝐱4

Figure 4.3: A visualized example of proposed cross quantized contrastive learning
strategy. For simplicity, I take the examples x1 7→ {x̂1, x̂2, ẑ1, ẑ2}, and x2 7→
{x̂3, x̂4, ẑ3, ẑ4} from Figure 2.2, and paint the feature representations related to x1
in blue, and x2 in red. Taking into account the cross-similarity between x̂ and ẑ as:
x̂1 ↔ {ẑ2, ẑ4}, x̂2 ↔ {ẑ1, ẑ3}, x̂3 ↔ {ẑ2, ẑ4},and x̂4 ↔ {ẑ1, ẑ3}, the network is
trained to understand the discriminative image contents, while simultaneously collect-
ing frequently occurring local patterns into the codewords.

distinctive characteristics representing the image dataset X . Each codeword belong-

ing to the codebook infers a clustered centroid of a divided deep descriptor, which

aims to hold a local pattern that frequently occurs. During quantization, similar prop-

erties between images are shared by being assigned to the same codeword, whereas

distinguishable features have different codewords. As a result, various distance repre-

sentations for efficient image retrieval are achieved.

4.2.2 Self-supervised Training

First of all, to conduct deep learning with F andQ in an end-to-end manner, and make

the whole codewords contribute to training, I need to solve the infeasible derivative

calculation of hard assignment quantization. Therefore, following [64], I introduce

soft quantization on the quantization head with the soft quantizer qk(·) as:

64

znk =
M∑
m

exp(−‖xnk − cmk‖22/τq)∑M
m′ exp(−‖xnk − cm′k‖22/τq)

cmk (4.1)

where τq is a non-negative temperature parameter which scales the input of the soft-

max, and ‖·‖22 denotes the squared Euclidean distance to measure the similarity be-

tween inputs. In this fashion, the sub-quantized descriptor znk = qk(xn; τq, Ck) can

be regarded as an exponential weighted sum of the codewords that belongs to the Ck.

Note that the entire codewords in the codebook are utilized to approximate the quan-

tized output, where the closest codeword contributes the most.

Besides, unlike previous deep PQ approaches [64, 76], I exclude intra-normalization

which is known to minimize the impact of burst visual features when concatenating

sub-quantized descriptors to obtain the full product quantized descriptor ẑ. Since my

SPQ is trained without any human supervision which assists to find distinct features, I

focus on catching dominant visual features rather than balancing the influence of every

codebook.

To learn the deep descriptors and the codewords together, I propose cross quan-

tized contrastive learning scheme, as observed in the Figure 4.1(b). Inspired from the

contrastive learning [4, 70], I attempt to comparing the deep descriptors and the prod-

uct quantized descriptors of various views (transformed images). As shown in Figure

4.3, the deep descriptor and the product quantized descriptor are treated as correlated

if the views are originated from the same image, whereas uncorrelated if the views are

originated from the different images. Note that, to increase the generalization capac-

ity of the codewords, the correlation between the deep descriptor and the quantized

descriptor of itself (x̂n and ẑn) is ignored. This is because the contribution of other

codewords decreases when the agreement between the subvector and the nearest code-

word is maximized.

For a given mini-batch of size NB , we randomly sample NB examples from the

65

database X and apply a random combination of augmentation techniques to each im-

age twice to generate 2NB data points (views). Inspired from [71, 4, 70], we take into

account that two separate views of the same image (x̃i, x̃j) are correlated, and the

other 2(NB − 1) views originating from different images within a mini-batch are un-

correlated. On this assumption, we design a cross quantized contrastive loss function

to learn the correlated pair of examples (i, j) as:

`(i,j) = − log
exp (S(i, j)/τcqc)∑NB

n=1 1[n′ 6=j] exp (S(i, n′)/τcqc)
(4.2)

where n′ =


2n− 1 if j is odd

2n else
, S(i, j) denotes a cosine similarity between x̂i and

ẑj , τcqc is a non-negative temperature parameter, and 1[n′ 6=j] ∈ {0, 1} is an indicator

that evaluates to 1 iff n′ 6= j. Notably, to reduce redundancy between x̂i and ẑi which

are similar to each other, the loss is computed for the half of the uncorrelated samples

in the batch. The cosine similarity is used as a distance measure to avoid the norm

deviations between x̂ and ẑ .

Concerning data augmentation for generating various views, I employ five popular

techniques as: 1) resized crop to treat local, global, and adjacent views, 2) horizontal

flip to handle mirrored inputs, 3) color jitter to deal with color distortions, 4) grayscale

to focus more on intensity, and 5) Gaussian blur to cope with noise in image. Default

setup is directly taken from [4], where all transformations are randomly applied in a

sequential manner (1-5). Exceptionally, I modify color jitter strength as 0.5 to fit in

SPQ, following the empirical observation. In the end, SPQ is capable of interpreting

contents in the image by contrasting different views in a self-supervised way.

66

4.3 Experiments

4.3.1 Datasets

To evaluate the performance of SPQ, I conduct comprehensive experiments on three

public benchmark datasets, following experimental protocols in recent unsupervised

deep image retrieval methods [90, 86, 82].

CIFAR-10 contains 60,000 images with the size of 32 × 32 in 10 class labels, and

each class has 6,000 images. I select 5,000 images per class as a training set, 100

images per class as a query set. The entire training set of 50,000 images are utilized to

build a retrieval database.

FLICKR25K consists 25,000 images with various resolutions collected from the

Flickr website. Every image is manually annotated with at least one of the 24 semantic

labels. I randomly take 2,000 images as a query set and employ the remaining 23,000

images to build a retrieval database, of which 5,000 images are utilized for training.

NUS-WIDE has nearly 270,000 images with various resolutions in 81 unique labels,

where each image belongs to one or more labels. I pick out images containing the 21

most frequent categories to perform experiments with a total of 169,643. I randomly

choose a total of 10,500 images as a training set with each category being at least 500,

a total of 2,100 images as a query set with each category being at least 100, and the

rest images as a retrieval database.

Table 4.1: Detailed composition of three benchmark datasets.
Dataset # Train # Query # Retrieval # Class

CIFAR-10 50,000 10,000 50,000 10
FLICKR25K 5,000 2,000 23,000 24
NUS-WIDE 10,500 2,100 157,043 21

67

Table 4.2: mAP scores of different retrieval methods on three benchmark datasets.

Method
CIFAR-10 FLICKR25K NUS-WIDE

16-bits 32-bits 64-bits 16-bits 32-bits 64-bits 16-bits 32-bits 64-bits

Shallow Methods without Deep Learning

LSH [91] 0.132 0.158 0.167 0.583 0.589 0.593 0.432 0.441 0.443

SH [28] 0.272 0.285 0.300 0.591 0.592 0.602 0.510 0.512 0.518

ITQ [5] 0.305 0.325 0.349 0.610 0.622 0.624 0.627 0.645 0.664

PQ [45] 0.237 0.259 0.272 0.601 0.612 0.626 0.452 0.464 0.479

OPQ [40] 0.297 0.314 0.323 0.620 0.626 0.629 0.565 0.579 0.598

LOPQ [47] 0.314 0.320 0.355 0.614 0.634 0.635 0.620 0.655 0.670

Deep Semi-unsupervised Methods

DeepBit [77] 0.220 0.249 0.277 0.593 0.593 0.620 0.454 0.463 0.477

GreedyHash [85] 0.448 0.473 0.501 0.689 0.699 0.701 0.633 0.691 0.731

DVB [81] 0.403 0.422 0.446 0.614 0.655 0.658 0.677 0.632 0.665

DistillHash [86] 0.454 0.469 0.489 0.696 0.706 0.708 0.667 0.675 0.677

TBH [82] 0.532 0.573 0.578 0.702 0.714 0.720 0.717 0.725 0.735

Deep Truly-unsupervised Methods

SGH [73] 0.435 0.437 0.433 0.616 0.628 0.625 0.593 0.590 0.607

HashGAN [74] 0.447 0.463 0.481 - - - - - -

BinGAN [90] 0.476 0.512 0.520 0.663 0.679 0.688 0.654 0.709 0.713

BGAN [84] 0.525 0.531 0.562 0.671 0.686 0.695 0.684 0.714 0.730

SPQ (Mine) 0.768 0.793 0.812 0.764 0.789 0.801 0.759 0.781 0.792

4.3.2 Experimental Settings

Evaluation Metrics. I employ mean Average Precision (mAP) to evaluate the re-

trieval performance. Specifically, in the case of multi-label image retrieval on FLICKR25K

and NUS-WIDE dataset, it is considered relevant even if only one of the labels matches.

I vary the number of bits allocated to the binary code as {16, 32, 64} to measure

the mAP scores of the retrieval approaches, mAP@1,000 for CIFAR-10 dataset and

mAP@5,000 for FLICKR25K and NUS-WIDE datasets following [82, 86]. In addi-

tion, by employing 64-bits hash codes of different algorithms, I draw Precision-Recall

curves (PR) to compare the precisions at different recall levels and report Precision

curves with respect to 1,000 top returned samples (P@1,000) to contrast the ratio of

68

results retrieved correctly.

Implementation details. There are three baseline approaches that I categorize to

make comparison: 1) shallow methods without deep learning, based on Hashing for

LSH [91], SH [28], ITQ [5], and based on product quantization for PQ [45], OPQ

[40] LOPQ [47], 2) deep semi-unsupervised methods for DeepBit [77], GreedyHash

[85], DVB [81], DistillHash [86], TBH [82], and 3) deep truly-unsupervised methods

for SGH [73], HashGAN [74], BinGAN [90], and BGAN [84]. The terms “semi”

and “truly” indicate whether the pretrained model weights are utilized or not. Both

semi and truly training conditions can be applied to SPQ; however, I take the truly-

unsupervised model that has the advantage of not requiring human supervision as the

baseline.

To evaluate the shallow and deep semi-unsupervised methods, I employ ImageNet

pretrained model weights of AlexNet [14] or VGG16 [83] to utilize fc 7 features,

following the experimental settings of [86, 81, 82]. Since those models take only fixed-

size inputs, I need to resize all images to 224×224, by upscaling the small images and

downsampling the large ones. In case of evaluating deep truly-unsupervised methods

including SPQ, the same resized images of FLICKR25K and NUS-WIDE datasets are

used for simplicity, and the original resolution images of CIFAR-10 are used to reduce

computational load.

My implementation of SPQ is based on PyTorch with NVIDIA Tesla V100 32GB

Tensor Core GPU. Following the observations in recent self-supervised learning stud-

ies [4, 70], I set the baseline network architecture as a standard ResNet50 [6] for

FLICKR25K and NUS-WIDE datasets. In case of CIFAR-10 dataset with the much

smaller images, I set the baseline as a standard ResNet18 [6], and modify the number

of filters as same as ResNet50.

For network training, I adopt Adam [13] and decay the learning rate with the cosine

scheduling without restarts [79], and set the batch size NB as 256. I fix the dimension

69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

(a) CIFAR-10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

(b) FLICKR25K

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

(c) NUS-WIDE

Figure 4.4: Precision-Recall curves on benchmarks with binary codes @ 64-bits.

0 100 200 300 400 500 600 700 800 900 1000

Number of top returned images

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

ITQ

(a) CIFAR-10

0 100 200 300 400 500 600 700 800 900 1000

Number of top returned images

0.6

0.65

0.7

0.75

0.8

0.85

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

ITQ

(b) FLICKR25K

0 100 200 300 400 500 600 700 800 900 1000

Number of top returned images

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
re

c
is

io
n

SPQ (Ours)

TBH

DistillHash

BGAN

BinGAN

LOPQ

ITQ

(c) NUS-WIDE

Figure 4.5: Precision@top-1000 curves on benchmarks with binary codes @ 64-bits.

of the subvector x and the codeword c to D/K = 16, and also the number of code-

words to M = 24. Consequently, the number codebooks K is changed to {4, 8, 16}

because K· log2(M)-bits are needed to obtain {16, 32, 64}-bits binary code. The tem-

perature parameter τq and τcqc are set as 5 and 0.5, respectively. Data augmentation

is operated with Kornia [72] library, and each transformation is applied with the same

probability as the settings in [4]. I will make my code publicly open for further research

and comparison.

70

4.3.3 Results

The mAP results on three different image retrieval datasets are listed in Table 4.2,

showing that SPQ substantially outperforms all the compared methods in every bit-

length. Additionally, referring to Figures 4.4 and 4.5, SPQ is demonstrated to be the

most desirable retrieval system.

First of all, compared to the best shallow method LOPQ [47], SPQ reveals a per-

formance improvement of more than 46%p 16%p and 13%p in the average mAP on

CIFAR-10, FLICKR25K and NUS-WIDE, respectively. The reason for the more pro-

nounced difference for CIFAR-10 is because the shallow methods involve an unnec-

essary upscaling process to utilize the ImageNet pretrained deep features. SPQ has an

advantage over shallow methods in that various and suitable neural architectures can

be accommodated for feature extraction and end-to-end learning.

Second, in contrast to the best deep semi-unsupervised method TBH [82], SPQ

yields 23%p 7.2%p 5.2%p higher average mAP scores on CIFAR-10, FLICKR25K

and NUS-WIDE, respectively. Even if there is no prior information, SPQ distinguishes

contents within the image properly for retrieval, by comparing multiple views of train-

ing samples.

Lastly, even with the truly unsupervised setup, SPQ achieves state-of-the-art re-

trieval accuracy. Specifically, unlike previous Hashing-based truly unsupervised meth-

ods, SPQ introduces differentiable product quantization to the unsupervised image

retrieval system for the first time. By considering cross-similarity between different

views in a self-supervised way, deep descriptors and codewords are allowed to be dis-

criminative.

4.3.4 Empirical Analysis

Ablation Study. I configure five variants of SPQ to investigate as: 1) SPQ-C re-

places cross-quantized contrastive learning with a contrastive learning by comparing

ẑi and ẑj , 2) SPQ-H employs hard quantization instead of soft quantization, 3) SPQ-Q

71

(a) BinGAN [90] (b) TBH [82] (c) SPQ (Mine)

Figure 4.6: t-SNE visualization of deep representations learned by BinGAN, TBH, and
SPQ on CIFAR-10 query set respectively.

Table 4.3: mAP scores of SPQ and its variants on three benchmark datasets @ 32-bits.
Method CIFAR-10 FLICKR25K NUS-WIDE

SPQ-C 0.722 0.748 0.743
SPQ-H 0.735 0.754 0.746
SPQ-Q 0.704 0.733 0.735
SPQ-S 0.814 0.817 0.809
SPQ-V 0.776 0.779 0.765
SPQ 0.793 0.789 0.781

uses standard vector quantization, which does not divide the feature space and di-

rectly utilize entire feature vector to build the codebook, 4) SPQ-S exploits pretrained

model weights to conduct deep semi-unsupervised image retrieval, and 5)SPQ-V uti-

lizes VGG16 network architecture as the baseline.

As reported in Table 4.3, I can observe that each component of SPQ contributes

sufficiently to performance improvement. Through the comparison with SPQ-C, it is

confirmed that considering cross-similarity between the deep descriptor and the prod-

uct quantized descriptor of different views, rather than comparing quantized outputs,

resulting in more efficient image retrieval results. From the results of SPQ-H, I find

that soft quantization is more suitable for learning codewords. The retrieval outcomes

with SPQ-Q, which shows the biggest performance gap with SPQ, explain that product

quantization leads to accomplishing precise search results by increasing the amount of

distance representation.

Notably, SPQ-S, which utilizes ImageNet pretrained model weights for network

72

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

color jitter strength

0.68

0.7

0.72

0.74

0.76

0.78

m
A

P

q
=1

q
=5

q
=25

(a) @16-bits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

color jitter strength

0.7

0.72

0.74

0.76

0.78

0.8

0.82

m
A

P

q
=1

q
=5

q
=25

(b) @64-bits

Figure 4.7: Sensitivity investigation of two temperature hyper-parameters: τq and τcqc
on CIFAR-10 dataset.

initialization, outperforms truly-unsupervised SPQ. In this observation, I can see that

although SPQ demonstrates the best retrieval accuracy without any human guidance,

better results can be obtained with some label information. Although SPQ-V is inferior

to ResNet-based SPQ, its performance still surpasses existing state-of-the-art retrieval

algorithms, which proves the excellence of PQ-based self-supervised learning scheme.

Hyper-parameter sensitivity. I explore the performance difference according to the

changes of the hyper-parameters τq and τcqc in Figure 4.7. In general, since the larger

τq is closer to hard quantization, the influence from the changes in color jitter strength

is reduced. However, to cope with the color distortion properly, it is more helpful to

learn codewords with soft quantization to some extent.

73

Query Top-10 Retrieved Images

Figure 4.8: SPQ retrieval results on CIFAR-10 @ 32-bits.

Visualization. As illustrated in Figure 4.6, I employ t-SNE [50] to examine the dis-

tribution of deep representations of BinGAN, TBH, and my SPQ, where BinGAN and

SPQ are trained under the truly-unsupervised setting. Nonetheless, my SPQ scatters

data samples most distinctly where each color denotes a different class label. Further-

more, I show the actual returned images in Figure 4.8. Interestingly, not only images

of the same category, but also images with visually similar contents are retrieved, like

cat appears in the dog retrieval results.

74

Chapter 5

Conclusion

In this dissertation, deep learning based Hashing and Product Quantization (PQ) al-

gorithms are proposed to achieve fast and accurate image retrieval. For semantically

similar image retrieval, deep Hashing methods are proposed that retrieve images of the

same category at the top. For more complex semantically and visually similar image

retrieval, I consider semi-supervised learning to exploit both labeled and unlabeled in

training deep PQ based image retrieval system. To be more focused on visually similar

image retrieval, unsupervised learning approach with self-supervision is proposed to

train the deep PQ model without human supervision.

Similarity Guided Hashing The proposed Similarity Guided Hashing (SGH) net-

work for face image retrieval exploits an end-to-end supervised learning strategy. With

the randomly transformed face images, the self and pairwise-similarity between the

original image and the transformed one in the latent space are learned to find better

image representations. In addition, I employed quantization and classification train-

ing objectives on hashing head to appropriately encode learned representations into

the hash space while minimizing the information loss. Retrieval results on the large

scale face image datasets with various resolutions verify the effectiveness of proposed

approach with the state-of-the-art performances.

75

Deep Hash Distillation The proposed Self-distilled Hashing (SdH) scheme for deep

hashing learning is demonstrated to generate robust hash codes from transformations.

By maximizing the cosine similarity between hash codes of different views of one

image, SdH minimizes the discrepancy in the representation due to augmentation and

exploits its power in training. Besides, I optimized deep hashing model with proxy-

based hash similarity learning and quantization loss of maximum likelihood manner.

With all these proposals, I configured Deep Hash Distillation (DHD) framework that

yields discriminative hash codes for hashing-based image retrieval systems. Experi-

mental results on popular benchmarks validate the effectiveness of proposed approach

with the state-of-the-art performance.

Generalized Product Quantization The first quantization based deep semi-supervised

image retrieval technique, named Generalized Product Quantization (GPQ) network

is proposed. I employed a metric learning strategy that preserves semantic similarity

within the labeled data for the discriminative codebook learning. Further, I compute

an entropy for each subspace and simultaneously maximize and minimize it to embed

underlying information of the unlabeled data for the codebook regularization. Compre-

hensive experimental results justify that the GPQ yields state-of-the-art performance

on large-scale image retrieval benchmark datasets.

Self-supervised Product Quantization A novel deep self-supervised learning-based

fast image retrieval method, Self-supervised Product Quantization (SPQ) network is

proposed. By employing a PQ scheme, I built the first end-to-end unsupervised learn-

ing framework for image retrieval. I introduced a cross quantized contrastive learning

strategy to learn the deep representations and codewords to discriminate the image

contents while clustering local patterns at the same time. Despite the absence of any

supervised label information, SPQ yields state-of-the-art retrieval results.

76

Bibliography

[1] Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and Andrew Zisserman. Vg-

gface2: A dataset for recognising faces across pose and age. In IEEE Inter-

national Conference on Automatic Face & Gesture Recognition, pages 67–74.

IEEE, 2018.

[2] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep

learning to hash by continuation. In CVPR, pages 5608–5617, 2017.

[3] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-

ple framework for contrastive learning of visual representations. arXiv preprint

arXiv:2002.05709, 2020.

[5] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Itera-

tive quantization: A procrustean approach to learning binary codes for large-scale

image retrieval. PAMI, 35(12):2916–2929, 2012.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In CVPR, pages 770–778, 2016.

[7] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In ICML, pages 448–456,

2015.

77

[8] Young Kyun Jang and Nam Ik Cho. Generalized product quantization network

for semi-supervised image retrieval. In CVPR, pages 3420–3429, 2020.

[9] Young Kyun Jang, Dong-ju Jeong, Seok Hee Lee, and Nam Ik Cho. Deep clus-

tering and block Hashing network for face image retrieval. In ACCV, pages 325–

339. Springer, 2018.

[10] Dong-ju Jeong, Sung-Kwon Choo, Wonkyo Seo, and Nam Ik Cho. Classification-

based supervised Hashing with complementary networks for image search. In

BMVC, page 74, 2018.

[11] L. Jing and Y. Tian. Self-supervised visual feature learning with deep neural

networks: A survey. PAMI, pages 1–1, 2020.

[12] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,

Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised con-

trastive learning. arXiv preprint arXiv:2004.11362, 2020.

[13] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

2015.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In NeurIPS, pages 1097–1105, 2012.

[15] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsuper-

vised representations for reinforcement learning. In ICML, volume 119, 2020.

[16] Jian Li, Yabiao Wang, Changan Wang, Ying Tai, Jianjun Qian, Jian Yang,

Chengjie Wang, Jilin Li, and Feiyue Huang. Dsfd: dual shot face detector. In

CVPR, pages 5060–5069, 2019.

[17] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised discrete Hashing.

In NeurIPS, pages 2482–2491, 2017.

78

[18] Jie Lin, Zechao Li, and Jinhui Tang. Discriminative deep Hashing for scalable

face image retrieval. In IJCAI.

[19] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised

Hashing for fast image retrieval. In CVPR, pages 2064–2072, 2016.

[20] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Super-

vised Hashing with kernels. In CVPR, pages 2074–2081. IEEE, 2012.

[21] Hong-Wei Ng and Stefan Winkler. A data-driven approach to cleaning large face

datasets. In ICIP, pages 343–347. IEEE, 2014.

[22] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. Supervised discrete

Hashing. In CVPR, pages 37–45, 2015.

[23] Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu, Li Liu, Fan Zhu, Fumin Shen,

and Ling Shao. Auto-encoding twin-bottleneck Hashing. In CVPR, pages 2818–

2827, 2020.

[24] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-

tive. In NeurIPS, pages 1857–1865, 2016.

[25] Jinhui Tang, Zechao Li, and Xiang Zhu. Supervised deep Hashing for scalable

face image retrieval. PR, 75:25–32, 2018.

[26] Jinhui Tang, Jie Lin, Zechao Li, and Jian Yang. Discriminative deep quantization

Hashing for face image retrieval. TNNLS, 29(12):6154–6162, 2018.

[27] Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on

learning to hash. PAMI, 40(4):769–790, 2017.

[28] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral Hashing. In NeurIPS,

pages 1753–1760, 2009.

79

[29] Lior Wolf, Tal Hassner, and Itay Maoz. Face recognition in unconstrained videos

with matched background similarity. In CVPR, pages 529–534. IEEE, 2011.

[30] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Supervised

Hashing for image retrieval via image representation learning. In AAAI, 2014.

[31] Zhi Xiong, Dayan Wu, Wen Gu, Haisu Zhang, Bo Li, and Weiping Wang. Deep

discrete attention guided Hashing for face image retrieval. In ICMR, pages 136–

144, 2020.

[32] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Ji-

ashi Feng. Central similarity quantization for efficient image and video retrieval.

In CVPR, pages 3083–3092, 2020.

[33] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lucas Beyer. S4l: Self-

supervised semi-supervised learning. In ICCV, pages 1476–1485, 2019.

[34] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. Deep Hashing network

for efficient similarity retrieval. In AAAI, 2016.

[35] Jegou, Herve and Douze, Matthijs and Schmid, Cordelia. , “Product quantiza-

tion for nearest neighbor search,” IEEE Transactions on Pattern Analysis and

Machine Intelligence., vol. 33, no.1, pp. 117-128, 2010.

[36] Relja Arandjelovic and Andrew Zisserman. All about vlad. In CVPR, pages

1578–1585, 2013.

[37] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and Qingfu Wen. Deep

quantization network for efficient image retrieval. In AAAI, 2016.

[38] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.

[39] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by back-

propagation. ICML, 2015.

80

[40] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quanti-

zation for approximate nearest neighbor search. In CVPR, pages 2946–2953,

2013.

[41] Jae-Pil Heo, Zhe Lin, and Sung-Eui Yoon. Distance encoded product quantiza-

tion for approximate k-nearest neighbor search in high-dimensional space. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2018.

[42] Qinghao Hu, Jian Cheng, Zengguang Hou, et al. Semi-supervised generative

adversarial Hashing for image retrieval. In ECCV, pages 491–507. Springer,

2018.

[43] Himalaya Jain, Joaquin Zepeda, Patrick Pérez, and Rémi Gribonval. Subic: A

supervised, structured binary code for image search. In ICCV, pages 833–842,

2017.

[44] Young Kyun Jang, Dong-ju Jeong, Seok Hee Lee, and Nam Ik Cho. Deep clus-

tering and block Hashing network for face image retrieval. In ACCV, pages 325–

339. Springer, 2018.

[45] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for

nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 33(1):117–128, 2010.

[46] Dong-ju Jeong, Sung-Kwon Choo, Wonkyo Seo, and Nam Ik Cho. Classification-

based supervised Hashing with complementary networks for image search. In

BMVC, page 74, 2018.

[47] Yannis Kalantidis and Yannis Avrithis. Locally optimized product quantization

for approximate nearest neighbor search. In CVPR, pages 2321–2328, 2014.

[48] Benjamin Klein and Lior Wolf. End-to-end supervised product quantization for

image search and retrieval. In CVPR, pages 5041–5050, 2019.

81

[49] Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep

triplet quantization. ACM Multimedia, 2018.

[50] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Jour-

nal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[51] Qingqun Ning, Jianke Zhu, Zhiyuan Zhong, Steven CH Hoi, and Chun Chen.

Scalable image retrieval by sparse product quantization. IEEE Transactions on

Multimedia, 19(3):586–597, 2016.

[52] Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic

representation of the spatial envelope. International Journal of Computer Vision,

42(3):145–175, 2001.

[53] Alexandre Sablayrolles, Matthijs Douze, Nicolas Usunier, and Hervé Jégou. How

should I evaluate supervised Hashing? In ICASSP, pages 1732–1736. IEEE,

2017.

[54] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Open

set domain adaptation by backpropagation. In ECCV, pages 153–168, 2018.

[55] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified

embedding for face recognition and clustering. In CVPR, pages 815–823, 2015.

[56] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-

shot learning. In NeurIPS, pages 4077–4087, 2017.

[57] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objec-

tive. In NeurIPS, pages 1857–1865, 2016.

[58] Jingkuan Song, Lianli Gao, Li Liu, Xiaofeng Zhu, and Nicu Sebe. Quantization-

based Hashing: a general framework for scalable image and video retrieval. Pat-

tern Recognition, 75:175–187, 2018.

82

[59] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Sequential projection learning for

Hashing with compact codes. In ICML, pages 1127??-1134, 2010.

[60] Yen-Cehng Wei-Yu and Jia-Bin Zsolt, Yu-Chiang. A closer look at few-shot

classification. In ICLR, 2019.

[61] Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large

margin nearest neighbor classification. Journal of Machine Learning Research,

10(Feb):207–244, 2009.

[62] Xinyu Yan, Lijun Zhang, and Wu-Jun Li. Semi-supervised deep Hashing with a

bipartite graph. In IJCAI, pages 3238–3244, 2017.

[63] Litao Yu, Zi Huang, Fumin Shen, Jingkuan Song, Heng Tao Shen, and Xiao-

fang Zhou. Bilinear optimized product quantization for scalable visual content

analysis. IEEE Transactions on Image Processing, 26(10):5057–5069, 2017.

[64] Tan Yu, Junsong Yuan, Chen Fang, and Hailin Jin. Product quantization network

for fast image retrieval. In ECCV, pages 186–201, 2018.

[65] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

Understanding deep learning requires rethinking generalization. 2017.

[66] Jian Zhang and Yuxin Peng. Ssdh: semi-supervised deep Hashing for large scale

image retrieval. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 29(1):212–225, 2017.

[67] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learn-

ing and hash coding with deep neural networks. In CVPR, pages 3270–3278,

2015.

[68] Artem Babenko and Victor Lempitsky. Additive quantization for extreme vector

compression. In CVPR, pages 931–938, 2014.

83

[69] Artem Babenko and Victor Lempitsky. Tree quantization for large-scale similar-

ity search and classification. In CVPR, pages 4240–4248, 2015.

[70] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and

Armand Joulin. Unsupervised learning of visual features by contrasting cluster

assignments. arXiv preprint arXiv:2006.09882, 2020.

[71] Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong. On sampling strategies for

neural network-based collaborative filtering. In ACM SIGKDD, pages 767–776,

2017.

[72] et al. E. Riba. A survey on kornia: an open source differentiable computer vision

library for pytorch. 2020.

[73] Bo Dai, Ruiqi Guo, Sanjiv Kumar, Niao He, and Le Song. Stochastic generative

Hashing. In ICML, 2017.

[74] Kamran Ghasedi Dizaji, Feng Zheng, Najmeh Sadoughi, Yanhua Yang, Cheng

Deng, and Heng Huang. Unsupervised deep generative adversarial Hashing net-

work. In CVPR, pages 3664–3673, 2018.

[75] Kaiming He, Fang Wen, and Jian Sun. K-means Hashing: An affinity-preserving

quantization method for learning binary compact codes. In CVPR, pages 2938–

2945, 2013.

[76] Young Kyun Jang and Nam Ik Cho. Generalized product quantization network

for semi-supervised image retrieval. In CVPR, 2020.

[77] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. Learning compact binary

descriptors with unsupervised deep neural networks. In CVPR, pages 1183–1192,

2016.

[78] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. Discrete graph Hashing.

In NeurIPS, pages 3419–3427, 2014.

84

[79] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983, 2016.

[80] Stanislav Morozov and Artem Babenko. Unsupervised neural quantization for

compressed-domain similarity search. In ICCV, pages 3036–3045, 2019.

[81] Yuming Shen, Li Liu, and Ling Shao. Unsupervised binary representation learn-

ing with deep variational networks. IJCV, 127(11-12):1614–1628, 2019.

[82] Yuming Shen, Jie Qin, Jiaxin Chen, Mengyang Yu, Li Liu, Fan Zhu, Fumin Shen,

and Ling Shao. Auto-encoding twin-bottleneck Hashing. In CVPR, pages 2818–

2827, 2020.

[83] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. ICLR, 2015.

[84] Jingkuan Song. Binary generative adversarial networks for image retrieval. In

AAAI, 2017.

[85] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards

fast optimization for accurate hash coding in cnn. In NeurIPS, pages 798–807,

2018.

[86] Erkun Yang, Tongliang Liu, Cheng Deng, Wei Liu, and Dacheng Tao. Distill-

hash: Unsupervised deep Hashing by distilling data pairs. In CVPR, pages 2946–

2955, 2019.

[87] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Ji-

ashi Feng. Central similarity quantization for efficient image and video retrieval.

In CVPR, pages 3083–3092, 2020.

[88] Ting Zhang, Chao Du, and Jingdong Wang. Composite quantization for approx-

imate nearest neighbor search. In ICML, volume 2, page 3, 2014.

85

[89] Ting Zhang, Guo-Jun Qi, Jinhui Tang, and Jingdong Wang. Sparse composite

quantization. In CVPR, pages 4548–4556, 2015.

[90] Maciej Zieba, Piotr Semberecki, Tarek El-Gaaly, and Tomasz Trzcinski. Bingan:

Learning compact binary descriptors with a regularized gan. In NeurIPS, pages

3608–3618, 2018.

[91] Moses S Charikar. Similarity estimation techniques from rounding algorithms.

In STOC, pages 380–388, 2002.

[92] Yun, Sukmin and Park, Jongjin and Lee, Kimin and Shin, Jinwoo. Regularizing

class-wise predictions via self-knowledge distillation. In CVPR, pages 13876–

13885, 2020.

[93] Touvron, Hugo and Cord, Matthieu and Douze, Matthijs and Massa, Francisco

and Sablayrolles, Alexandre and Jégou, Hervé. Training data-efficient image

transformers & distillation through attention. In ICML, pages 10347–10357,

2021.

[94] Cao, Yue and Long, Mingsheng and Liu, Bin and Wang, Jianmin. Deep cauchy

hashing for hamming space retrieval. In CVPR, pages 1229–1237, 2018.

[95] Fan, Lixin and Ng, KamWoh and Ju, Ce and Zhang, Tianyu and Chan, Chee Seng.

Deep Polarized Network for Supervised Learning of Accurate Binary Hashing

Codes. In IJCAI, pages 825–831, 2020.

[96] Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weis-

senborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani,

Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and oth-

ers. An Image is Worth 16x16 Words: Transformers for Image Recognition at

Scale. In ICLR, 2020.

86

[97] Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang,

Zheng and Lin, Stephen and Guo, Baining. Swin transformer: Hierarchical vision

transformer using shifted windows. In ICCV, 2021.

[98] Gu, Geonmo and Ko, Byungsoo and Kim, Han-Gyu. Proxy synthesis: Learning

with synthetic classes for deep metric learning. In AAAI, 2021.

87

초록

방대한데이터베이스에서질의에대한관련이미지를찾는콘텐츠기반이미지

검색은컴퓨터비전분야의근본적인작업중하나이다.특히빠르고정확한검색을

수행하기위해해싱 (Hashing)및곱양자화 (Product Quantization, PQ)로대표되는

근사최근접 이웃 (Approximate Nearest Neighbor, ANN) 검색 방식이 이미지 검색

커뮤니티에서 주목받고 있다. 신경망 기반 딥 러닝 (CNN-based deep learning) 이

많은 컴퓨터 비전 작업에서 우수한 성능을 보여준 이후로, 해싱 및 곱 양자화 기반

이미지 검색 시스템 모두 개선을 위해 딥 러닝을 채택하고 있다. 본 학위 논문에서

는적절한검색시스템을제안하기위해다양한딥러닝학습환경아래에서이미지

검색방법을제안한다.구체적으로,이미지검색의목적을고려하여의미적으로유

사한 이미지를 검색하는 딥 러닝 해싱 시스템을 개발하기 위한 지도 학습 방법을

제안하고, 의미적, 시각적으로 모두 유사한 이미지를 검색하는 딥 러닝 곱 양자화

기반의 시스템을 구축하기 위한 준지도, 비지도 학습 방법을 제안한다. 또한, 이미

지 검색 데이터베이스의 특성을 고려하여, 분류해야할 클래스 (class category) 가

많은얼굴이미지데이터세트와하나이상의레이블 (label)이지정된일반이미지

세트를분리하여따로검색시스템을구축한다.

먼저이미지에부여된의미론적레이블을사용하는지도학습을도입하여해싱

기반 검색 시스템을 구축한다. 클래스 간 유사성 (다른 사람 사이의 유사한 외모)

과클래스내변화(같은사람의다른포즈,표정,조명)와같은얼굴이미지구별의

어려움을해결하기위해각이미지의클래스레이블을사용한다.얼굴이미지검색

품질을 더욱 향상시키기 위해 SGH (Similarity Guided Hashing) 방식을 제안하며,

88

여기서 다중 데이터 증강 결과를 사용한 자기 유사성 학습이 훈련 중에 사용된다.

그리고 해싱 기반의 일반 이미지 검색 시스템을 구성하기 위해 DHD(Deep Hash

Distillation)방식을제안한다. DHD에서는지도신호를활용하기위해클래스별대

표성을나타내는훈련가능한해시프록시 (proxy)를도입한다.또한,해싱에적합한

자체증류기법을제안하여증강데이터의잠재력을일반적인이미지검색성능향

상에적용한다.

둘째로,레이블이지정된이미지데이터와레이블이지정되지않은이미지데이

터를모두활용하는준지도학습을조사하여곱양자화기반검색시스템을구축한

다.지도학습딥러닝기반의이미지검색방법들은우수한성능을보이려면값비싼

레이블 정보가 충분해야 한다는 단점이 있다. 게다가, 레이블이 지정되지 않은 수

많은이미지데이터는훈련에서제외된다는한계가있다.이문제를해결하기위해

벡터양자화기반반지도영상검색방식인 GPQ (Generalized Product Quantization)

네트워크를 제안한다. 레이블이 지정된 데이터 간의 의미론적 유사성을 유지하는

새로운 메트릭 학습 (Metric learning) 전략과 레이블이 지정되지 않은 데이터의 고

유한 잠재력을 최대한 활용하는 엔트로피 정규화 방법을 사용하여 검색 시스템을

개선한다. 이 솔루션은 양자화 네트워크의 일반화 용량을 증가시켜 이전의 한계를

극복할수있게한다.

마지막으로,딥러닝모델이사람의지도없이시각적으로유사한이미지검색을

수행할수있도록하기위해비지도학습알고리즘을탐색한다.비록레이블주석을

활용한심층지도기반의방법들이기존방법들에대비우수한검색성능을보일지

라도,방대한양의훈련데이터에대해정확하게레이블을지정하는것은힘들고주

석에서오류가발생하기쉽다는한계가있다.이문제를해결하기위해레이블없이

자체지도방식으로훈련하는 SPQ (Self-supervised Product Quantization)네트워크

라는심층비지도이미지검색방법을제안한다.새롭게설계된교차양자화대조학

습 방식으로 서로 다르게 변환된 이미지를 비교하여 곱 양자화의 코드워드와 심층

시각적표현을동시에학습한다.이방식을통해이미지에내제된내용을별도의사

람지도없이네트워크가스스로이해하게되고,시각적으로정확한검색을수행할

수있는설명기능을추출할수있게된다.

89

벤치마크데이터세트에대한광범위한이미지검색실험을수행하여제안된방

법이다양한평가프로토콜에서뛰어난결과를산출함을확인했다.지도학습기반

의얼굴영상검색의경우 SGH는저해상도및고해상도얼굴영상모두에서최고의

검색 성능을 달성하였고, DHD는 최고의 검색 정확도로 일반 영상 검색 실험에서

효율성을입증한다.준지도일반이미지검색의경우 GPQ는레이블이있는이미지

데이터와 레이블이 없는 이미지 데이터를 모두 사용하는 프로토콜에 대한 최상의

검색결과를보여준다.마지막으로,비지도학습이미지검색의경우지도방식으로

미리학습된초기값없이도 SPQ를사용하여최상의검색점수를얻었으며시각적

으로유사한이미지가검색결과로성공적으로검색되는것을관찰할수있다.

주요어:이미지검색,얼굴이미지검색,컨볼루션신경망,딥러닝,근사최근접이웃

검색,해싱,곱양자화,메트릭학습,반지도학습,비지도학습

학번: 2016-20967

90

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contribution
	1.2 Contents

	2 Supervised Learning for Deep Hashing: Similarity Guided Hashing for Face Image Retrieval / Deep Hash Distillation for General Image Retrieval
	2.1 Motivation and Overview for Face Image Retrieval
	2.1.1 Related Works

	2.2 Similarity Guided Hashing
	2.3 Experiments
	2.3.1 Datasets and Setup
	2.3.2 Results on Small Face Images
	2.3.3 Results on Large Face Images

	2.4 Motivation and Overview for General Image Retrieval
	2.5 Related Works
	2.6 Deep Hash Distillation
	2.6.1 Self-distilled Hashing
	2.6.2 Teacher loss
	2.6.3 Training
	2.6.4 Hamming Distance Analysis

	2.7 Experiments
	2.7.1 Setup
	2.7.2 Implementation Details
	2.7.3 Results
	2.7.4 Analysis

	3 Semi-supervised Learning for Product Quantization: Generalized Product Quantization Network for Semi-supervised Image Retrieval
	3.1 Motivation and Overview
	3.1.1 Related Work

	3.2 Generalized Product Quantization
	3.2.1 Semi-Supervised Learning
	3.2.2 Retrieval

	3.3 Experiments
	3.3.1 Setup
	3.3.2 Results and Analysis

	4 Unsupervised Learning for Product Quantization: Self-supervised Product Quantization for Deep Unsupervised Image Retrieval
	4.1 Motivation and Overview
	4.1.1 Related Works

	4.2 Self-supervised Product Quantization
	4.2.1 Overall Framework
	4.2.2 Self-supervised Training

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Experimental Settings
	4.3.3 Results
	4.3.4 Empirical Analysis

	5 Conclusion
	Abstract (In Korean)

<startpage>17
Abstract i
Contents iv
List of Tables vii
List of Figures viii
1 Introduction 1
 1.1 Contribution 3
 1.2 Contents 4
2 Supervised Learning for Deep Hashing: Similarity Guided Hashing for Face Image Retrieval / Deep Hash Distillation for General Image Retrieval 5
 2.1 Motivation and Overview for Face Image Retrieval 5
 2.1.1 Related Works 9
 2.2 Similarity Guided Hashing 10
 2.3 Experiments 16
 2.3.1 Datasets and Setup 16
 2.3.2 Results on Small Face Images 18
 2.3.3 Results on Large Face Images 19
 2.4 Motivation and Overview for General Image Retrieval 20
 2.5 Related Works 22
 2.6 Deep Hash Distillation 24
 2.6.1 Self-distilled Hashing 24
 2.6.2 Teacher loss 27
 2.6.3 Training 29
 2.6.4 Hamming Distance Analysis 29
 2.7 Experiments 32
 2.7.1 Setup 32
 2.7.2 Implementation Details 32
 2.7.3 Results 34
 2.7.4 Analysis 37
3 Semi-supervised Learning for Product Quantization: Generalized Product Quantization Network for Semi-supervised Image Retrieval 42
 3.1 Motivation and Overview 42
 3.1.1 Related Work 45
 3.2 Generalized Product Quantization 47
 3.2.1 Semi-Supervised Learning 48
 3.2.2 Retrieval 52
 3.3 Experiments 53
 3.3.1 Setup 53
 3.3.2 Results and Analysis 55
4 Unsupervised Learning for Product Quantization: Self-supervised Product Quantization for Deep Unsupervised Image Retrieval 58
 4.1 Motivation and Overview 58
 4.1.1 Related Works 61
 4.2 Self-supervised Product Quantization 62
 4.2.1 Overall Framework 62
 4.2.2 Self-supervised Training 64
 4.3 Experiments 67
 4.3.1 Datasets 67
 4.3.2 Experimental Settings 68
 4.3.3 Results 71
 4.3.4 Empirical Analysis 71
5 Conclusion 75
Abstract (In Korean) 88
</body>

