7,032 research outputs found

    New acceleration technique for the backpropagation algorithm

    Full text link
    Artificial neural networks have been studied for many years in the hope of achieving human like performance in the area of pattern recognition, speech synthesis and higher level of cognitive process. In the connectionist model there are several interconnected processing elements called the neurons that have limited processing capability. Even though the rate of information transmitted between these elements is limited, the complex interconnection and the cooperative interaction between these elements results in a vastly increased computing power; The neural network models are specified by an organized network topology of interconnected neurons. These networks have to be trained in order them to be used for a specific purpose. Backpropagation is one of the popular methods of training the neural networks. There has been a lot of improvement over the speed of convergence of standard backpropagation algorithm in the recent past. Herein we have presented a new technique for accelerating the existing backpropagation without modifying it. We have used the fourth order interpolation method for the dominant eigen values, by using these we change the slope of the activation function. And by doing so we increase the speed of convergence of the backpropagation algorithm; Our experiments have shown significant improvement in the convergence time for problems widely used in benchmarKing Three to ten fold decrease in convergence time is achieved. Convergence time decreases as the complexity of the problem increases. The technique adjusts the energy state of the system so as to escape from local minima

    Contrastive Hebbian Learning with Random Feedback Weights

    Full text link
    Neural networks are commonly trained to make predictions through learning algorithms. Contrastive Hebbian learning, which is a powerful rule inspired by gradient backpropagation, is based on Hebb's rule and the contrastive divergence algorithm. It operates in two phases, the forward (or free) phase, where the data are fed to the network, and a backward (or clamped) phase, where the target signals are clamped to the output layer of the network and the feedback signals are transformed through the transpose synaptic weight matrices. This implies symmetries at the synaptic level, for which there is no evidence in the brain. In this work, we propose a new variant of the algorithm, called random contrastive Hebbian learning, which does not rely on any synaptic weights symmetries. Instead, it uses random matrices to transform the feedback signals during the clamped phase, and the neural dynamics are described by first order non-linear differential equations. The algorithm is experimentally verified by solving a Boolean logic task, classification tasks (handwritten digits and letters), and an autoencoding task. This article also shows how the parameters affect learning, especially the random matrices. We use the pseudospectra analysis to investigate further how random matrices impact the learning process. Finally, we discuss the biological plausibility of the proposed algorithm, and how it can give rise to better computational models for learning

    DANTE: Deep AlterNations for Training nEural networks

    Full text link
    We present DANTE, a novel method for training neural networks using the alternating minimization principle. DANTE provides an alternate perspective to traditional gradient-based backpropagation techniques commonly used to train deep networks. It utilizes an adaptation of quasi-convexity to cast training a neural network as a bi-quasi-convex optimization problem. We show that for neural network configurations with both differentiable (e.g. sigmoid) and non-differentiable (e.g. ReLU) activation functions, we can perform the alternations effectively in this formulation. DANTE can also be extended to networks with multiple hidden layers. In experiments on standard datasets, neural networks trained using the proposed method were found to be promising and competitive to traditional backpropagation techniques, both in terms of quality of the solution, as well as training speed.Comment: 19 page

    Self-growing neural network architecture using crisp and fuzzy entropy

    Get PDF
    The paper briefly describes the self-growing neural network algorithm, CID2, which makes decision trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and discussed
    corecore