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SUMMARY

The paper briefly describes the self-growing neural network algorithm, CID3, which makes decision

trees equivalent to hidden layers of a neural network. The algorithm generates a feedforward architecture

using crisp and fuzzy entropy measures. The results of a real-life recognition problem of distinguishing

defects in a glass ribbon and of a benchmark problem of differentiating two spirals are shown and
discussed.

INTRODUCTION

Supervised neural network algorithms usually require implementation of a trial-and-error method

to find proper architectures. To help in determining a fcedforward neural network architecture, it was

shown [1 ] that a four-layered network with two hiddcn layers can solve arbitrary classification problems.

lrie and Miyake [2] proved that a three-layered backpropagation network with an infinite number of

nodes in the hidden layer can also solve arbitrary mapping problems. The "tiling" algorithm of Nadal

[3] generates a feedforward network in a sequential manner by adding nodes and layers without the need

for guessing the network's architecture, but it docs not specify the sequence in which nodes should be
added to maximize classification of training examples. The Algorithm described in [4] uses information

entropy to determine generation of nodes and hidden layers.

Information entropy, however, has been used for a long time in machine learning research, where

numerous learning algorithms have been developcd to solve pattern recognition problems. A machine

learning algorithm of particular interest to us is thc ID3 algorithm of Quinlan [5], which dynamically
generates a decision tree while minimizing information entropy. Recent studies of the ID3 algorithm and

backpropagation neural networks [6, 7] prompted that the ideas similar to the ID3 algorithm may be used
to answer two fundamental questions concerning a neural network architecture, namely, how to decide the

number of layers and the number of nodes per layer. Onc goal of this paper is to show the close relation-

ship between inductive machine learning and fcedforward neural networks. This will be done by intro-

ducing the main ideas of a Continuous ID3 (CID3) algorithm [8].

Machine learning and neural nctworks arc two very closely related fields of artificial intelligence,

sharing many common ideas and problems. Effective methods of one can be used to overcome the
difficulties of the other. It is interesting to note that the starting point in the development of the CID3

*On sabbatical leave fromThe University of Toledo.



algorithmwasmachinelearning [9]. The advantage of using a machine learning approach to

generate a feedforward neural network is that the knowledge embedded in the connections and weights

can be translated into decision rules. To achieve fast convergence, a learning rule using information

entropy was combined with Cauchy training [8, 10, II] in the CID3 algorithm.

In order to make the main ideas of the C1D3 algorithm clear, it is necessary to briefly introduce

Quinlan's ID3 algorithm first [5]. ID3 generates decision rules from a set of training examples. Each

example is represented by a list of features. In the training process, class memberships of the input data
must be known. The idea is to find the minimum number of original features that suffice in determining

class memberships. ID3 uses information theory Io sclcct features which give the greatest information

gain or decrease of entropy. Entropy is defined as -plogap, where probability p is determined from the

frequency of occurrence. Since the number of new nodes added to a decision tree depends on the number
of values that a selected feature can take on, the ID3 algorithm requires fealures to have discrete values.

The generated decision tree is then described in terms of hierarchical decision rules which must be used in

the order specified by the tree structure. The condition part of a decision rule consists of a number of

feature tests linked by and/or logical operators. The drawback of a feature test is that the correlations

between features are ignored. 1D3 considers only how significant an individual feature is for classifying

training examples. The next section shows how an Adalinc (adaptive linear neuron) [12] can be used for

knowledge representation.

EQUIVALENCE OF A DECISION TREE AND A HIDDEN LAYER

As said before, the basic idea of the ID3 algorithm is to detect a feature yielding maximum

information gain, so the training examples can be correctly classified. Let us consider a problem [8] of

distinguishing nine positive examples from eight negative examples, as depicted in figure 1.

The difficulty of applying the ID3 algorithm, and calculating corresponding entropy, comes from

the fact that the coordinates of x i and x2 take on continuous values. In order to apply ID3 to this problem,
one could use thresholds, so that the examples could be located within certain regions [13]. The thresh-

olds may be represented as vertical and horizontal lines in a two-dimensional space. In real applications,

however, decision regions are usually of higher ordcr than a line, so the approximation may result in

defining many high-dimensional decision regions, tiowever, the decision region boundaries containing

the same nine positive training examples can bc formed by using hyperplanes defined by Adalines [12].

It is important to note that the feature test performed by 1D3 can be treated as a special case of an Adaline

with its hyperplane parallel to an axis. The decision region covering nine examples can be described by

only three hyperplanes, as shown in figure 2.

To describe a decision region in terms of decision rules, the examples on the positive side of a

hyperplane i (hypi) satisfy "feature i = I". Thus, the decision rules can be simply specified as follows:

IF feature I = 0, and feature 2 = 0, and feature 3 = I, THEN class = positive.
IF feature 2 = 1, and fcaturc 3 = 0, THEN class positive.

IF feature n = 1, and feature 2 = 1, THEN class = positive.

Let us illustrate the conversion of a decision trcc into a hidden layer by using the above example.

First, if an example is tested on the positive side of hypl" then that example will be classified along
cdgc 1, as shown in figurc 3; olhcrwisc, il will bc classified along edge 0. Starting at the root node a, the

training examples arc divided int¢_lwo nodes, b and c. At the second level of the decision tree, the



cxamples from nodes b and c are tested against hyp2 ' The cxamplcs on the positive side of the hyp2 will

be classified along edge 1 to a node descending from their parcnl node. Correspondingly, training

examples on the negative side will be classificd along cdgc 0 to thc node dcscending from their parent

node. The third hyperplane is needed to divide thc examples at nodes f and g.

To convert the decision tree shown on the right-hand side of figurc 3 into a hidden layer of a

neural network, three Adalines are utilized. The dircctional vector of a hyperplane corresponds to the

weight vector of an Adaline. For hypl, the weights w n and w 2 are the connection strengths of inputs x 1

and x2 to Adaline #1 (neuron #1). Corresponding to the decision tree, a hidden layer with three nodes is

generated, as shown on the left-hand side of figure 3.

CONTINUOUS ID3 ALGORITHM

In order to use ID3 for generating a neural nctwork architecture, it was modified [8] to operate on

continuous data and to search for the weight vectors. The following notation is used. There are N

training examples, N ÷ examples belonging to class "+" and N- examples belonging to class "-". A

hyperplane divides the examples as either lying on its positive (I) or negativc (0) side. There are four

possible outcomes:

N'_ number of examples from class "+" on side 1,

N_ number of examples from class "+" on side 0,

N_ number of examples from class "-" on side 1, and

N_ number of examples from class "-"' on side 0,

The following relations hold:

N=N (la)

N_): N + - N_ (lb)

N O = N- - N / (lc)

At a certain level of a dccision tree, it is assumcd that N r cxamplcs were divided by node r into:

Nr+ belonging to class "+" and N_ beh)nging to class "-". Relations analogous to those of equation (1)

follow:

N,=N ++N_-=N_r+NIr+N_r+N_,

N_lr= N_ - N_r

(2a)

(2b)

N_r = N_- - N/f (2c)



TheinformationentropyatlevelL of adecisiontreeis an average of entropics of all R nodes in this layer:

R N

E = -Z--N- entropy (L, r )
t=l

(3)

The change in information entropy is stated as [8]

R DE + AE ]
AE :-Z[--_-,_ AN I, + -- ANI-rJr=ll_ tr AN/r

(4)

The learning rule which minimizes the entropy function ix

R N, dim{ [ (OE
(5)

where D i stands for the desired output of a training example, and out i is a sigmoid function; r is a learn-

ing rate. The learning process for adjusting the weights can be stated in a vector form as follows:

Wk + I = Wk + AW (6)

Unfortunately, when the learning rule spccificd by equation (6) is used, the learning process

might converge to a local minimum, since the gradient method does not guarantce constant information

gain while generating a hidden layer. In order to increase the chance of finding the global minimum, the

learning rule equation (6) was combined [8] with Cauchy training [10, 11].

Aw = T(I)Ian[nP(AW _<Aw)- n / 2] (7)

To calculate the sizc of this weight change, a random number is selected from a uniform distribution

over [0, 1], and substituted for P(X _<x). To dctcrminc whether to accept the weight change, Boltzmann

distribution was used (81. The probability of the error e is calculated by equation (8), where k is the
Boltzmann constant.

The final learning rule, incorporating the conccpt of a Cauchy training, is thus defined by

equation (9), where random wcight vector AWr_,,,,j,,,,, ix calculated from equation (7), and 1"1is a control

parameter.

Wk +I = Wk + (1 - t1)AW + 1]AWranth, m @)



So far, we have used only crisp entropy. As an alternative, tile fuzzy entropy can be used also

[14]. Comparison of the perfl_rmanee of the two measures is presented in the Results and Discussion
section.

Let us now briefly introduce the notion of fuzzy entropy. A fuzzy entropy measure is a function

f: P(X) -> R, where P(X) denotes the set of all fuzzy subsets of X. The function f assigns a value f(A) to

each fuzzy subset A of X that characterizes the degree of fuzziness of A. It must satisfy the following
three axioms:

f(A) = 0 if and only if A is a crisp set.
If A is less fuzzy than B, then f(A) < f(B).

f(A) assumes the maximum if and only if A is maximally fuzzy.

DeLuca and Termini [15] were first to define thc fuzzy entropy function:

f(A) = - _ {t,,,,(x)Iog:_ a (x) +II - P^ (x)l I,,g211- t_̂ (")1}
xEX

where la is a membership function.

Other measures of fuzziness were proposed by Kaufmann [ !61, Knopfmacher [17], and Loo [18].

The fuzzy entropy measure used here, which was also used in il4], was proposed by Kosko [19, 20]:

f(A) = ,Y__counl(A c_ A _)
'E counl(A _ A c )

0o)

where E count (sigma-count) is the fuzzy cardinality 121, 22] and A c is a Zadeh's complement [23]. In

the experiments reported in the Results and Discussion section, the fuzzy cntropy equation (10) is used

interchangeably with crisp entropy. The generalizcd fuzzy opcrations introduced by Dombi [24] are used

to combine the fuzzy sets [14]. Generalized Dombi's operations form onc of thc several classes of

functions which possess properties of fuzzy unions and intersections. Thc opcrations are detailed as
follows.

1
Fuzzy union = I (11)

where _. is a parameter by which difl'erent unions arc distinguished, and _. c (0, _,).

1
Fuzzy inlcrscction = I (12)

I+ -I + -1
b



where Z is a parameter by which different intersections are distinguished, and _. E (0, ,,o). Experience tells us

that the parameter Z = 4 gives bcsl results 125, 26].

Thus, in the learning rule equation (5), the fuzzy entropy f(A) can be u_d instead of crisp entropy E.

_f(A)

AWi i =--P JaWi- (13)

where f(A) is a fuzzy entropy function. The grades of membership for fuzzy sets A and A _ were defined

as follows [14]:

A =[ N_r Nit N(_----Lr, No_r]NI t ' NI r ' NO r Nor
(14a)

A t` = I- A (14b)

Using mutual dependence of I_,sitivc and negative examples on both sides of a hyperplane, the

resulting fuzzy set A (with four grades of mcmbcrship), and its fuzzy complement A c, were expressed as

Nr--Nlr
A= ..... ,

N r-N_r -N h

Nr+ - N_r N_r Ni-r_]

N I - N_-r - N/r' N1---_ ' N,, ]
(15a)

AC=F Nr+ - N_r N,-Nh-Nr + NI, - N_", N,, - N/r

[ Nr-NI_r-N/r' Nr-N_r-NIr NIr NIr

The four grades of membership will be used in cquations (1 !) and (12_to calculate the fuzzy

entropy equation (I0). Obtained in this way, fuzzy cntror, y will be used to calculate the weights foi

the learning rule equation (9). The CID3 algorithm I81 follows: - " - ::

Step I.

(15h)

For a given problem with N training examples, fl)llow thc notations given in equations

(1) and (2). Start with a random initial weight vector W.

Step 2. Utilize learning rule equation (9) and search for a hyperphme that minimizes the following

entropy function (either crisp or fuzzy):

R

min E =-Z-_- entropy(L, r )
WL r= I

Step 3. If the minimized entropy is not zero, but is smaller than the previous value, add a node to

the current layer and return to step 2. Otherwise, go to step 4.

Step 4. If the hidden laycr consists of morc than one node, generate a new layer that utilizes

inputs from both the original training dala and the outputs from all previously general-

ized layers, and go to step 2. If the hidden layer consists of only one node, then the

problem is reduced to a linearly sop;toddle one; stop.



The (?!I)3 algorithm was designed to gcncralc ;I mulliplc layer nclwork functioning like a single
Adaline node :rod was defined ;is a super-Adalizlc IN]. To solve mulliplc-calcgory classification problems,
one can easily build a network [2"71consisting of many st,ch supcr-Adalines. After a hidden layer is
generated by the CID3 algorithm, the outputs from all the generated hidden layers, together with the

original inputs, are used to generate a new hidden layer. The use of the information from both the origi-

nal training data and the outputs from the previously generated hidden layers allows a learning process to

converge faster because of the increased dimensionality of training data [27]. The connection between

non-adjacent layers are called shortcuts. Feedforward networks without shortcuts, like backpropagation,
can be seen as a specialcase of such fully-connected networks with shortcuts.

From the machine learning point of view, a decision tree corresponds to a hidden layer of a neural

network. If a correct classification of trainingexamples is obtained, the corresponding entropy is reduced

to zero. The learning which uses the knowledge from both original training examples and the outputs

from hidden layers is actually a generalization process.

RESULTS AND DISCUSSION

In order to demonstrate the learning capability of the CID3 algorithm, it was applied to two

problems. First, the CID3 algorithm was applied for recognition of defects found in manufactured glass

[28] and compared with a standard backpropagation algorithm.

Several types of defects found in float glass ribbon can bc grouped into two categories: actual

defects, and surface anomalies. The latter are caused by watcr droplets or othcr airborne debris. The

anomalies are detected as defects, and the section of glass containing them must be discarded, resulting in

a loss of otherwise useable glass. Common defects found in flow glass ribbon [29] are described as
follows:

True defects - permanent structures that degrade the homogeneity and optical quality of the glass.

Bubble - a round or elongated gaseous inclusion within the glass, which may be open at top or
bottom surface.

Stone - a crystalline or amorphous inclusion within the glass, which may be opaque or slightly
translucent.

Tin drop - a depression on the surface causcd by a drop of molten tin adhering to the glass surface

during forming; the solidified tin drop rcmains in the depression.

Surface anomalies - nonrcjcctablc, temporary marks or spots on the glass surfacc.

Water droplet- a more or less hemispherical drop of liq uid water, which may occur on either surface.

Water spot - mineral residue froma dried drop of walcr, which may occur on either surface.

A laser scanner system was used for thc detection of defects in newly manufactured float glass

ribbon. A rotating mirror scans a focused laser beam through the continually moving glass ribbon onto a

scnsor device. This device has two separate sensor arrays, one of which detects bcam absorption, while

the other detects beam refraction. The sensors create an electronic signal which varies voltage amplitude



inproportionto theamountof beam intensity thai is absorbed or refracted. The scanner traverses the

moving glass ribbon with a focused laser beam 2401) times per second. This beam passes through the

glass and is modified by any defects before striking the receiver. The receiver converts the inciden t light

energy into a proportional electrical signal, which is the subject of our analysis.

A total of 293 images of defects were obtained [29]. Training examples consisted of 2(15 images

selected randomly, while the remaining 88 were used as test examples. The sizes of the images obtained

by the imaging system varied in proportion to the size of the actual defect. Typical images of a bubble
and a water droplet (determined from several scans) arc shown in figures 4(a) and 4(b). Images ranged in

size from 30 by 20 pixels to 250 by 200 pixels. Because of this, preprocessing was done to normalize the

images before they could be used to train a neural network. The prcproccssing method [28] scaled the

images to a 10 by 10 pixel frame without changing the aspect ratios or the image intensities. The scaled

images were placed in the center of the 10 by 10 pixcl frame as shown in figures 5(a) and 5(b). The 10
rows of an image, each I(1 pixcls in size, wcrc then _lrr_mgcd to form a single vector.

For the purpose of distinguishing true defects (stone, bubble, or tin drop) in the glass from surface

anomalies (water, water spot), the 2{)5 training examples wercdividcd into two groups representing
defects and surface anomalies. The neural network was then trained with this data. The 88 test examples

were then applied to the trained network to let it classify them into two categories. The correct recogni-
tion rates for the CID3 and backpropagation I201 networks are listed in table I. The results indicate that

for two category classification, CID3 and backpropag_ltion gave very high correct recognition rates for the
test examples. The normalized CPU times required to train the networks arc shown in table II. Training

time required for backpropagation was much longer than that for the CID3 algorithm.

With backpropagation, the number of hidden layers and the number of nodes in each layer have
to be determined. An inadequate number of layers or nodes might prcvcnt convergence during training.

An excessive number of nodes would result in a longer tr_dning time. The CID3 algorithm does not

require the network architecture to bc a priori specified. Based on lhe information entropy function, the

algorithm adds the necessary number of layers and nodes to correctly recognize all the input-output pairs

in the training data. The CID3 algorithm may bc useful in situations where the networks are to be gener-
ated automaffcally and in real timc. There may also bc situations whcrc there is a time constraint on the

training time. Under these circumstances, the choice of the CID3 network would be appropriate.

Next, the CID3 algorithm was tested on difficult, non-linearly separable data [8]. The problem

was to distinguish two spirals [8, 301. The two sets of spiral data consisted of 192 points, with 96 points

for each spiral. One spiral was generated as a reflection of another, namely <xl,Yl> = <-x2,-Y2 >, which

made the problem not linearly separable. The formulas used to generate the spirals are given below.

p = o_0, ot = 10.0, 0 < 67t

{x_ =pcos(0) { x2=--pcos(0)spiral I: yl=psin(0 ) spiral 2: y2= psin(0)

The generated neural network architecture is shown in figure 6. Connections to the node in the

second hidden layer arc shown in detail, with connections to other layers shown by thick arrows. While

generating a hidden layer, the corresponding decision [rcc is also recorded in order to specify a set of
decision rules.



Comparison with other machine learning algorithms 15, 3 I, 321 that describe a concept by gener-
ating rectangular decision regions reveals the advantage of the CID3 algorithm - that it generates very

concise descriptions. This contrasts with other machine learning algorithms which would generate many

decision rules specifying numerous small rectangular regions for the two-spiral problem.

The obtained neural network architecture with the learned weights was applied to the spiral test

data consisting of 150 by 150 pixels, specified in terms of x i and x 2 coordinates, that cover a square area

of [-15 < x t < 15, -15 < xz < 15]. The result is shown in Figure 7(d). The white region represents spiral
#1, and the black region represents spiral #2. Since at a hidden layer training examples are mapped into

an image space by CID3, one may apply a machine learning algorithm to the output of a hidden layer and

generate decision rules. The study of combining the CID3 algorithm and a machine learning algorithm

called CLILP2 [9] was reported in [33]. Here we repeat the results in table III, and show the discriminat-

ing power of each network in figure 7.

The CLILP2 algorithm generates decision rules from the already extracted features much faster

than CID3. This results in fast generation of a simple neural network architecture. No significant differ-

ence in discrimination ability was observed by analyzing the output images. This means that in the search

for the optimal architecture, one may concentrate on the training lime and the complexity of the network

alone. It is easy to notice that Net 4 co[responds to the architecture shown in figure 5.

In order to demonstrate the performance of the fuzzy entropy measure, the CID3 was again

applied to the spiral data using fuzzy entropy. Let us note here that learning to distinguish the two spirals

is a very difficult task for backpropagation networks. This failure in training backpropagation neural

networks was reported in [30] and was also confirmed by [33]. Actually, the CID3 algorithm can be seen

as superior to work reported in I30], since the latter's architecture was obtained by using a trial-and-error
method.

The fuzzy version of the CID3 algorithm generates the same architecture as the one generated by

the crisp CID3. The nodes within the hidden layer arc generated until the fuzzy entropy is reduced to

zero. The crisp pseudoentropy measure accomplishes the same task quite well. However, a remarkable

progress in terms of convergence time is achieved by using a fuzzy entropy measure with generalized
Dombi operations.

CONCLUSIONS

CID3 self-generates a neural network architecture without the need to use a trial-and-error

method to find an "optimal" architecture required by backpropagation-type networks. As a trade-off

between the effort used for training and the quality of results, the CID3 algorithm seems to be
competitive.

Unlike backpropagation, where correct classification of training examples is achieved only at the

output layer, training examples are correctly recognized by C1D3 at a hidden layer for which the

information entropy is for the first time reduced to zero. In the process of generating a hidden layer by

CID3, it is easy to specify the corresponding decision rules which describe the class memberships of the
training examples [33].



The CID3 lends to machine learning algorithms its capability of working on continuous data and

its immunity to noise. The CID3 algorithm helps in generalizing knowledge. The output of the last layer
specifies the most general rule, and the outputs of a layer closer to the input layer specify more specific
rules.

In conclusion, we have shown the adwmtages of the CID3 algorithm by illustrating the impact of

a machine learning algorithm on the neural network algorithm in terms of what one can contribute to the

other. Two alternative ways of calculating the entropy, crisp and fuzzy, were used. The fuzzy entropy

method showed better perfi)rmance in terms of convergent time.
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TABLE!.- RECOGNITIONRATESFORCID3 AND

BACKPROPAGAT1ON NETWORKS

Method True defect Anomaly Total

recognitions recognitions

CID3

a(100:7:6:6:1)

Backpropagation
a(lO0:20:l)

50/52

(96.15%)

51/52

(98.07%)

35/36

(97.22%)

34/36

(94.44%)

85/88

(96.59%)

85/88

(96.59%)

aNctwork architecture - the number of n(_lcs in each layer.

TABLE II. - CPU TIMES TO TRAIN NETWORKS

FOR TWO-CATEGORY CLASSIFICATION

Normalized CPU time,Method
minutes

CID3 161

Backpropagation 615

TABLE IlL - TRAINING TIMES AND ARCHITECTURE PARAMETERS OF FOUR NETWORKS

Neural CPU Number Total Number Number Number Number Number Number

network time, of hidden number of of nodes of nodes of nodes of nodes of nodes of nodes

minutes layers nodes at layer I at layer 2 at layer 3 at layer 4 at layer 5 at layer 6

Netl 19.57 2 47 24CID3 22CLILP2 ICLILP2

Net2 25.20 3 43 3CID3 15CID3 24CLILP2 1CLILP2

Net3 36.90 4 31 3CID3 15CID3 5CID3 7CLILP2 ICLILP2

Net4 58.07 5 31 3CID3 IScID3 5CID3 4CID3 3CID3 1CID3
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