41,231 research outputs found

    On the unique solvability and numerical study of absolute value equations

    Get PDF
    The aim of this paper is twofold. Firstly, we consider the unique solvability of absolute value equations (AVE), AxBx=bAx-B\vert x\vert =b, when the condition A1<1B\Vert A^{-1}\Vert <\frac{1}{\left\Vert B\right\Vert } holds. This is a generalization of an earlier result by Mangasarian and Meyer for the special case where B=IB=I. Secondly, a generalized Newton method for solving the AVE is proposed. We show under the condition A1<14B\Vert A^{-1}\Vert <\frac{1}{4\Vert B\Vert }, that the algorithm converges linearly global to the unique solution of the AVE. Numerical results are reported to show the efficiency of the proposed method and to compare with an available method

    A Parameterized multi-step Newton method for solving systems of nonlinear equations

    Get PDF
    We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.Peer ReviewedPostprint (author's final draft

    Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations

    Full text link
    The SOR-like iteration method for solving the absolute value equations~(AVE) of finding a vector xx such that Axxb=0Ax - |x| - b = 0 with ν=A12<1\nu = \|A^{-1}\|_2 < 1 is investigated. The convergence conditions of the SOR-like iteration method proposed by Ke and Ma ([{\em Appl. Math. Comput.}, 311:195--202, 2017]) are revisited and a new proof is given, which exhibits some insights in determining the convergent region and the optimal iteration parameter. Along this line, the optimal parameter which minimizes Tν(ω)2\|T_\nu(\omega)\|_2 with Tν(ω)=(1ωω2ν1ω1ω+ω2ν)T_\nu(\omega) = \left(\begin{array}{cc} |1-\omega| & \omega^2\nu \\ |1-\omega| & |1-\omega| +\omega^2\nu \end{array}\right) and the approximate optimal parameter which minimizes ην(ω)=max{1ω,νω2}\eta_{\nu}(\omega) =\max\{|1-\omega|,\nu\omega^2\} are explored. The optimal and approximate optimal parameters are iteration-independent and the bigger value of ν\nu is, the smaller convergent region of the iteration parameter ω\omega is. Numerical results are presented to demonstrate that the SOR-like iteration method with the optimal parameter is superior to that with the approximate optimal parameter proposed by Guo, Wu and Li ([{\em Appl. Math. Lett.}, 97:107--113, 2019]). In some situation, the SOR-like itration method with the optimal parameter performs better, in terms of CPU time, than the generalized Newton method (Mangasarian, [{\em Optim. Lett.}, 3:101--108, 2009]) for solving the AVE.Comment: 23 pages, 7 figures, 7 table
    corecore