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ON THE UNIQUE SOLVABILITY AND NUMERICAL STUDY
OF ABSOLUTE VALUE EQUATIONS

MOHAMED ACHACHE∗

Abstract. The aim of this paper is twofold. Firstly, we consider the unique
solvability of absolute value equations (AVE), Ax−B|x| = b, when the condition
‖A−1‖ < 1

‖B‖ holds. This is a generalization of an earlier result by Mangasarian
and Meyer for the special case where B = I. Secondly, a generalized Newton
method for solving the AVE is proposed. We show under the condition ‖A−1‖ <

1
4‖B‖ , that the algorithm converges linearly global to the unique solution of
the AVE. Numerical results are reported to show the efficiency of the proposed
method and to compare with an available method.

MSC 2010. 90C33, 19K56.
Keywords. Absolute value equations, Complementarity, Generalized Newton
method, Global convergence.

1. INTRODUCTION

We consider the following absolute value equations (AVE) of the type:
(1) Ax−B |x| = b,

where A,B ∈ Rn×n (B 6= 0), b ∈ Rn and |x| denotes the vector with absolute
values of each component of x ∈ Rn. When B = I where I is the identity
matrix, the AVE (1) reduces to the absolute value equations of the type:
(2) Ax− |x| = b.

In [6], [8], [9], [14], some frequently optimization problems such as linear pro-
gramming, convex quadratic programming, bimatrix games [4] and the linear
complementarity problem (LCP) can be equivalently reformulated as the AVE
(1)–(2). Up to now several authors interested to study this topic, cf. e.g. Man-
gasarian [6], Mangasarian and Meyer [9], Prokopyev [14], Rohn [16], [18] and
Lotfi and Veiseh [12]. Besides, various numerical methods for solving the AVE
(1)–(2) have been proposed, cf. e.g. Cacetta [3], Haghani et al. [5], Noor et
al. [10], Jiang and Zhang [15], Rhon [17], Abdallah et al. [2] and recently,
Achache and Hazzam [1]. Generally, the AVE problem is an NP-hard in its
general form since the LCP can be formulated as the AVE (see [8]). In [7], a
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2 Absolute value equations 113

generalized Newton algorithm for the AVE (2) was investigated, in which it
was proved that this method converges globally linear from any starting point
to the unique solution of the AVE (2) under the condition that ‖A−1‖ < 1

4 .
Later on, Li [11], developed a modified generalized Newton for solving the
AVE (2). His approach is based on introducing an identity matrix such that
a modified generalized Newton method for solving the AVE (2) can be es-
tablished. He showed under certain conditions that this method converges
linearly global to a solution of AVE (2).

In this paper we are interested in a first part of it in the unique solvability
of the AVE (1). We show that the condition ‖A−1‖ < 1

‖B‖ is sufficient to guar-
antee the unique solvability of the AVE (1) for each b ∈ Rn. This generalizes
an earlier result by Mangasarian and Meyer who showed in [9, Proposition 4],
that the absolute value equations of the type (2) is uniquely solvable for each
b ∈ Rn if ‖A−1‖ < 1. To do so, we transform the AVE (1) into a standard
linear complementarity problem (LCP) and show under the above mentioned
condition that the LCP has a unique solution, so is the AVE (1) for every
b ∈ Rn.

In the second part, inspired by the work of Mangasarian [7], we propose a
generalized Newton method to solve the AVE (1). When ‖A−1‖ < 1

4‖B‖ , we
show that the method is globally convergent to the unique solution of AVE
(1) for every b ∈ Rn. Finally, some numerical results are presented to show
the efficiency of this approach. In addition, a numerical comparison is made
with an available method.

The paper is built as follows. In section 2, the main result of the unique
solvability of the AVE (1) is stated. In section 3, a generalized Newton method
is proposed for solving the AVE (1). The linearly global convergence of the
method is established. In section 4, numerical results are reported to validate
the efficiency of our approach. In section 5, some concluding remarks are
given.

The notation used throughout the paper is as follows. The scalar product
of two vectors x and y in Rn will be denoted by 〈x, y〉 = xT y. For x ∈ Rn, the
norm ‖x‖ will denote the Euclidean norm (xTx)

1
2 . For a matrix A ∈ Rn×n, the

transpose of A is denoted by AT . The induced spectral norm of a matrix A is
denoted by ‖A‖ = max‖x‖=1 ‖Ax‖. This definition implies that ‖Ax‖ ≤ ‖A‖
‖x‖ and ‖AB‖ ≤ ‖A‖‖B‖ for any matrices A,B ∈ Rn×n. Let {αk} be a non
negative sequence of real numbers converging to zero, then the convergence
of {αk} is said to be linear if there exists ρ ∈ (0, 1) such that αk+1 ≤ ραk

for k ≥ k0. For a matrix A ∈ Rn×n, its eigenvalues are denoted by λ(A) with
λmin(A) and λmax(A) are called the smallest and the greatest eigenvalue of A,
respectively. Finally, the notation x ≥ 0, means that the components of x are
greater or equal to zero.
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2. THE UNIQUE SOLVABILITY OF THE AVE

Throughout the paper, we make the following assumption on the AVE (1).

Assumption 1. The matrix A is nonsingular and the pair of matrices
[A,B], satisfies the condition

‖A−1‖ < 1
‖B‖ .

In the proof of the main result, we shall reformulate the AVE (1) as an
equivalent standard LCP. Then, one may investigate the AVE (1) across the
LCP by making use of the theory of LCP where we invoke under our assump-
tion the class of P-matrix, to conclude the unique solvability of the AVE (1)
for each b ∈ Rn.

Now, we recall some necessary definitions and auxiliary results that will be
used later to prove the unique solvability of the AVE (1).

Definition 1. A matrix M ∈ Rn×n is positive definite if 〈Mx, x〉 > 0 for
all non zero x ∈ Rn.

Definition 2. A matrix M ∈ Rn×n is a P-matrix if the determinants of all
principal submatrices of M are positive. Consequently, any positive definite
matrix is a P-matrix.

Definition 3. The standard LCP consists of finding x, y ∈ Rn such that

(3) x ≥ 0, y ≥ 0, y = Mx+ q, 〈x, y〉 = 0,

where M ∈ Rn×n and q ∈ Rn are given. The standard LCP with a P-matrix
is denoted by P−LCP.

As a consequence an important result has been proved by Cottle et al. [4],
where any P-LCP has a unique solution for every q ∈ Rn.

Theorem 4. [4, Theorem 3.3.7] A matrix M ∈ Rn×n is a P-matrix if and
only if the LCP has a unique solution for q ∈ Rn.

Definition 5. For x ∈ Rn, we define the vectors x+ and x− by x+
i =

max(xi, 0) and x−i = max(−xi, 0), 1 ≤ i ≤ n, respectively. Then

(4) x+ ≥ 0, x− ≥ 0, x = x+ − x−, |x| = x+ + x−, 〈x+, x−〉 = 0.

Lemma 6. If Assumption (1) holds, then (A−B) is nonsingular.

Proof. Indeed (A−B) is nonsingular. For if not then for some x 6= 0, we have
(A−B)x = 0, which will derive a contradiction. This implies that x = A−1Bx.
Hence by Assumption 1 it follows that ‖x‖ ≤ ‖A−1‖‖B‖‖x‖ < ‖x‖ which is
a contradiction. Therefore (A − B) is nonsingular. This achieves the proof.

�
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2.1. Reformulation of the AVE as a standard LCP.

Proposition 7. The AVE is as a standard LCP.

Proof. According to the decomposition of x and |x| in (4), the AVE (1) can
be reformulated to the following standard LCP: find x+ ≥ 0, x− ≥ 0, such
that
(5) x+ = Mx− + q, 〈x+, x−〉 = 0,
where M = (A−B)−1(A+B) and q = (A−B)−1b. This achieves the proof. �

We are now ready to state our main result concerning the unique solvability
of the AVEs.

Theorem 8. Under Assumption 1, the AVE (1) is uniquely solvable for
each b ∈ Rn.

Proof. We shall prove that the LCP in (5) has a unique solution i.e., we
prove M = (A−B)−1(A+B) is positive definite. We have for all x 6= 0,

〈(A−B)−1(A+B)x, x〉 = 〈(A+B)x, (AT −BT )−1x〉.
Letting (AT −BT )−1x = z, hence we get,

〈(A−B)−1(A+B)x, x〉 = 〈(A+B)(AT −BT )z, z〉
= 〈(AAT −BBT )z, z〉+ 〈(BAT −ABT )z, z〉
= 〈(AAT −BBT )z, z〉,

since 〈(BAT − ABT )z, z〉 = 0, for all z ∈ Rn. We have by Cauchy-Schwartz
inequality and Assumption 1 that

〈(AAT −BBT )z, z〉 = 〈AAT z, z〉 − 〈BBT z, z〉
= ‖Az‖2 − ‖Bz‖2

= ‖y‖2 − ‖BA−1y‖2

≥ (1− ‖A−1‖‖B‖)2 ‖y‖2 > 0, for all y 6= 0,
where y = Az. Therefore (A− B)−1(A+ B) is positive definite and the LCP
in (5) is a P−LCP. By Theorem 4, the LCP has a unique solution for each b
and so the AVE (1). This achieves the proof. �

In the next section, we propose a generalized Newton method for solving
the AVE (1). In the sequel of the analysis of the proposed method, we will
guard the Assumption 1, where we prove under this latter that the general-
ized Newton method is well-defined i.e., the generalized Jacobian matrix is
nonsingular.

3. A GENERALIZED NEWTON METHOD FOR THE AVE

By defining the function f : Rn → Rn by
(6) f(x) = Ax−B|x| − b,
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it is clear that x is a solution of the AVE (1) if and only if

(7) f(x) = 0.

Notice that |x| is not differentiable. A generalized Jacobian ∂|x| of |x| based
on a subgradient [13] of its components is given by the diagonal matrix D(x):
∂|x| = D(x) = diag(sign(x)), with

sign(x) =
{

1, if xi>0,

0, if xi=0,

−1, if xi<0.

Noting that D(x)x = |x| and ‖D(x)‖ ≤ 1 for all x.
To solve the equation (7), we use the Newton method with a generalized

Jacobian ∂f(x) of f(x) given by:

(8) ∂f(x) = A−BD(x).

The generalized Newton method for finding a zero of the equation f(x) = 0
consists of the following iteration:

(9) f(xk) + ∂f(xk)(xk+1 − xk) = 0.

Based on the values of f(x) and ∂f(x) in (6) and (8), the generalized Newton
iteration in (9), for solving the AVE (1), simplifies to

(10) (A−BD(xk))xk+1 = b.

The next lemma establishes under Assumption 1 that the generalized Newton
iteration in (10), is well-defined.

Lemma 9. If Assumption 1 holds, then (A−BD) is nonsingular for every
diagonal matrix D whose diagonal elements are 1, −1 or 0.

Proof. If (A−BD) is singular then for some x 6= 0, we have (A−BD)x = 0.
It follows that x = A−1BDx. By Assumption 1, it follows that

‖x‖ ≤ ‖A−1‖‖B‖‖D‖‖x‖ < ‖D‖‖x‖ ≤ ‖x‖.

Then we have a contradiction. Hence (A−BD) is nonsingular. This completes
the proof. �

Now, we can formally describe the corresponding generalized Newton algo-
rithm for solving the AVE (1) as follows.



6 Absolute value equations 117

3.1. Algorithm.

Input:
An accuracy ε > 0;
an initial starting point x0 ∈ Rn;
two matrices A and B and a vector b;
set k := 0;
while ‖f(xk)‖ > ε do
begin
compute xk from the linear system (A−BD(xk−1))xk = b;
update k := k + 1;
end.

A generalized Newton algorithm for the AVE.

Following Mangasarian [7], we establish the boundedness of the iterates of (10)
and hence the existence of an accumulation point for them.

Proposition 10. If Assumption 1 holds, then the iterates in (10) of the
generalized Newton method are well-defined and bounded. Consequently, there
exists an accumulation point x̄ such that (A−BD)x̄ = b for some diagonal D
whose diagonal elements equal ±1 or 0.

Proof. By Lemma 6, the matrix (A − BD)−1 exists and therefore the se-
quence of the generalized Newton iterations in (10), is well-defined. Suppose
now on the contrary that the sequence {xk} is unbounded. Then there exists
a subsequence {xki+1} → ∞ with nonzero xki+1 such that D( xki) = D̃ where
D̃ is a fixed diagonal matrix whose diagonal elements equal ±1 or 0 extracted
from the finite number of possible configurations for D(xk) in the sequence
{D(xk)} and such that the bounded subsequence

{
xki+1

‖xki+1‖
}

converges to x̃.
Hence,

(A−BD̃) xki+1

‖xki+1‖ = b
‖xki+1‖ .

Letting i → ∞, gives (A − BD̃)x̃ = 0, ‖x̃‖ = 1. In summary, there exists
a x̃ 6= 0 such that (A − BD̃)x̃ = 0, which is a contradiction to Lemma 9.
Consequently, the sequence {xk} is bounded and there exists an accumulation
point x̄, of {xk} such that f(x̄) = 0. This completes the proof. �

We are now ready to study the global convergence of the generalized Newton
method. First we give the following lemma.

Lemma 11. Let x and y be points in Rn. Then,
∥∥ |x| − |y| ∥∥ ≤ 2 ‖x− y‖ .

Proof. For a detailed proof, see Lemma 5 in [7]. �

Lemma 12. Under the assumption
∥∥(A−BD)−1∥∥ < 1

3‖B‖ , the generalized
Newton iteration converges linearly from any starting point to a solution x∗

for any solvable AVE (1).
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Proof. Let x∗ be a solution of the AVE (1), then (A−BD(x∗))x∗ = b. Noting
that |x∗| = D(x∗)x∗ and |xk| = D(xk)xk. Now, subtracting (A−BD(x∗))x∗ =
b from (A−BD(xk))xk+1 = b, we obtain

A(xk+1 − x∗) = BD(xk)xk+1 −BD(x∗)x∗

= BD(xk)(xk+1 + xk − xk)−BD(x∗)x∗

= B(|xk| − |x∗|) +BD(xk)(xk+1 − x∗ + x∗ − xk)
= B(|xk| − |x∗|)−BD(xk)(xk − x∗) +BD(xk)(xk+1 − x∗).

Hence

(A−BD(xk))(xk+1 − x∗) = B(|xk| − |x∗|)−BD(xk)(xk − x∗).

Consequently,

(xk+1 − x∗) = (A−BD(xk))−1B(|xk| − |x∗|)−BD(xk)(xk − x∗)).

By Lemma 7, we have,∥∥xk+1 − x∗
∥∥ ≤ ∥∥(A−BD(xk))−1∥∥(2 ‖B‖ ∥∥xk − x∗

∥∥) + ‖B‖
∥∥xk − x∗

∥∥).
Hence,

∥∥xk+1−x∗
∥∥ ≤ 3

∥∥(A−BD(xk))−1∥∥ ‖B‖ (
∥∥xk−x∗

∥∥). So by the condition∥∥(A−BD)−1∥∥ < 1
3‖B‖ , it follows that

∥∥xk+1 − x∗
∥∥ < ∥∥xk − x∗

∥∥. Hence the
sequence

{
xk
}

converges linearly to x∗. This completes the proof. �
We are now ready to prove our main result of the global convergence. We

quote first the following lemma.

Lemma 13. If Assumption 1 holds, then (A−BD) is nonsingular and∥∥(A−BD)−1∥∥ ≤ ‖A−1‖
1−‖A−1B‖ .

Proof. The first part follows directly from Lemma 9. For the proof of the
second part, we have (A−BD)−1 can be written in the form

(A−BD)−1 = (I −A−1BD)−1A−1.

But since (I −A−1BD)−1(I −A−1BD) = I, it follows that

(I −A−1BD)−1 = I + (I −A−1BD)−1A−1BD.

By introducing an induced matrix norm, we get∥∥(I −A−1BD)−1∥∥ ≤ 1
1−‖A−1B‖‖D‖ ≤

1
1−‖A−1B‖ .

Because, ∥∥(A−BD)−1∥∥ =
∥∥(I −A−1BD)−1A−1∥∥,

it implies that ∥∥(A−BD)−1∥∥ ≤ ‖A−1‖
1−‖A−1B‖ .

This completes the proof. �



8 Absolute value equations 119

Proposition 14. Let ‖A−1‖ < 1
4‖B‖ and D(xk) 6= 0 for all k. Then the

AVE (1) is uniquely solvable for each b ∈ Rn and the generalized Newton
iteration is well-defined and converges globally from any starting point to a
solution x∗ for any solvable AVE.

Proof. The uniquely solvable of AVE (1) for any b follows from Theorem 8
which requires ‖A−1‖ < 1

‖B‖ . Now by Lemma 13, we have,∥∥(A−BD)−1∥∥ ≤ ‖A−1‖
1−‖A−1B‖ <

1
4‖B‖
1− 1

4
= 1

3‖B‖ .

Hence by Lemma 12, the sequence generated by the generalized Newton method
converges to the unique solution of the AVE (1) from any starting point x0.
This completes the proof. �

4. NUMERICAL RESULTS

In this section, we report some numerical results of the algorithm on two
examples of absolute value equations. The experiments are done by the soft-
ware MATLAB on a PC. In the implementation, our tolerance is ε = 10−6 and
the number of iterations and the time produced by the algorithm are denoted
by It and CPU, respectively. To this end and in order to demonstrate the
performance of the algorithm, we compare the obtained numerical results with
those obtained by the modified generalized method in [11]. For these examples
we will ensure that the sufficient condition of solvability of the AVE problem
is guaranteed i.e., the AVE (1) has a unique solution for each b.

Problem 15. The data (A,B, b) of the AVE problem is taken as

A = (aij) =
{ 10 i=j,
−1 |i−j|=1,
0 otherwise

B = (bij) =
{ 5, i=j,
−1, |i−j|=1,
0, otherwise.

Observe first that the two matrices A and B can be written as follows:
A = 10I − Ā, B = 5I − Ā

where
Ā = (āij) =

{ 0, i=j,
−1, |i−j|=1,
0, otherwise.

Since A and B are symmetric real matrices, then their eigenvalues are reals.
Let us denote by λ(A) and λ(B) the eigenvalues of A and B, respectively. It
follows from the matrix calculus that their eigenvalues are given by

λ(A) = 10− λ(Ā) and λ(B) = 5− λ(Ā),
where λ(Ā) are the eigenvalues of Ā. Substituting λ(Ā) from the equation
λ(B) = 5− λ(Ā) into λ(A) = 10− λ(Ā), it follows that λ(A)− λ(B) = 5 > 0,
i.e.,λ(A) > λ(B). Consequently, λmin(A) > λmax(B) which is equivalent to
say that

∥∥A−1∥∥ < 1
‖B‖ . Therefore, the Problem 15 is uniquely solvable for each

b ∈ Rn. For b = (A − B)e, the exact unique solution is given by x∗ = e. The
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obtained numerical results for different values of size n and with the initial
point x0 = (1, 2, . . . , n)T are summarized in Table 1.

Methods → Gen. Newt M. Gen. Newt
size n ↓ It CPU It CPU
20 2 0.00058 12 0.00239
500 2 0.43522 15 2.75882
1000 2 2.73065 16 23.39024
1500 2 8.72754 16 69.01293

Table 1. Numerical results for Problem 15.

Problem 16. This example is an AVE problem of type (2) and it is taken
as:

A = (aij) =
{ 100 i=j

10 |i−j|=1,
0 otherwise

∀i, j = 1, .., n,

and B = I. Also with the same reasoning as in the first example we can
checked that Assumption 1 in this example is satisfied and so the Problem
16 has a unique solution for each b ∈ Rn. For b = (A − I)e ∈ Rn, the exact
solution is x∗ = e. The obtained numerical results for different values of size n
and with the initial point x0 = (1, 3, . . . , 2n+1)T , are summarized in Table 2.

Methods → Gen. Newt M. Gen. Newt
size n ↓ It CPU It CPU
20 2 0.0006 6 0.00164
500 2 0.9280 7 1.38453
1000 2 7.4371 8 12.43491
1500 2 29.632463 8 37.71990

Table 2. Numerical results for Problem 16.

In these tables “Gen. Newt” and “M. Gen. Newt” are denoted for the Gen-
eralized Newton method and the Modified Generalized Newton method [11],
respectively. From Tables 1 and 2, we see that the number of iterations and
the CPU times of the generalized Newton method are always less than those
obtained by the modified generalized Newton method which indicates the supe-
riority of the generalized Newton method.

5. CONCLUDING REMARKS

In this paper, we have studied the unique solvability of the AVE under a
suitable sufficient condition. Moreover, we have extended a generalized New-
ton method for solving the AVE (1) which globally and finitely converges to
the unique solution of the AVE (1) when

∥∥A−1∥∥ < 1
4‖B‖ . We have also reported

some numerical results which indicate the effectiveness of the proposed method
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compared with an available generalized modified Newton method. Possible fu-
ture work may consist to consider Traub’s Newton method for solving the AVE
(1) which is known as the two-step Newton method.
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