347 research outputs found

    A Tutorial on Distributed Optimization for Cooperative Robotics: from Setups and Algorithms to Toolboxes and Research Directions

    Full text link
    Several interesting problems in multi-robot systems can be cast in the framework of distributed optimization. Examples include multi-robot task allocation, vehicle routing, target protection and surveillance. While the theoretical analysis of distributed optimization algorithms has received significant attention, its application to cooperative robotics has not been investigated in detail. In this paper, we show how notable scenarios in cooperative robotics can be addressed by suitable distributed optimization setups. Specifically, after a brief introduction on the widely investigated consensus optimization (most suited for data analytics) and on the partition-based setup (matching the graph structure in the optimization), we focus on two distributed settings modeling several scenarios in cooperative robotics, i.e., the so-called constraint-coupled and aggregative optimization frameworks. For each one, we consider use-case applications, and we discuss tailored distributed algorithms with their convergence properties. Then, we revise state-of-the-art toolboxes allowing for the implementation of distributed schemes on real networks of robots without central coordinators. For each use case, we discuss their implementation in these toolboxes and provide simulations and real experiments on networks of heterogeneous robots

    Model Predictive Control for Smart Energy Systems

    Get PDF

    A mirror descent approach for Mean Field Control applied to Demande-Side management

    Full text link
    We consider a finite-horizon Mean Field Control problem for Markovian models. The objective function is composed of a sum of convex and Lipschitz functions taking their values on a space of state-action distributions. We introduce an iterative algorithm which we prove to be a Mirror Descent associated with a non-standard Bregman divergence, having a convergence rate of order 1/ \sqrt K. It requires the solution of a simple dynamic programming problem at each iteration. We compare this algorithm with learning methods for Mean Field Games after providing a reformulation of our control problem as a game problem. These theoretical contributions are illustrated with numerical examples applied to a demand-side management problem for power systems aimed at controlling the average power consumption profile of a population of flexible devices contributing to the power system balance

    Transportation Electrification in Interdependent Power and Transportation Systems - Analysis, Planning, and Operation

    Get PDF
    Electric vehicles (EVs) are one of the eminent alternatives to decarbonize the transportation sector. However, large-scale EV adoption brings new challenges and opportunities to both transportation and power systems (TPSs). The challenges include the lack of understanding of EV driving behaviors and the associated charging demand (CD) distribution, the complex interaction of the decentralized decision-makers from TPSs, and the insufficient infrastructure from TPSs to accommodate the growing CD of EVs. On the other hand, the opportunities include benefiting the power systems by leveraging vehicle-to-grid (V2G) technologies and improving transportation mobility by incorporating strategic infrastructure planning. The goal of this dissertation is to address the challenges and leverage opportunities associated with large-scale EV adoption from planning and operational perspectives in TPSs. We have the following objectives: 1- Better understanding the impacts of driving patterns on the spatio-temporal distribution of EV CD. 2- Investigate the value of EVs on the coupled TPSs. 3- Plan the supporting power and transportation infrastructure for the growing CD of EVs. More specifically, we first utilized machine learning approaches to model and forecast CD of EVs based on their driving behavior. Secondly, we propose a multi-agent model that captures the decentralized interactions between key stakeholders in TPSs to investigate the value of EVs in distribution system support. Thirdly, we modeled infrastructure planning for EV adoption from two perspectives: 1) We study the multi-stage DG and CS planning problem considering decentralized investors in a multi-agent optimization framework to understand the system evolvement. 2) We study the centralized CS planning problem in a bi-level programming framework to optimize transportation mobility by strategically placing CSs. To overcome the computational difficulties, we have proposed effective computational algorithms based on exact convex reformulation and value-decomposition algorithms. Our numerical examples demonstrate that the proposed models can identify the equilibrium investment patterns of DGs and CSs, as well as determine the optimal locations of CSs from a centralized entity\u27s perspective. Additionally, our operational framework shows how EVs can provide system support for load pickup with endogenously determined incentives and energy prices. These modeling and computational strategies can provide foundations for future investigation, planning, and market design with large-scale EVs in coupled TPSs

    Managing power system congestion and residential demand response considering uncertainty

    Get PDF
    Electric power grids are becoming increasingly stressed due to political and environmental difficulties in upgrading transmission capacity. This challenge receives even more interest with the paradigm change of increasing renewable energy sources and demand response (DR) programs. Among DR technologies, existing DR programs are primarily designed for industrial and commercial customers. However, household energy consumption accounts for 38% of total electricity consumption in the U.S., suggesting a significant missed opportunity. This dissertation presents an in-depth study to investigate managing power system congestion and residential DR program under uncertainty.First, an interval optimization model is presented for available transfer capability (ATC) evaluation under uncertainties. The conventional approaches of ATC assessment include deterministic and probabilistic methods. However, the proposed interval optimization model can effectively reduce the accuracy requirements on the renewable forecasting, and lead to acceptable interval results by mitigating the impacts of wind forecasting and modeling errors. Second, a distributed and scalable residential DR program is proposed for reducing the peak load at the utility level. The proposed control approach has the following features: 1) it has a distributed control scheme with limited data exchange among agents to ensure scalability and data privacy, and 2) it reduces the utility peak load and customers’ electricity bills while considering household temperature dynamics and network flow.Third, the impacts of weather and customers’ behavior uncertainties on residential DR are also studied in this dissertation. A new stochastic programming-alternating direction method of multipliers (SP-ADMM) algorithm is proposed to solve problems related to weather and uncertain customer behavior. The case study suggests that the performance of residential DR programs can be further improved by considering these stochastic parameters.Finally, a deep deterministic policy gradient-based (DDPG-based) HVAC control strategy is presented for residential DR programs. Simulation results demonstrate that the DDPG-based approach can considerably reduce system peak load, and it requires much less input information than the model-based methods. Also, it only takes each agent less than 3 seconds to make HVAC control actions. Therefore, the proposed approach is applicable to online controls or the cases where accurate building models or weather forecast information are not available

    Electric Vehicle (EV)-Assisted Demand-Side Management in Smart Grid

    Get PDF
    While relieving the dependency on diminishing fossil fuels, Electric Vehicles (EVs) provide a promising opportunity to realise an eco-friendly and cost-effective means of transportation. However, the enormous electricity demand imposed by the wide-scale deployment of EVs can put power infrastructure under critical strain, potentially impacting the efficiency, resilience, and safety of the electric power supply. Interestingly, EVs are deferrable loads with flexible charging requirements, making them an ideal prospect for the optimisation of consumer demand for energy, referred to as demand-side management. Furthermore, with the recent introduction of Vehicle-to-Grid (V2G) technology, EVs are now able to act as residential battery systems, enabling EV customers to store energy and use them as backup power for homes or deliver back to the grid when required. Hence, this thesis studies Electric Vehicle (EV)-assisted demand-side management strategies to manage peak electricity demand, with the long-term objective of transforming to a fully EV-based transportation system without requiring major upgrades in existing grid infrastructure. Specifically, we look at ways to optimise residential EV charging and discharging for smart grid, while addressing numerous requirements from EV customer's perspective and power system's perspective. First, we develop an EV charge scheduling algorithm with the objective of tracking an arbitrary power profile. The design of the algorithm is inspired by water-filling theory in communication systems design, and the algorithm is applied to schedule EV charging following a day-ahead renewable power generation profile. Then we extend that algorithm by incorporating V2G operation to shape the load curve in residential communities via valley-filling and peak-shaving. In the proposed EV charge-discharge algorithm, EVs are distributedly coordinated by implementing a non-cooperative game. Our numerical simulation results demonstrate that the proposed algorithm is effective in flattening the load curve while satisfying all heterogeneous charge requirements across EVs. Next, we propose an algorithm for network-aware EV charging and discharging, with an emphasis on both EV customer economics and distribution network aspects. The core of the algorithm is a Quadratic Program (QP) that is formulated to minimise the operational costs accrued to EV customers while maintaining distribution feeder nodal voltage magnitudes within prescribed thresholds. By means of a receding horizon control approach, the algorithm implements the respective QP-based EV charge-discharge control sequences in near-real-time. Our simulation results demonstrate that the proposed algorithm offers significant reductions in operational costs associated with EV charging and discharging, while also mitigating under-voltage and over-voltage conditions arising from peak power flows and reverse power flows in the distribution network. Moreover, the proposed algorithm is shown to be robust to non-deterministic EV arrivals and departures. While the previous algorithm ensures a stable voltage profile across the entire distribution feeder, it is limited to balanced power distribution networks. Therefore, we next extend that algorithm to facilitate EV charging and discharging in unbalanced distribution networks. The proposed algorithm also supports distributed EV charging and discharging coordination, where EVs determine their charge-discharge profiles in parallel, using an Alternating Direction Method of Multipliers (ADMM)-based approach driven by peer-to-peer EV communication. Our simulation results confirm that the proposed distributed algorithm is computationally efficient when compared to its centralised counterpart. Moreover, the proposed algorithm is shown to be successful in terms of correcting any voltage violations stemming from non-EV load, as well as, satisfying all EV charge requirements without causing any voltage violations

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Space station systems: A bibliography with indexes (supplement 9)

    Get PDF
    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included
    corecore