207 research outputs found

    Maintenance optimization of a production system with buffercapacity

    Get PDF
    Marketing;Optimization;produktieleer/ produktieplanning

    Inventory models with lateral transshipments : a review

    Get PDF
    Lateral transshipments within an inventory system are stock movements between locations of the same echelon. These transshipments can be conducted periodically at predetermined points in time to proactively redistribute stock, or they can be used reactively as a method of meeting demand which cannot be satised from stock on hand. The elements of an inventory system considered, e.g. size, cost structures and service level denition, all in uence the best method of transshipping. Models of many dierent systems have been considered. This paper provides a literature review which categorizes the research to date on lateral transshipments, so that these dierences can be understood and gaps within the literature can be identied

    Simulated Multi-Echelon Readiness-Based Inventory Leveling with Lateral Resupply

    Get PDF
    For the past fifty years, U.S. Air Force reparable inventory has been allocated based on an analytic model developed by Dr. Craig C. Sherbrooke. Although versions of his model can be implemented easily with the help of a computer, the analytic approach fundamentally lacks the flexibility to address numerous logistics issues. This body of research will offer a novel alternative approach that will enable researchers to investigate currently unsolved logistics problems such as quantifying the benefits of lateral resupply

    A stochastic inventory policy with limited transportation capacity

    Get PDF
    In this paper we consider a stochastic single-item inventory problem. A retailer keeps a single product on stock to satisfy customers stochastic demand. The retailer is replenished periodically from a supplier with ample stock. For the delivery of the product, trucks with finite capacity are available and a fixed shipping cost is charged whenever a truck is dispatched regardless of its load. Furthermore, linear holding and backorder costs are considered at the end of a review period. A replenishment policy is proposed to determine order quantities taking into account transportation capacity and aiming at minimizing total average cost. Every period an order quantity is determined based on an order-up-to logic. If the order quantity is smaller than a given threshold then the shipment is delayed. On the other hand, if the order quantity is larger than a second threshold then the initial order size is enlarged and a full truckload is shipped. An order size between these two thresholds results in no adaption of the order quantity and the order is shipped as it is. We illustrate that this proposed policy is close to the optimal policy and much better than an order-up-to policy without adaptations. Moreover, we show how to compute the cost optimal policy parameters exactly and how to compute them by relying on approximations. In a detailed numerical study, we compare the results obtained by the heuristics with those given by the exact analysis. A very good cost performance of the proposed heuristics can be observed

    Multilocation Inventory Systems With Centralized Information.

    Get PDF
    The management of multi-echelon inventory systems has been both an important and challenging research area for many years. The rapid advance in information technology and the emphasis on integrated supply chain management have new implications for the successful operation of distribution systems. This research focuses on the study of some fundamental issues related to the operation of a multilocation inventory system with centralized information. First, we do a comparative analysis to evaluate the overall performance of individual versus centralized ordering policies for a multi-store distribution system where centralized information is available. This study integrates the existing research and clarifies one of the fundamental questions facing inventory managers today: whether or not ordering decisions should be centralized. Next, we consider a multi-store distribution system where emergency transshipments are permitted among these stores. Based on some simplifying assumptions, we develop an integrated model with a joint consideration of inventory and transshipment components. An approximately optimal (s, S) policy is obtained through a dynamic programming technique. This ordering policy is then compared with a simplified policy that assumes free and instantaneous transshipments. We also examine the relative performance of base stock policies for a centralized-ordering distribution system. Numerical studies are provided to give general guidelines for use of the policies
    corecore