18 research outputs found

    A sum-of-sinusoids based simulation model for the joint shadowing process in urban peer-to-peer radio channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Capacity and Quality Optimization of CDMA Networks, Journal of Telecommunications and Information Technology, 2010, nr 4

    Get PDF
    Coverage and capacity are important issues in the planning process for cellular third generation (3G) mobile networks. The planning process aims to allow the maximum number of users sending and receiving adequate signal strength in a cell. This paper describes the conceptual expressions require for network coverage and capacity optimization analysis, examines service quality issues, and presents practical solutions to problems common to suboptimality of CDMA networks

    Performance of hard handoff in 1xev-do rev. a systems

    Get PDF
    1x Evolution-Data Optimized Revision A (1xEV-DO Rev. A) is a cellular communications standard that introduces key enhancements to the high data rate packet switched 1xEV-DO Release 0 standard. The enhancements are driven by the increasing demand on some applications that are delay sensitive and require symmetric data rates on the uplink and the downlink. Some examples of such applications being video telephony and voice over internet protocol (VoIP). The handoff operation is critical for delay sensitive applications because the mobile station (MS) is not supposed to lose service for long periods of time. Therefore seamless server selection is used in Rev. A systems. This research analyzes the performance of this handoff technique. A theoretical approach is presented to calculate the slot error probability (SEP). The approach enables evaluating the effects of filtering, hysteresis as well as the system introduced delay to handoff execution. Unlike previous works, the model presented in this thesis considers multiple base stations (BS) and accounts for correlation of shadow fading affecting different signal powers received from different BSs. The theoretical results are then verified over ranges of parameters of practical interest using simulations, which are also used to evaluate the packet error rate (PER) and the number of handoffs per second. Results show that the SEP gives a good indication about the PER. Results also show that when considering practical handoff delays, moderately large filter constants are more efficient than smaller ones

    Investigation of Shadowing Effects in Typical Propagation Scenarios for High Speed Railway at 2350 MHz

    Get PDF
    Based on realistic measurements in China, shadowing characteristics at the frequency of 2350 MHz were investigated in typical High-Speed Railway environments. After confirming that the measured shadowing satisfies wide-sense stationarity (assessed via the reverse arrangement test method), we quantify the shadowing correlation. Three types of correlation models are compared for the shadowing characterization, and the Normalized Mean Square Error is used to determine the best matching model: a single decaying exponential function. Decorrelation distances were found to be 11.9 m, 17.7 m, and 8.3 m in our three HSR scenarios, respectively. The results should be useful for the evaluation and verification of wireless communication in High-Speed Railway scenarios

    Performance of hard handoff in 1xev-do rev. a systems

    Get PDF
    1x Evolution-Data Optimized Revision A (1xEV-DO Rev. A) is a cellular communications standard that introduces key enhancements to the high data rate packet switched 1xEV-DO Release 0 standard. The enhancements are driven by the increasing demand on some applications that are delay sensitive and require symmetric data rates on the uplink and the downlink. Some examples of such applications being video telephony and voice over internet protocol (VoIP). The handoff operation is critical for delay sensitive applications because the mobile station (MS) is not supposed to lose service for long periods of time. Therefore seamless server selection is used in Rev. A systems. This research analyzes the performance of this handoff technique. A theoretical approach is presented to calculate the slot error probability (SEP). The approach enables evaluating the effects of filtering, hysteresis as well as the system introduced delay to handoff execution. Unlike previous works, the model presented in this thesis considers multiple base stations (BS) and accounts for correlation of shadow fading affecting different signal powers received from different BSs. The theoretical results are then verified over ranges of parameters of practical interest using simulations, which are also used to evaluate the packet error rate (PER) and the number of handoffs per second. Results show that the SEP gives a good indication about the PER. Results also show that when considering practical handoff delays, moderately large filter constants are more efficient than smaller ones
    corecore