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Abstract—Most conventional channel models are not capable 
of capturing the joint spatial correlation of shadowing processes 
between a large number of meshed radio channels in an ad-hoc 
wireless communications network. In this paper, we present a 
sum-of-sinusoids (SOS) based simulation model for the joint 
shadowing process in urban peer-to-peer radio channels. The 
performance of the proposed channel simulator is analyzed in 
terms of the autocorrelation and joint correlation function of the 
simulated shadowing process. Simulations illustrate that the 
proposed model is able to generate deterministic output 
shadowing values with a Normal distribution (in dB) and desired 
correlation properties. It is thus suitable for use in system level 
simulations, such as the evaluation of routing and radio resource 
management algorithms in ad-hoc networks. 

I. INTRODUCTION 
Ad-hoc and multihop networks are attracting significant 

levels of research interest in addition to being considered for 
beyond third generation wireless networks [1,2,3]. One of the 
core ideas in such networks is the provision of high capacity and 
connectivity through peer-to-peer (P2P) links. These short-range 
connections overcome heavy shadowing in the radio links and 
thus offer more efficient spatial reuse of the radio resources 
[1,3]. The need to evaluate the performance of routing protocols 
and radio resource management (RRM) schemes in such 
networks calls for channel models that properly reflect the cross 
spatial/temporal correlation properties of the shadowing process 
for meshed links between mobile nodes. It was reported in [4] 
that incomplete consideration of spatial correlation in 
multipoint-to-multipoint (M2M) radio channels (i.e. mobile to 
mobile) can lead to significant simulation errors, especially in 
the analysis of  routing protocols and RRM. 

Most existing shadowing correlation models [5,6,7,17] are 
established based on the base station (BS) to mobile station (MS) 
propagation channel for cellular networks, where only the MS 
moves. In [8], the cross-correlation of MS to multi-BS links is 
modelled for handoff performance studies. In [9], a general 
mathematical joint correlation model for shadow fading 
between two BS and two MS is derived. In the 3GPP Spatial 
Channel Model (SCM) [ 10 ], it is suggested to introduce 
correlation between channels from one mobile to two base 
stations by multiplying random Gaussian variables with a 
correlation matrix. However, these approaches are impractical 
when applied to P2P networks due to the large number of 
meshed channels between mobile nodes. In [10], the fast fading 
correlation between antenna elements in a MIMO channel is 
introduced by pre-generating a set of directional multipaths. 
This method is not suitable for generating correlated shadowing. 
In [4], a simple biased fading (random or site-specific) process 

applied to each MS is suggested, but no detailed method is 
supplied. No efficient shadowing models are currently available 
in the literature to enable fast system level P2P simulations. 

Among the existing methods for simulating fading channels, 
the sum of sinusoids (SOS) method has been shown to have 
many advantages, particularly in terms of accuracy and speed 
[7,11,12,13,14]. The SOS method is based on the fact that a 
Gaussian random process can be expressed as an infinite sum of 
sinusoids with random phases, and properly selected 
frequencies [15]. In practice, a finite number of sinusoids can be 
used to approximate a Gaussian process, which reduces 
complexity [11,12]. The statistical properties of SOS-based 
channel simulation models are presented in [12,13]. A fast 
implementation scheme based on a look-up table is advocated in 
[14]. In [11], the method of SOS is studied in more detail, and 
four different methods for the computation of the coefficients of 
the simulation model are developed. Three of these methods are 
applied to simulate the two-dimensional (2-D) shadowing 
process in [7]. 

In this paper, a SOS based simulation model is proposed for 
the joint shadowing process in urban P2P radio channels. A 
discrete Monte Carlo sampling method (DMCM) is used to 
determine the spatial frequencies of the sinusoidal waveforms 
according to the spatial power spectrum, which is calculated 
from the autocorrelation function (ACF) of the P2P link 
shadowing process. To distinguish between the 2-D ACF 
described in [7] and the 1-D ACF for a centralised link, the ACF 
of a P2P link is referred to in this paper as the joint-correlation 
function (JCF). The desired JCF was obtained in our previous 
publication [16] by making use of a detailed 3-D ray model. The 
performance of the resulting channel simulator is analyzed in 
terms of the average squared error (ASE) of the corresponding 
JCF relative to the theoretical desired JCF, the shadowing 
Cumulative Distribution Function (CDF), and the simulation 
speed.  

II. CHANNEL MODEL AND SIMULATION METHODS 

A. Shadowing Model 
From various experimental results, it has been shown that 

the shadowing fluctuation can be characterized by a log-Normal 
distribution (i.e. the logarithm of a Normal distribution) over a 
large number of measurement locations with the same 
transmitter-receiver separation [17,18]. 

 [ ] ( )ShadowNdBs σ,0v)u,y,(x, =  (1) 

where N (µ, σ) is a Gaussian/Normal distribution with mean µ 
and standard deviation σ. The shadowing fluctuation value s is a 
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function of the mobile location, with [x,y] and [u,v] denoting the 
positions of the mobiles at both ends of the P2P link (Tx and 
Rx). s(x,y,u,v) can also be presented as a function of time s(t), if 
the MSs are in motion. 

The 1-D spatial ACF of the shadow fading is a measure of 
how fast the local mean power evolves as the MS at one end of 
the radio link moves along a certain route. This ACF can be 
modelled using an exponential decay function [5,6]: 
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where d is the distance moved by the MS, and the decorrelation 
distance dcor, corresponds to the distance at which the 
correlation drops to 50%. Assuming that the shadowing 
fluctuation s is wide sense stationary, the ACF of s is now only 
a function of the distance of the MS movement. Hence (2) can 
be rewritten in the following form, where the movement vector 
d = [∆x, ∆y]T: 

 
2ln2ln

1

22

)( corcor d
yx

d eeR
∆+∆−−

==
d

d  (3) 

For the P2P radio channel, the shadowing JCF is a measure 
of how fast the local mean power evolves when the two MSs 
(i.e. Tx and Rx) at both ends of the link move around. It was 
found in [16] that the MS movement at each end of the P2P link 
has an independent and equal effect on the correlation 
coefficient. The JCF can be decomposed into two independent 
identical 1-D ACFs with respect to the movement of each MS, 
as shown in (4), where dT:= [∆x, ∆y]T  and dR:= [∆u, ∆v]T 
denote the movement of the Tx and Rx respectively. 
 )()(),( 112 RTRT RRR dddd ⋅=  (4) 

B. SOS Simulation Model 
The simulation model for a Gaussian random process s(t) 

based on the SOS method given in [11] is expressed as a 1-D 
function of the time variable: 
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where N is the number of sinusoids. Strictly speaking, when N is 
finite, the stochastic process )(ˆ ts  is non-Gaussian distributed. 
But nevertheless the CDF of )(ˆ ts  is close to a Gaussian density 
if N is sufficiently large, e.g. N ranging from 6 to 30 according 
to [11]. N

nn 1}{ =θ  are random variables uniformly distributed in the 
range [0, 2π]. N

nnf 1}{ =
 and N

nnc 1}{ =
 are the sinusoid frequency set 

and the corresponding amplitude coefficients respectively, 
which are determined in a manner such that the resulting 

)(ˆ ts has similar statistical properties (e.g. the power spectral 
density - PSD -, which corresponds to the Fourier transforms of 
the ACF of the Gaussian random process [15]) to those of s(t). 
Given that the only random variables in (5) are {θn}, the ACF of 
ŝ (t) can be evaluated as: 
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In order to simulate the spatially correlated shadowing 
process of a P2P radio channel, we extend (5) to a 4-D spatial 
Gaussian process s(x,y,u,v): 
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where ŝ (x,y,u,v) is the determined shadowing value on a virtual 
map characterized by the spatial frequency set {fn}, the 
corresponding coefficients {cn} and the phase {θn}. The spatial 
frequencies {fn:=[fx,n, fy,n, fu,n, fv,n]} are vectors with four 
elements. We further define spatial frequencies fT,n:=[fx,n, fy,n], 
fR,n:=[fu,n, fv,n], fT:=[fx, fy], fR:= [fu, fv] and f:=[fx, fy, fu, fv], for the 
convenience of subsequent referrals. The spatial frequency set 
{fn} and the coefficients {cn} can be determined from the 4-D 
PSD of the Gaussian random process s(x,y,u,v). To obtain the 
desired PSD, we need to perform the 4-D Fourier transform on 
the JCF in (4). This gives: 
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where Φ1(f.) and Φ2(fT, fR) represent the Fourier transforms of 
the correlation functions R1 (d) and R2(dT, dR) respectively. 
Equation (9) gives the 2-D PSD Φ1(fT), (similarly for Φ1(fR)), as 
derived in [7], where a:=ln(2)/dcorr. 
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The 4-D spatial ACF of ŝ (x,y,u,v), which corresponds to the 
JCF in (4), can be evaluated using (10): 
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There are four methods proposed in [11] to determine the 
spatial frequency set {fn} and the coefficients {cn} in a SOS 
model. Three of those methods have been used to model the 2-D 
shadowing processes [7]. These are the uniform sampling 
method (USM), the non-uniform sampling method (NUSM) and 
the Monte Carlo Method (MCM). It is found in [7] that the 
MCM, where the frequency set {fn} is generated according to a 
given Probability Density Function (PDF) (which in turn is 
determined by the PSD), gives the best performance in terms of 
average square error (ASE) versus the number of sinusoids N. 
However, this method has the highest computational 
complexity. The USM method, where the PSD is uniformly 
sampled with frequency spacing ∆f, and Cn

2/2 represents the 
power of the PSD in the frequency interval [fn – ∆f /2, fn – ∆f /2), 
requires a large number of sinusoids, but has two features: 
 i) The result ŝ (·) is a periodical function, which is desirable 

when the user wants to wrap around the simulated radio 
environment to avoid interference edge effects.  

ii) It can be implemented using a look-up table based scheme 
on computer or in hardware (which is fast).  

It will be shown later in the analyses of the models that a 
large number of sinusoids are required to reduce the ASE of a 4-
D ACF, even when the MCM method is used; hence a high-
speed simulation scheme is necessary. In the rest of this section, 
we first describe the proposed Discrete Monte-Carlo Method 
(DMCM), which is a combination of MCM and USM. 
Following this, a number of performance evaluations are 
discussed. 



C. Discrete Monte Carlo Method 
In a pure MCM, the 4-D spatial frequencies set {fn} in (7) 

can be generated according to a given joint PDF, which is 
related to the PSD of the joint shadowing process. Specifically, 
the sampling frequencies can be generated according to a PDF 
proportional to the PSD [19]. From (8), it is straightforward that 
the joint PDF for f can be decomposed into the two independent 
identical PDFs for fT and fR as shown in (11), therefore fT,n and 
fR,n can be generated independently. 
 ( ) ( ) ( ) ( ) ( ) ( )RTRT ppbbbp ffffff 111112222 =ΦΦ=Φ=  (11) 

where p1(·) and p2(·) denote the 2D and 4D joint PDF functions 
respectively, and b1 and b2 are constants that ensure the 
integration of the PDF equals to 1. p1(·) and the functions used 
to generate fT,n (the same for fR,n, as they have identical PDFs) 
have been derived in [7]: 
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where β is a random variable uniformly distributed over the 
range [0,1], and φ is uniformly distributed over [0,2π]. θn in (7) 
is a random variable uniformly distributed over [0, 2π]. The 
coefficients {cn} have the same value for all sinusoids [11].  

To enable an efficient implementation of the MCM, we 
introduce an equivalent discrete realization of (7), named the 
Discrete MCM (DMCM). First, letting 2∆f be the frequency 
sampling interval as in the USM method, we modify the 
original sinusoid fn from the pure MCM method according to: 
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Where mx,n is an integer. f y,n , f  u,n and f  v,n are modified in 
the same way as in (13). This modification forces the resulting 
Gaussian random process to have a period 1/∆f. Then, setting 
∆θ = 2π/NTable as the resolution of the stored sinusoidal 
waveform, with table size denoted by NTable, we modify {θn} as: 
 θθ
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where ln∈{0,1,…,NTalbe-1} Finally, we set the spatial sampling 
interval ∆x=1/(NTable·∆f) and [ vuyx ,,, ]=[kx ,ky ,ku ,kv]·∆x, k∈Z. 
Equation (7) can then be rewritten in discrete form: 
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where s ( vuyx ,,, ) is known as a discrete Gaussian random 
process. It is easy to see from (15) that with NTable →∞, the 
DMCM becomes a pure MCM when ∆f→∞, or a pure USM 
when N→∞. As all the elements in the operator ∑ are in the set 
{cos(2π·i /NTable·), i∈{0,1,…,NTalbe-1}, (15) can be implemented 
on a computer using a look-up table, with all operations 
involving only integers; hence simulation speed can be high. 
According to [14], (15) can be realized on a multiplier-free 
hardware simulator; however this falls outside the scope of this 
paper. 

In real P2P networks, the shadowing in the uplink and 
downlink are expected to be identical, i.e. ŝ (x,y,u,v) = 

( )yxvus ,,,ˆ . In order to account for this fact, we introduce the 
symmetric DMCM. Letting N be even, we first generate the first 
half of the frequency set { f n}, n=1,2,…,N/2, as described 
above. The second half of this set is then generated using: 
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i.e. f T,n = f R,n+N/2 and f R,n = f T,n+N/2where n=1,2,…,N/2. It 
should be noted that f T,n and f R,n are still independently 
generated. The above modification makes the discrete spatial 
frequency set { f n} symmetric with respect to (w.r.t.) fT=fR, 
which results in a symmetric shadowing value in the up and 
down links. This will not change the 4-D joint PDF shape since 
the PDF is symmetric in the same manner (i.e. w.r.t. fT=fR). We 
also let θ n = θ n+N/2, n=1,2,…,N/2. This modification prevents 
the phase set {θ n} from containing purely random values, and 
thus introduces additional and unwanted correlations between 
f n and f n+N/2. Therefore, degradation in performance is 
expected for the DMCM with symmetric properties (symmetric 
DMCM) when compared to the non-symmetric approach. The 
degradation due to the introduction of symmetry is analyzed 
later in this paper. 

D. Performance Evaluation 
There are three performance metrics used to evaluate the 

Gaussian random process simulator: the CDF of the output 
values, the simulation speed, and the ASE of the ACF. In the 
DMCM, all the sinusoid frequencies { f n} and { θ n} are 
randomly generated, hence the above metrics are 
implementation dependent. However, as mentioned before, 
when ∞→N , the DMCM becomes a pure USM, which is then 
a deterministic model and the ASE for a given sampling 
frequency resolution (i.e. ∆f) can be calculated. 

The ASE of an ACF was introduced in [7], and defined as 
the average squared error between the ACF of the simulated 
process ŝ (·) and the desired ACF of the shadowing processes. It 
is equal to the square of the root mean square error (RMSE). For 
joint shadowing processes, the ASE of both the 2-D ACF 
(ASE1) and the JCF (ASE2) have been evaluated using the 
following definitions: 
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Since the Gaussian random process generated using the USM is 
periodic, only the ASE between [-1/(4∆f), 1/(4∆f)] has to be 
evaluated. We let X=Y=U=V=1/(2∆f) because the 2-D ACF 
and JCF are symmetric with respect to X=Y (U=V).  

For the MCM and the non-symmetric DMCM, the R ŝ (·) 
function can be evaluated using (10). For the symmetric 
DMCM, (10) is no longer valid and R ŝ (·) must be directly 
evaluated from the generated data. Given a suitable expression 
for R ŝ (·), the ASE can be evaluated using (17) and (18) using 
numerical integration.  



III. NUMERICAL RESULTS 
In the following, we present numerical results using the 

DMCM channel simulation model. The performance of the 
proposed model with different parameter settings is studied and 
compared with the pure MCM and USM performance in terms 
of the ASE of the ACF, the CDF of output values and the 
simulation speed. 

Fig. 1shows a realization of the symmetric DMCM, where 
Ncn /2=  to generate a unit power (i.e., ∑cn

2/2=1) Gaussian 
random process. In order to simulate the shadowing, cn can be 
adjusted according to the shadowing standard deviation (in dB). 
The decorrelation distance is set to 20m, the number of the 
discrete 4-D spatial sinusoids N=500, and the lowest frequency 
∆f=1/500m. Hence the period of the output shadowing process 
is 500m. The sinusoid waveform table size is set to 200. As the 
discrete frequencies set { f n} are symmetric with respect to 
fT=fR, only f T,n are plotted in the figure. The output sample is 
generated by defining Tx positions over a 500m x 500m grid 
with 2m spacings (grid mode) and fixing the Rx at a location in 
the centre of the test area. The 2-D ACF is evaluated using the 
data from the grid mode and plotted in Fig. 2, together with the 
theoretical ACF. To evaluate the JCF, the shadowing data is 
generated from a route analysis, where both the Tx and Rx 
move along two straight paths (route mode). The start points 
and direction of motion for the Tx and Rx are random and 
independent. Fig. 3 demonstrates the evaluated JCF, which is 
averaged over the JCFs from 10 route mode studies on one 
arbitrary DMCM realization. 

Fig. 4 and Fig. 5 illustrate the ASE level for the 2-D ACF 
and JCF respectively. Without loss of generality, the spatial 
scale is normalized by the decorrelation distance, i.e. dcor=1. We 
vary the number of spatial sinusoids N in the range 100 to 2000, 
∆f from 1/6 to 1/40, and the table size NTable from 200 to 1000. 
For the symmetric DMCM, R ŝ (·) is evaluated directly from the 
generated data using grid and route mode. The resultant ASEs 
are averaged over 30 realizations for each method. 

It can be seen from Fig. 4 and Fig. 5 that the ASE levels for 
the 2-D ACF and JCF are similar for a specific method with a 
given parameter setting, except for the USM. The USM shows a 
better ASE performance compared to all other methods when ∆f 
is less than 1/20 for the 2-D ACF and 1/15 for the JCF. 
However, this performance is gained at the cost of an increased 
number of sinusoids as ∆f decreases, e.g. for ∆f=1/20 and a 
30dB cut-off frequency fc (at which the amplitude of PSD in (8) 
and (9) is 30dB lower than the amplitude at frequency zero), the 
number of sinusoids is 1472/2 for the 2-D Gaussian random 
process and 464/2 for the 4-D process. The MCM offers the best 
performance compared to the symmetric and non-symmetric 
DMCM with the same number of sinusoids N. The ASE 
improves from 10-2 to 10-3 when increasing the number of 
sinusoids from 100 to 500 for both the 2-D ACF and JCF. 

The ASE performance of the non-symmetric DMCM is 
bounded by both the MCM and the USM performance, which is 
expected since the DMCM is a combination of these schemes. 
When ∆f is greater than 1/10, the ASE level is high and little 
performance gain is achieved by increasing the number of 
sinusoids N. This indicates that the performance degradation is 
mainly due to the large frequency sampling interval. As ∆f 
increases, the ASE level drops and finally hits the ASE level of 

the MCM with the same number of sinusoids. For N less than 
500, ∆f=1/20 is sufficient for a non-symmetric DMCM to 
achieve a similar performance to the MCM, while for N greater 
than 500, a smaller ∆f value is required. The reduction of table 
size NTable from 1000 to 200 is seen to have little effect on the 
ASE level. However, in a real implementation of the shadowing 
fluctuation process model, the table size should not be too small 
since it is inversely proportional  to the spatial sampling  interval 
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Fig. 1. A realization of the DMCM method 

  
Fig. 2. (left) Evaluated and (right) Theoretical 2-D ACF 

  
Fig. 3. (left) Evaluated and (right) Theoretical JCF 

 
Fig. 4. ASE level of 2-D ACF  

 
Fig. 5. ASE level of JCF  
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Fig. 6. (a) CDF of the output value (b) Simulation speed comparison 

∆x, which must be less than the distance up to which the power 
values remain approximately constant. An accepted empirical 
bound is movements over a few tens of a wavelength [17]. 

Compared to the non-symmetric DMCM with the same 
parameter settings, the symmetric DMCM has worse ASE 
performance, which is mainly a result of the additional 
correlation between f n and f n+N/2 caused by introducing 
symmetry in parameter sets { f n} and {θ n}. However, it can be 
seen from Fig. 4 and Fig. 5 that the degradation in performance 
can be reduced by increasing the frequency resolution 1/∆f. E.g. 
with the number of sinusoids N =100, the ASE levels of the 
symmetric DMCM become very close to those of the non-
symmetric DMCM when ∆f decreases to less than 1/30. On the 
other hand, this tendency becomes smaller as N increases.  

Fig. 6(a) presents the CDF of the output value from the 
MCM and DMCM; both evaluated using 104 output samples 
from one arbitrary realization for each method with random Tx 
and Rx positions. The results show that N =200 is adequate to 
approximate Gaussian process. There is no notable degradation 
in the CDF performance by increasing ∆f from 1/50 to 1/10. 

Fig. 6 (b) shows the evaluated iteration time (time per output 
sample) for the pure MCM and DMCM methods, which is an 
average over 105 output samples. The implemented code is 
written and compiled using C and the computing times are 
based on a 1.8GHz Pentium 4 processor running Windows XP. 
As only integer operations are involved in (15), the DMCM is 
seen to have a speed improvement over the pure MCM. The 
improvement factor is around 2.8, which is independent of the 
sinusoid number N, the table size NTable and ∆f. 

In summary, the MCM approach gives the best performance 
in terms of ASE versus the number of sinusoids. The ASE level 
of the proposed DMCM model is bounded by the USM bound 
when the frequency sampling resolution is low (e.g. ∆f is large). 
The DMCM can achieve the same ASE performance as the 
MCM when ∆f decreases to a certain threshold, which is 
dependent on the number of sinusoids N. Introducing symmetry 
degrades the DMCM ASE performance significantly, especially 
when ∆f and N are large. However, a desired ASE level of say 
10-2.6 (corresponding to a mean absolute error of 0.05) can still 
be achieved by reducing ∆f and/or increasing N.  

IV. CONCLUSIONS 
In this paper, a novel simulation model for the joint 

shadowing process in urban P2P radio channels has been 
proposed. The underlying principle is that a Gaussian random 
process with a given PSD function can be modelled as a sum of 
sinusoids. The spatial frequencies of the sinusoidal waveforms 
were determined using a Discrete Monte Carlo Method, which 
had the following key features: 

1) The number of sinusoids is relative small (compared to 
USM). 

2) The resulting Gaussian process is periodic in the spatial 
domain.  

3) Only integer operations are involved in generating the 
Gaussian random value, and the model can be implemented 
using a look-up table (enhancing simulation speed). 

The DMCM approach offered good simulation speed, with 
an improvement factor of around 2.8 compared to the pure 
MCM technique. For most practical parameter settings (with 
respect to the ASE level), the DMCM method was shown to 
approximate a Gaussian random process accurately and with 
significantly reduced simulation time. 
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