13 research outputs found

    Access point selection game based on bandwidth restrictions

    Get PDF
    En este artĂ­culo se presentan los resultados del estudio de la selecciĂłn de un punto de acceso inalĂĄmbrico en redes 802.11 multicelda, las cuales se enfrentan actualmente a la progresiva saturaciĂłn del espectro radioelĂ©ctrico, debido a la masificaciĂłn de usuarios. Este problema es abordado desde la perspectiva de la teorĂ­a de juegos no cooperativos, en la cual los usuarios (dispositivos transmisores) son los jugadores y los posibles valores discretos de ancho de banda definidos en el sistema, las estrategias que estos tienen para jugar, por lo cual, para la canalizaciĂłn definida en 802.11g, y considerando solamente los canales no traslapados, se identifican tres casos dependiendo del nĂșmero de canales o cantidad de ancho de banda que el usuario elija. Para la soluciĂłn del juego se introduce el concepto de Equilibrio de Nash (NE), se comprueba la existencia de este en el modelo planteado y se propone un algoritmo diseñado en la herramienta matemĂĄtica computacional Matlab→ que permite resolver el problema de asociaciĂłn bajo este concepto. Particularmente, en este juego se busca la maximizaciĂłn de la utilidad para cada usuario, con el fin de encontrar desde esta perspectiva la soluciĂłn al problema planteado, en este escenario, se verifica que el punto de acceso seleccionado bajo la perspectiva del equilibrio de Nash serĂĄ aquel que presente las mejores condiciones de ganancia de canal utilizando la estrategia del mĂĄximo ancho de banda disponible.This  article  describes  the  results  of  the  selection  of  a  access  point  in  802.11  wireless networks multicell, which are currently facing the progressive saturation of the radio spectrum due to overcrowding User. This problem is addressed from the perspective of the theory of noncooperative games where users (transmitter devices) are the players and the possible discrete values of bandwidth defined in the system, strategies that they have to  play,  whereby,  for  the channeling  defined in  802.11g,  and  considering  only  the  nonoverlapping channels, three cases  are  identified  depending  on  the number of channels or amount of bandwidth the user to choose. For game solution concept of Nash Equilibrium (NE) is introduced, the existence of the proposed model is verified and the computational algorithm designed in Matlab mathematical tool proposed, that solves the problem  of  association  under  this  concept.  Particularly,  in this game seeks to maximize the utility for each user, in order  to  find  from  this  perspective,  the  solution  to  the problem raised, in this scenario, it is verified that selected  access  point  from  perspective  of  Nash  equilibrium will  be  the  one  to  present  the  best  channel  conditions gain using the strategy of using the maximum available bandwidth

    Network Selection and Resource Allocation Games for Wireless Access Networks

    Get PDF
    Wireless access networks are often characterized by the interaction of different end users, communication technologies, and network operators. This paper analyzes the dynamics among these "actors" by focusing on the processes of wireless network selection, where end users may choose among multiple available access networks to get connectivity, and resource allocation, where network operators may set their radio resources to provide connectivity. The interaction among end users is modeled as a non-cooperative congestion game where players (end users) selfishly select the access network that minimizes their perceived selection cost. A method based on mathematical programming is proposed to find Nash equilibria and characterize their optimality under three cost functions, which are representative of different technological scenarios. System level simulations are then used to evaluate the actual throughput and fairness of the equilibrium points. The interaction among end users and network operators is then assessed through a two-stage multi-leader/multi-follower game, where network operators (leaders) play in the first stage by properly setting the radio resources to maximize their users, and end users (followers) play in the second stage the aforementioned network selection game. The existence of exact and approximated subgame perfect Nash equilibria of the two-stage game is thoroughly assessed and numerical results are provided on the "quality" of such equilibria

    Network Selection in Wireless Heterogeneous Networks: a Survey, Journal of Telecommunications and Information Technology, 2018, nr 4

    Get PDF
    Heterogeneous wireless networks is a term referring to networks combining diïŹ€erent radio access technologies with the aim of establishing the best connection possible. In this case, users with multi-mode terminals can connect via diïŹ€erent wireless technologies, such as 802.16, 802.11, UMTS, HSPA and LTE, all at the same time. The problem consists in the selection of the most suitable from all radio access technologies available. The decision process is called network selection, and depends on several parameters, such as quality of service, mobility, cost, energy, battery life, etc. Several methods and approaches have been proposed in this context, with their objective being to oïŹ€er the best QoS to the users, and/or to maximize re-usability of the networks. This paper represents a survey of the network selection methods used. Multiple attribute-dependent decision-making methods are presented. Furthermore, the game theory concept is illustrated, the use of the fuzzy logic is presented, and the utility functions deïŹning the network selection process are discussed

    Improving Energy Efficiency and Security for Pervasive Computing Systems

    Get PDF
    Pervasive computing systems are comprised of various personal mobile devices connected by the wireless networks. Pervasive computing systems have gained soaring popularity because of the rapid proliferation of the personal mobile devices. The number of personal mobile devices increased steeply over years and will surpass world population by 2016.;However, the fast development of pervasive computing systems is facing two critical issues, energy efficiency and security assurance. Power consumption of personal mobile devices keeps increasing while the battery capacity has been hardly improved over years. at the same time, a lot of private information is stored on and transmitted from personal mobile devices, which are operating in very risky environment. as such, these devices became favorite targets of malicious attacks. Without proper solutions to address these two challenging problems, concerns will keep rising and slow down the advancement of pervasive computing systems.;We select smartphones as the representative devices in our energy study because they are popular in pervasive computing systems and their energy problem concerns users the most in comparison with other devices. We start with the analysis of the power usage pattern of internal system activities, and then identify energy bugs for improving energy efficiency. We also investigate into the external communication methods employed on smartphones, such as cellular networks and wireless LANs, to reduce energy overhead on transmissions.;As to security, we focus on implantable medical devices (IMDs) that are specialized for medical purposes. Malicious attacks on IMDs may lead to serious damages both in the cyber and physical worlds. Unlike smartphones, simply borrowing existing security solutions does not work on IMDs because of their limited resources and high requirement of accessibility. Thus, we introduce an external device to serve as the security proxy for IMDs and ensure that IMDs remain accessible to save patients\u27 lives in certain emergency situations when security credentials are not available

    Scaling Empirical Game-Theoretic Analysis.

    Full text link
    To analyze the incentive structure of strategic multi-agent interactions, such scenarios are often cast as games, where players optimize their payoffs by selecting a strategy in anticipation of the strategic decisions of other players. When our modeling needs are too complex to address analytically, empirical game models, game models in which observations of simulated play are used to estimate payoffs of agents, can be employed to facilitate game-theoretic analysis. This dissertation focuses on extending the capability of the empirical game-theoretic analysis (EGTA) framework for modeling and analyzing large games. My contributions are in three distinct areas: increasing the scale of game simulation through software infrastructure, improving performance of common analytic tasks by bringing them closer to the data, and reducing sampling requirements for statistically confident analysis through sequential sampling algorithms. With the advent of EGTAOnline, an experiment management system for distributed game simulation that I developed, EGTA practitioners no longer limit their studies to what can be conducted on a single computer. Over one billion payoff observations have been added to EGTAOnline's database to date, corresponding to hundreds of distinct experiments. To reduce the cost of analyzing this data, I explored conducting analysis in the database. I found that translating data to an in-memory object representation was a dominant cost for game-theoretic analysis software. By avoiding that cost, conducting analysis in the database improves performance. A further way to improve scalability is to ensure we only gather as much data as is necessary to support analysis. I developed algorithms that interweave sampling and evaluations of statistical confidence, improving on existing ad hoc sampling methods by providing a measure of statistical confidence for analysis and reducing the number of observations taken. In addition to these software and methodological contributions, I present two applications: a strategic analysis of selecting a wireless access point for your traffic, and an investigation of mapping an analytical pricing model to a large simulated stock market.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/110315/1/bcassell_1.pd

    Game theory for dynamic spectrum sharing cognitive radio

    Get PDF
    ‘Game Theory’ is the formal study of conflict and cooperation. The theory is based on a set of tools that have been developed in order to assist with the modelling and analysis of individual, independent decision makers. These actions potentially affect any decisions, which are made by other competitors. Therefore, it is well suited and capable of addressing the various issues linked to wireless communications. This work presents a Green Game-Based Hybrid Vertical Handover Model. The model is used for heterogeneous wireless networks, which combines both dynamic (Received Signal Strength and Node Mobility) and static (Cost, Power Consumption and Bandwidth) factors. These factors control the handover decision process; whereby the mechanism successfully eliminates any unnecessary handovers, reduces delay and overall number of handovers to 50% less and 70% less dropped packets and saves 50% more energy in comparison to other mechanisms. A novel Game-Based Multi-Interface Fast-Handover MIPv6 protocol is introduced in this thesis as an extension to the Multi-Interface Fast-handover MIPv6 protocol. The protocol works when the mobile node has more than one wireless interface. The protocol controls the handover decision process by deciding whether a handover is necessary and helps the node to choose the right access point at the right time. In addition, the protocol switches the mobile nodes interfaces ‘ON’ and ‘OFF’ when needed to control the mobile node’s energy consumption and eliminate power lost of adding another interface. The protocol successfully reduces the number of handovers to 70%, 90% less dropped packets, 40% more received packets and acknowledgments and 85% less end-to-end delay in comparison to other Protocols. Furthermore, the thesis adapts a novel combination of both game and auction theory in dynamic resource allocation and price-power-based routing in wireless Ad-Hoc networks. Under auction schemes, destinations nodes bid the information data to access to the data stored in the server node. The server will allocate the data to the winner who values it most. Once the data has been allocated to the winner, another mechanism for dynamic routing is adopted. The routing mechanism is based on the source-destination cooperation, power consumption and source-compensation to the intermediate nodes. The mechanism dramatically increases the seller’s revenue to 50% more when compared to random allocation scheme and briefly evaluates the reliability of predefined route with respect to data prices, source and destination cooperation for different network settings. Last but not least, this thesis adjusts an adaptive competitive second-price pay-to-bid sealed auction game and a reputation-based game. This solves the fairness problems associated with spectrum sharing amongst one primary user and a large number of secondary users in a cognitive radio environment. The proposed games create a competition between the bidders and offers better revenue to the players in terms of fairness to more than 60% in certain scenarios. The proposed game could reach the maximum total profit for both primary and secondary users with better fairness; this is illustrated through numerical results.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore