142 research outputs found

    Section 10 Forbearance: Asking the Right Questions to Get the Right Answers

    Get PDF
    The Telecommunications Act of 1996 aimed to “provide for a pro-competitive, de-regulatory national policy framework designed to accelerate rapidly private sector deployment of advanced telecommunications and information technologies and services to all Americans….” Key to the Federal Communication Commission’s ability to satisfy this deregulatory mandate is Section 10 of the 1996 Act which provides the agency with express legal authority to forbear from enforcing certain portions of the Communications Act. In this paper, we use the agency’s Phoenix Forbearance Order as a template for outlining how the Commission can improve its forbearance analysis. Our analysis focuses on forbearance from the unbundling provisions in the 1996 Act, but we also show how the Phoenix Forbearance Order is relevant to the net neutrality debate. In particular, the Phoenix Forbearance Order rejects the validity of forbearance in the presence of either monopoly or duopolistic competition. Given the Commission’s finding that Broadband Service Providers are “terminating monopolists,” forbearance cannot be used to create what is colloquially referred to as “Title II Lite.” In fact, if the retail broadband service is classified as a Title II service, then the Commission’s stance on broadband competition and the Phoenix Forbearance Order’s conclusions on duopolistic competition likely requires, for the first time, the price regulation of all retail broadband connections

    Improving Inter-service bandwidth fairness in Wireless Mesh Networks

    Get PDF
    Includes bibliographical references.We are currently experiencing many technological advances and as a result, a lot of applications and services are developed for use in homes, offices and out in the field. In order to attract users and customers, most applications and / or services are loaded with graphics, pictures and movie clips. This unfortunately means most of these next generation services put a lot of strain on networking resources, namely bandwidth. Efficient management of bandwidth in next generation wireless network is therefore important for ensuring fairness in bandwidth allocation amongst multiple services with diverse quality of service needs. A number of algorithms have been proposed for fairness in bandwidth allocation in wireless networks, and some researchers have used game theory to model the different aspects of fairness. However, most of the existing algorithms only ensure fairness for individual requests and disregard fairness among the classes of services while some other algorithms ensure fairness for the classes of services and disregard fairness among individual requests

    Network Selection in Wireless Heterogeneous Networks: a Survey, Journal of Telecommunications and Information Technology, 2018, nr 4

    Get PDF
    Heterogeneous wireless networks is a term referring to networks combining different radio access technologies with the aim of establishing the best connection possible. In this case, users with multi-mode terminals can connect via different wireless technologies, such as 802.16, 802.11, UMTS, HSPA and LTE, all at the same time. The problem consists in the selection of the most suitable from all radio access technologies available. The decision process is called network selection, and depends on several parameters, such as quality of service, mobility, cost, energy, battery life, etc. Several methods and approaches have been proposed in this context, with their objective being to offer the best QoS to the users, and/or to maximize re-usability of the networks. This paper represents a survey of the network selection methods used. Multiple attribute-dependent decision-making methods are presented. Furthermore, the game theory concept is illustrated, the use of the fuzzy logic is presented, and the utility functions defining the network selection process are discussed

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Competition After Unbundling: Entry, Industry Structure, and Convergence

    Get PDF
    In the last few years, U.S. telecoms policy has shifted from encouraging the sharing of existing networks to facilitating the deployment of advanced communications networks. Given the large capital expenditures required for these networks, there can be only a few of such networks. In light of the natural forces that limit the number of facilities-based suppliers, it is vital for policymakers to investigate and implement rules that make markets more conducive to facilities-based entry and eliminate any existing rules that discourage deployment. The purpose of this Article is to provide a simple conceptual framework to evaluate the effect of particular rules and regulation on the construction of advanced communications networks and the expansion of existing networks into new markets. We provide numerical examples and a number of applications to illustrate how the conceptual framework implicates particular rules and regulations as to their effect on facilities-based entry. Applications include an analysis of convergence, regulated limitations on service offerings, the pernicious effects of cable franchising, and the potential for collusion

    Channel-aware and Queue-aware Scheduling for Integrated WiMAX and EPON

    Get PDF
    By envisioning that the future broadband access networks have to support many bandwidth consuming applications, such as VoIP, IPTV, VoD, and HDTV, the integration of WiMAX and EPON networks have been taken as one of the most promising network architecture due to numerous advantages in terms of cost-effectiveness, massive-bandwidth provisioning, Ethernet-based technology, reliable transmissions, and QoS guarantee. Under the EPON-WiMAX integration, the development of a scheduling algorithm that could be channel-aware and queue-aware will be a great plus on top of the numerous merits and flexibility in such an integrated architecture. In this thesis, a novel two-level scheduling algorithm for the uplink transmission are proposed by using the principle of proportional fairness for the transmissions from SSs over the WiMAX channels, while a centralized algorithm at the OLT for the EPON uplink from different WiMAX-ONUs. The scheduler at the OLT receives a Report message from each WiMAX-ONU, which contains the average channel condition per cell, queues length, and head-of-line (HOL) delay for rtPS traffic. The EPON data frame is then scheduled based on these Report messages. Numerical results show that the proposed scheme could satisfy the end-to-end real-time QoS requirements. In addition, the centralized scheduler at the OLT can achieve high throughput in presence of traffic load variation

    User-centric power-friendly quality-based network selection strategy for heterogeneous wireless environments

    Get PDF
    The ‘Always Best Connected’ vision is built around the scenario of a mobile user seamlessly roaming within a multi-operator multi-technology multi-terminal multi-application multi-user environment supported by the next generation of wireless networks. In this heterogeneous environment, users equipped with multi-mode wireless mobile devices will access rich media services via one or more access networks. All these access networks may differ in terms of technology, coverage range, available bandwidth, operator, monetary cost, energy usage etc. In this context, there is a need for a smart network selection decision to be made, to choose the best available network option to cater for the user’s current application and requirements. The decision is a difficult one, especially given the number and dynamics of the possible input parameters. What parameters are used and how those parameters model the application requirements and user needs is important. Also, game theory approaches can be used to model and analyze the cooperative or competitive interaction between the rational decision makers involved, which are users, seeking to get good service quality at good value prices, and/or the network operators, trying to increase their revenue. This thesis presents the roadmap towards an ‘Always Best Connected’ environment. The proposed solution includes an Adapt-or-Handover solution which makes use of a Signal Strength-based Adaptive Multimedia Delivery mechanism (SAMMy) and a Power-Friendly Access Network Selection Strategy (PoFANS) in order to help the user in taking decisions, and to improve the energy efficiency at the end-user mobile device. A Reputation-based System is proposed, which models the user-network interaction as a repeated cooperative game following the repeated Prisoner’s Dilemma game from Game Theory. It combines reputation-based systems, game theory and a network selection mechanism in order to create a reputation-based heterogeneous environment. In this environment, the users keep track of their individual history with the visited networks. Every time, a user connects to a network the user-network interaction game is played. The outcome of the game is a network reputation factor which reflects the network’s previous behavior in assuring service guarantees to the user. The network reputation factor will impact the decision taken by the user next time, when he/she will have to decide whether to connect or not to that specific network. The performance of the proposed solutions was evaluated through in-depth analysis and both simulation-based and experimental-oriented testing. The results clearly show improved performance of the proposed solutions in comparison with other similar state-of-the-art solutions. An energy consumption study for a Google Nexus One streaming adaptive multimedia was performed, and a comprehensive survey on related Game Theory research are provided as part of the work

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research
    corecore