10,454 research outputs found

    A game characterisation of tree-like Q-Resolution size

    Get PDF
    We provide a characterisation for the size of proofs in tree-like Q-Resolution and tree-like QU-Resolution by a Prover–Delayer game, which is inspired by a similar characterisation for the proof size in classical tree-like Resolution. This gives one of the first successful transfers of one of the lower bound techniques for classical proof systems to QBF proof systems. We apply our technique to show the hardness of three classes of formulas for tree-like Q-Resolution. In particular, we give a proof of the hardness of the parity formulas from Beyersdorff et al. (2015) for tree-like Q-Resolution and of the formulas of Kleine Büning et al. (1995) for tree-like QU-Resolution

    A game characterisation of tree-like Q-resolution size

    Get PDF
    We provide a characterisation for the size of proofs in treelike Q-Resolution by a Prover-Delayer game, which is inspired by a similar characterisation for the proof size in classical tree-like Resolution [10]. This gives the first successful transfer of one of the lower bound techniques for classical proof systems to QBF proof systems. We confirm our technique with two previously known hard examples. In particular, we give a proof of the hardness of the formulas of Kleine Büning et al. [20] for tree-like Q-Resolution

    Hardness measures and resolution lower bounds

    Full text link
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this report we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. We also extend these measures to all clause-sets (possibly satisfiable).Comment: 43 pages, preliminary version (yet the application part is only sketched, with proofs missing

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    Curry-style type Isomorphisms and Game Semantics

    Get PDF
    Curry-style system F, ie. system F with no explicit types in terms, can be seen as a core presentation of polymorphism from the point of view of programming languages. This paper gives a characterisation of type isomorphisms for this language, by using a game model whose intuitions come both from the syntax and from the game semantics universe. The model is composed of: an untyped part to interpret terms, a notion of game to interpret types, and a typed part to express the fact that an untyped strategy plays on a game. By analysing isomorphisms in the model, we prove that the equational system corresponding to type isomorphisms for Curry-style system F is the extension of the equational system for Church-style isomorphisms with a new, non-trivial equation: forall X.A = A[forall Y.Y/X] if X appears only positively in A.Comment: Accept\'e \`a Mathematical Structures for Computer Science, Special Issue on Type Isomorphism

    Unified Characterisations of Resolution Hardness Measures

    Get PDF
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau's result on the relation between resolution width and space

    Unified characterisations of resolution hardness measures

    Get PDF
    Various "hardness" measures have been studied for resolution, providing theoretical insight into the proof complexity of resolution and its fragments, as well as explanations for the hardness of instances in SAT solving. In this paper we aim at a unified view of a number of hardness measures, including different measures of width, space and size of resolution proofs. Our main contribution is a unified game-theoretic characterisation of these measures. As consequences we obtain new relations between the different hardness measures. In particular, we prove a generalised version of Atserias and Dalmau's result on the relation between resolution width and space from [5]
    corecore