509 research outputs found

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Market-oriented micro virtual power prosumers operations in distribution system operator framework

    Get PDF
    As the European Union is on track to meet its 2020 energy targets on raising the share of renewable energy and increasing the efficiency in the energy consumption, considerable attention has been given to the integration of distributed energy resources (DERs) into the restructured distribution system. This thesis proposes market-oriented operations of micro virtual power prosumers (J.lVPPs) in the distribution system operator framework, in which the J.lVPPs evolve from home-oriented energy management systems to price-taking prosumers and to price-making prosumers. Considering the diversity of the DERs installed in the residential sector, a configurable J.l VPP is proposed first to deliver multiple energy services using a fuzzy logic-based generic algorithm. By responding to the retail price dynamics and applying load control, the J.lVPP achieves considerable electricity bill savings, active utilisation of energy storage system and fast return on investment. As the J.lVPPs enter the distribution system market, they are modelled as price-takers in a two-settlement market first and a chance-constrained formulation is proposed to derive the bidding strategies. The obtained strategy demonstrates its ability to bring the J.l VPP maximum profit based on different composition of DERs and to maintain adequate supply capacity to meet the demand considering the volatile renewable generation and load forecast. Given the non-cooperative nature of the actual market, the J.l VPPs are transformed into price-makers and their market behaviours are studied in the context of electricity market equilibrium models. The resulted equilibrium problems with equilibrium constraints (EPEC) are presented and solved using a novel application of coevolutionary approach. Compared with the roles of home-oriented energy management systems and price-taking prosumers, the J.lVPPs as price­ making prosumers have an improved utilisation rate of the installed DER capacity and a guaranteed profit from participating in the distribution system market

    Power System Simulation, Control and Optimization

    Get PDF
    This Special Issue “Power System Simulation, Control and Optimization” offers valuable insights into the most recent research developments in these topics. The analysis, operation, and control of power systems are increasingly complex tasks that require advanced simulation models to analyze and control the effects of transformations concerning electricity grids today: Massive integration of renewable energies, progressive implementation of electric vehicles, development of intelligent networks, and progressive evolution of the applications of artificial intelligence

    Building and investigating generators' bidding strategies in an electricity market

    Get PDF
    In a deregulated electricity market environment, Generation Companies (GENCOs) compete with each other in the market through spot energy trading, bilateral contracts and other financial instruments. For a GENCO, risk management is among the most important tasks. At the same time, how to maximise its profit in the electricity market is the primary objective of its operations and strategic planning. Therefore, to achieve the best risk-return trade-off, a GENCO needs to determine how to allocate its assets. This problem is also called portfolio optimization. This dissertation presents advanced techniques for generator strategic bidding, portfolio optimization, risk assessment, and a framework for system adequacy optimisation and control in an electricity market environment. Most of the generator bidding related problems can be regarded as complex optimisation problems. In this dissertation, detailed discussions of optimisation methods are given and a number of approaches are proposed based on heuristic global optimisation algorithms for optimisation purposes. The increased level of uncertainty in an electricity market can result in higher risk for market participants, especially GENCOs, and contribute significantly to the drivers for appropriate bidding and risk management tasks for GENCOs in the market. Accordingly, how to build an optimal bidding strategy considering market uncertainty is a fundamental task for GENCOs. A framework of optimal bidding strategy is developed out of this research. To further enhance the effectiveness of the optimal bidding framework; a Support Vector Machine (SVM) based method is developed to handle the incomplete information of other generators in the market, and therefore form a reliable basis for a particular GENCO to build an optimal bidding strategy. A portfolio optimisation model is proposed to maximise the return and minimise the risk of a GENCO by optimally allocating the GENCO's assets among different markets, namely spot market and financial market. A new market pnce forecasting framework is given In this dissertation as an indispensable part of the overall research topic. It further enhances the bidding and portfolio selection methods by providing more reliable market price information and therefore concludes a rather comprehensive package for GENCO risk management in a market environment. A detailed risk assessment method is presented to further the price modelling work and cover the associated risk management practices in an electricity market. In addition to the issues stemmed from the individual GENCO, issues from an electricity market should also be considered in order to draw a whole picture of a GENCO's risk management. In summary, the contributions of this thesis include: 1) a framework of GENCO strategic bidding considering market uncertainty and incomplete information from rivals; 2) a portfolio optimisation model achieving best risk-return trade-off; 3) a FIA based MCP forecasting method; and 4) a risk assessment method and portfolio evaluation framework quantifying market risk exposure; through out the research, real market data and structure from the Australian NEM are used to validate the methods. This research has led to a number of publications in book chapters, journals and refereed conference proceedings

    Market-oriented micro virtual power prosumers operations in distribution system operator framework

    Get PDF
    As the European Union is on track to meet its 2020 energy targets on raising the share of renewable energy and increasing the efficiency in the energy consumption, considerable attention has been given to the integration of distributed energy resources (DERs) into the restructured distribution system. This thesis proposes market-oriented operations of micro virtual power prosumers (J.lVPPs) in the distribution system operator framework, in which the J.lVPPs evolve from home-oriented energy management systems to price-taking prosumers and to price-making prosumers. Considering the diversity of the DERs installed in the residential sector, a configurable J.l VPP is proposed first to deliver multiple energy services using a fuzzy logic-based generic algorithm. By responding to the retail price dynamics and applying load control, the J.lVPP achieves considerable electricity bill savings, active utilisation of energy storage system and fast return on investment. As the J.lVPPs enter the distribution system market, they are modelled as price-takers in a two-settlement market first and a chance-constrained formulation is proposed to derive the bidding strategies. The obtained strategy demonstrates its ability to bring the J.l VPP maximum profit based on different composition of DERs and to maintain adequate supply capacity to meet the demand considering the volatile renewable generation and load forecast. Given the non-cooperative nature of the actual market, the J.l VPPs are transformed into price-makers and their market behaviours are studied in the context of electricity market equilibrium models. The resulted equilibrium problems with equilibrium constraints (EPEC) are presented and solved using a novel application of coevolutionary approach. Compared with the roles of home-oriented energy management systems and price-taking prosumers, the J.lVPPs as price­ making prosumers have an improved utilisation rate of the installed DER capacity and a guaranteed profit from participating in the distribution system market

    Multi-objective optimal power resources planning of microgrids with high penetration of intermittent nature generation and modern storage systems

    Get PDF
    Microgrids are self-controlled entities at the distribution voltage level that interconnect distributed energy resources (DERs) with loads and can be operated in either grid-connected or islanded mode. This type of active distribution network has evolved as a powerful concept to guarantee a reliable, efficient and sustainable electricity delivery as part of the power systems of the future. However, benefits of microgrids, such as the ancillary services (AS) provision, are not possible to be properly exploited before traditional planning methodologies are updated. Therefore, in this doctoral thesis, a named Probabilistic Multi-objective Microgrid Planning methodology with two versions, POMMP and POMMP2, is proposed for effective decision-making on the optimal allocation of DERs and topology definition under the paradigm of microgrids with capacity for providing AS to the main power grid. The methodologies are defined to consider a mixed generation matrix with dispatchable and non-dispatchable technologies, as well as, distributed energy storage systems and both conventional and power-electronic-based operation configurations. The planning methodologies are formulated based on a so-called true-multi-objective optimization problem with a configurable set of three objective functions. Accordingly, the capacity to supply AS is optimally enhanced with the maximization of the available active residual power in grid-connected operation mode; the capital, maintenance, and operation costs of microgrid are minimized, while the revenues from the services provision and participation on liberalized markets are maximized in a cost function; and the active power losses in microgrid´s operation are minimized. Furthermore, a probabilistic technique based on the simulation of parameters from their probabilistic density function and Monte Carlo Simulation is adopted to model the stochastic behavior of the non-dispatchable renewable generation resources and load demand as the main sources of uncertainties in the planning of microgrids. Additionally, POMMP2 methodology particularly enhances the proposal in POMMP by modifying the methodology and optimization model to consider the optimal planning of microgrid's topology with the allocation of DERs simultaneously. In this case, the concept of networked microgrid is contemplated, and a novel holistic approach is proposed to include a multilevel graph-partitioning technique and subsequent iterative heuristic optimization for the optimal formation of clusters in the topology planning and DERs allocation process. This microgrid planning problem leads to a complex non-convex mixed-integer nonlinear optimization problem with multiple contradictory objective functions, decision variables, and diverse constraint conditions. Accordingly, the optimization problem in the proposed POMMP/POMMP2 methodologies is conceived to be solved using multi-objective population-based metaheuristics, which gives rise to the adaptation and performance assessment of two existing optimization algorithms, the well-known Non-dominated Sorting Genetic Algorithm II (NSGAII) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Furthermore, the analytic hierarchy process (AHP) is tested and proposed for the multi-criteria decision-making in the last step of the planning methodologies. The POMMP and POMMP2 methodologies are tested in a 69-bus and 37-bus medium voltage distribution network, respectively. Results show the benefits of an a posteriori decision making with the true-multi-objective approach as well as a time-dependent planning methodology. Furthermore, the results from a more comprehensive planning strategy in POMMP2 revealed the benefits of a holistic planning methodology, where different planning tasks are optimally and simultaneously addressed to offer better planning results.Las microrredes son entes autocontrolados que operan en media o baja tensión, interconectan REDs con las cargas y pueden ser operadas ya sea en modo conectado a la red o modo isla. Este tipo de red activa de distribución ha evolucionado como un concepto poderoso para garantizar un suministro de electricidad fiable, eficiente y sostenible como parte de los sistemas de energía del futuro. Sin embargo, para explotar los beneficios potenciales de las microrredes, tales como la prestación de servicios auxiliares (AS), primero es necesario formular apropiadas metodologías de planificación. En este sentido, en esta tesis doctoral, una metodología probabilística de planificación de microrredes con dos versiones, POMMP y POMMP2, es propuesta para la toma de decisiones efectiva en la asignación óptima de DERs y la definición de la topología de microrredes bajo el paradigma de una microrred con capacidad para proporcionar AS a la red principal. Las metodologías se definen para considerar una matriz de generación mixta con tecnologías despachables y no despachables, así como sistemas distribuidos para el almacenamiento de energía y la interconnección de recursos con o sin una interfaz basada en dispositivos de electrónica de potencia. Las metodologías de planificación se formulan sobre la base de un problema de optimización multiobjetivo verdadero con un conjunto configurable de tres funciones objetivo. Con estos se pretende optimizar la capacidad de suministro de AS con la maximización de la potencia activa residual disponible en modo conectado a la red; la minimización de los costos de capital, mantenimiento y funcionamiento de la microrred al tiempo que se maximizan los ingresos procedentes de la prestación de servicios y la participación en los mercados liberalizados; y la minimización de las pérdidas de energía activa en el funcionamiento de la microrred. Además, se adopta una técnica probabilística basada en la simulación de parámetros a partir de la función de densidad de probabilidad y el método de Monte Carlo para modelar el comportamiento estocástico de los recursos de generación renovable no despachables. Adicionalmente,la POMMP2 mejora la propuesta de POMMP modificando la metodología y el modelo de optimización para considerar simultáneamente la planificación óptima de la topología de la microrred con la asignación de DERs. Así pues, se considera el concepto de microrredes interconectadas en red y se propone un novedoso enfoque holístico que incluye una técnica de partición de gráficos multinivel y optimización iterativa heurística para la formación óptima de clusters para el planeamiento de la topología y asignación de DERs. Este problema de planificación de microrredes da lugar a un complejo problema de optimización mixto, no lineal, no convexos y con múltiples funciones objetivo contradictorias, variables de decisión y diversas condiciones de restricción. Por consiguiente, el problema de optimización en las metodologías POMMP/POMMP2 se concibe para ser resuelto utilizando técnicas multiobjetivo de optimización metaheurísticas basadas en población, lo cual da lugar a la adaptación y evaluación del rendimiento de dos algoritmos de optimización existentes, el conocido Non-dominated Sorting Genetic Algorithm II (NSGAII) y el Evolutionary Algorithm Based on Decomposition (MOEA/D). Además, se ha probado y propuesto el uso de la técnica de proceso analítico jerárquico (AHP) para la toma de decisiones multicriterio en el último paso de las metodologías de planificación. Las metodologías POMMP/POMMP2 son probadas en una red de distribución de media tensión de 69 y 37 buses, respectivamente. Los resultados muestran los beneficios de la toma de decisiones a posteriori con el enfoque de optimización multiobjetivo verdadero, así como una metodología de planificación dependiente del tiempo. Además, los resultados de la estrategia de planificación con POMMP2 revelan los beneficios de una metodología de planificación holística, en la que las diferentes tareas de planificación se abordan de manera óptima y simultánea para ofrecer mejores resultados de planificación.Línea de investigación: Planificación de redes inteligentes We thank to the Administrative Department of Science, Technology and Innovation - Colciencias, Colombia, for the granted National Doctoral funding program - 647Doctorad

    A review of hierarchical control for building microgrids

    Get PDF
    Building microgrids have emerged as an advantageous alternative for tackling environmental issues while enhancing the electricity distribution system. However, uncertainties in power generation, electricity prices and power consumption, along with stringent requirements concerning power quality restrain the wider development of building microgrids. This is due to the complexity of designing a reliable and robust energy management system. Within this context, hierarchical control has proved suitable for handling different requirements simultaneously so that it can satisfactorily adapt to building environments. In this paper, a comprehensive literature review of the main hierarchical control algorithms for building microgrids is discussed and compared, emphasising their most important strengths and weaknesses. Accordingly, a detailed explanation of the primary, secondary and tertiary levels is presented, highlighting the role of each control layer in adapting building microgrids to current and future electrical grid structures. Finally, some insights for forthcoming building prosumers are outlined, identifying certain barriers when dealing with building microgrid communities

    Demand-side management in industrial sector:A review of heavy industries

    Get PDF

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area
    corecore