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Figure 1-1 Typical GENCO’s Bid Curve in the Australian NEM

Default bids are standing bids that apply where no daily bid has been made. These bids
are of a ‘commercial-in-confidence’ nature and, in general, reflect the base operating

levels for generators.

Then, the bids from generators are aggregated in NEM Dispatch Engine (NEMDE)
systems to determine which generators will be dispatched into the market, at what time
and at what volume. This process that balances the supply and demand in the market is
called scheduling and it also prioritizes dispatch based on cost-efficiency of supply.
Energy offers from generators are stacked in order of rising price until demand is met.
As ecnergy demand increases, more expensive generators are dispatched. The
scheduling of generators, however, may be constrained by the capacity of the
interconnectors between the regions. When this occurs, more expensive generators will
be dispatched to meet the demand within the region and this is also the reason for the
difference in the electricity spot price between regions in the NEM. As shown in
Figure 1-2, a marginal clearing price is set at the intersection point between the
aggregated demand and supply curves for each dispatching period. It should be noted
that in the Australian NEM, the demand curve is basically a vertical line because of the
application of the single-side bidding protocol. The spot price for a half-hour trading

period, which consists of six dispatching periods, would be the average of the prices of
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the six dispatching periods. All generators winning the auction are paid at the uniform

market clearing price.
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Figure 1-2 Marginal Clearing Price in a 2-Way Bidding Market
At times, the thermal limit and stability limit of the transmission network are expressed
as network constraints in National Electricity Market Dispatch Engine (NEMDE),
which determines which generators are scheduled to meet demand. When some
network constraints are activated, generators may be scheduled out of price order so

that demand in a particular arca supplied through the network can be satisfied.

Identifying the potential for the abuse of market power is another main objective in
investigating bidding strategies. There i1s a widespread belief among regulators and
policy analysts that the deregulation of the electricity generating industry will yield
economies in the cost of power supply by introducing competition. However, because
the electricity industry has a relatively small number of firms, the benefits that would
lower electricity prices may be offset. In particular, in the normal operation of markets,
price can be well above the Short Run Marginal Cost (SRMC) of production as a result
of pricing strategies adopted by rational firms. In economics terms, a supplier has
market power when it can raise its price above the level dictated by competition [5].
Thus it is important to have as much information and clarity as possible about these
market power effects, so that they can be mitigated before they manifest themselves to

the detriment of consumers.
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In an electricity market, there is a vast amount of information that must be collected
and passed between market participants. Some examples are bidding, real time
dispatch and metering information. An overview of the market data flows and main

systems are shown in Figure 2-2.
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Figure 2-2 Market Information Flow

2.1.4 Models of Market Participant Behaviours

The three static primary equilibrium models applied in an electricity market are the
Cournot, Bertrand, and Supply Function Equilibrium (SFE) [7, 8]. These models are
essential for analysing the behaviours of market participants and their key features are
summarised as follows, [9-11]

e Supply Function Equilibrium (SFE)
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where r1 # r2 # r3 # i are random integers. They are used to index the current parent
object vector. Clearly, the population size N must be greater than 3. F € (0, 1+) is a

real constant positive scaling factor which controls the scale of the differential

variation (x,1 - x,,“) - see Fig. 3-4.
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Figure 3-4 The child vector creation procedure with DE 1, where the closed lines are the contour
toward the minimal solution point |[76)

The crossover constant CR € [0,1] is used to select the new vector to ensure the search
diversity. Some of the new vectors will be used as child vectors for the following
generation. The process of creating new candidates is described in the following

pseudo-code

Pseudo-code of the creation procedure in DE (mutation and recombination):

Mutation and recombination:
For each individual j in the population

Generate 3 random integers, ry, > and r; €(1.N)

and ry#r#r#]
Generate a random integer i,,,0 € (1,N)
For each parameter i
If rand(0,1) <CR or i = i,y
x‘l.[ =Xir3t F'(‘r.rl - x:.r.’)

Else



X’ij = Xi;
End If
End For ¢

End Forj

To include the impact from the best candidate vector x;..,” of the current generation in
the search process, DE2 scheme can be used. It is formulated as follows,

O
bes

X=Xy +A(X, =X )+ F-(x —x5) (3.11)
In this scheme, the best vector of the current generation provides extra greediness for
the search process through parameter A - see Fig 3-5. This is useful for non-critical

objective functions.
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Figure 3-5 The child vector creation procedure with DE 2 from vectors of current generation,
where the closed lines are the contour toward the minimal solution point |76]

(3) The overall DE search process

Similar to other EAs in selecting new candidate vectors, DE compares each new vector
x’ with the previous vector x;. The original vector x; is replaced by the new vector x°
into the next generation if the new vector results into a better optimization objective.

The overall flow chart of a typical DE is given in Figure 3-6.
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Figure 3-6 Flow Chart of A Typical DE

(4) Main DE Operations

DE relies on a number of operations to guide its search process. The main ones include

encoding, mutation, cross-over, selection and population size selection.

Encoding - Instead of binary encoding method, floating point numbers are used to
encode the parameter variables in DE. It is also used in the DE mutation process as

well. This is a major advantage over other conventional EAs which rely on binary
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with different confidence levels. The optimal production for bidding at the forecasted

MCP is shown in Fig. 4-4.
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Figure 4-4 Optimal production of the generator for bidding at the Forecasted price

In hour 1 (#=1), the MCP is smaller than the variable cost and the generator’s profit is
negative. However, due to the shut-down ramp rate limit, the unit cannot be shut-down.
Because the minimum/maximum down time is neglected in this study, after this
interval, the generator could be off when the MCP is lower than its marginal cost slope.
It should be noted that from hour 11 (# =11), the variable cost is lower than the MCP
(S41.27/WMh versus 54.53/WMh), but the generator cannot increase its production
immediately to 294MW because of the technique constraints (Ramp-up rate limit). It
should also be mentioned that there is a price spike in hour 13 (+=13), the generator

increases its production to the maximum capacity (294MW) to get the maximum profit.
4.4.2 Scenarios analysis

Based on the real price data of the Australia NEM on 13 Jan, 2005, the price scenarios
and optimal production obtained from the self-scheduling are shown in Tables 4-2 and

4-3.
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Figure 5-2 The Real Bidding Production vs Random Bidding Production of Generator 1
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Figure 5-3 The Real Bidding Production vs Random Bidding Production of Generator 2
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Figure 5-4 The Real Bidding Production vs Random Bidding Production of Generator 3

To analyse the profit obtained with the proposed bidding strategy technique, an

empirical case study is conducted to compare the difference between the real profits

and the profits obtained with the proposed method. The results of this study can be
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used to demonstrate how the bidding strategies can optimise the generator’s profit.

The case study consists of 11 rounds. In each round, generator i, | < < 11, is assumed
to design its bidding strategies with the proposed method, while other generators
follow their actual bidding strategies. For each generator using the proposed method,
its profit achieved in the experiment is compared with its real profit calculated from

historical data. The results are shown in Fig. 5-5.
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Figure 5-5 Real Profits vs Simulated Profits of 11 Generators

As clearly illustrated in Fig. 5-5, the profits obtained with our method are similar to the
real profits for generators G1, G2 and G5. However. the proposed method results in
significantly greater profits than the actual profits for all the other 8 generators.
Moreover, the proposed method can increase the profit by at least 10% for these 8
generators, and raise the profit of G6 by 120%. The results prove that the proposed

method is highly effective in most occasions.

To further investigate the performance of the proposed method, the historical
productions of all 11 generators are checked. According to the historical productions,
G1. G2 and GS are basically base-load generators. Their productions are very close to
their maximum capacities at most occasions. The proposed method cannot further
increase their productions and therefore cannot significantly improve the profits. On
the other hand, other 8 generators’ productions are usually far from their maximum

capacities. The proposed method can thus perform well.
As discussed in Section 2, the proposed method is applicable to both risk averse and
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risk taker, by selecting suitable confidence level . To study the influence of « on the
profit, the profits of generator G1 as obtained with the proposed method with respect
to different a arc plotted in Fig. 5-6. Clearly, the profit is increased when « is
decreased from 90% to 70%. A large « indicates that the generator tends to bid at a low
price to make sure it will be dispatched. However, bidding at a low price may decrease
the MCP and thus decrease the generator’s own profit, especially for a generator with
relatively large market share. On the contrary, when a decreases from 70% to 10%, the

profit significantly decreases.

This phenomenon implies that, although a small a can increase the bidding price, the
risk of not being dispatched is also significantly increased. The profit therefore drops
dramatically. In summary, a neutral risk level should be usually set for obtaining the
optimal profit. Choosing an a which is either too large or too small, can degrade the

performance of the proposed method.
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Figure 5-6 Profits of Generator G1 by Setting Different Confidence Level

The bidding prices and productions for generator G1, in four time intervals, are listed
in Table 5-1. Notice that the thermal unit in the case study has technical constraints. In
order to make profits from high price intervals, they will lose some profit in the

intervals before the high price, especially when the price is fluctuating.
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rather comprehensive tool package for a GENCO to achieve risk management purpose

and optimal risk-return trade-off.

98



























optimization process. Therefore, r, is fixed in each optimization iteration. We then

have:

[7/‘g,—C(g,) (6]8)

wr) =
C(g,)

o (r,) =0 (6.19)

For r , since the only random variable in r is p,, the mean and variance of » can be

given as:
g
N g 6.20
u(r,) ) wu(p,) (6.20)
O [ PO (6.21)
C(g,)

Till now, the only remaining problem is to estimate the mean and variance of the spot
price. Forecasting the spot price several months ahead is a long term forecasting
problem. It is difficult to obtain accurate forecasts and not many advanced forecasting
techniques are currently available for this problem. In this chapter, a simple price
model is employed. Denote the planning period as period 7. For the mean spot price

p. (1) at period ¢, we assume that it is a function of the mean spot price at period #-1, as

well as GDP and system demand at period 7. We thus have:

p.()=p-p (t=1)+y-GDP(t)+ @- Demand(t) (6:22)

Estimating p,y ., is equivalent to perform a linear regression on the historical data of

the spot price, GDP and system demand [117].

The variance of p can be obtained by simply calculating the variance of p in the
corresponding period in last year. For example, if a generator is designing the portfolio
for Jul 2007, it can then use the variance of the spot price in Jul 2006 as the estimate.

Substituting the estimates of mean and variance of p_ into Equations (6.20) and (6.21),

the u(r ) and o’ (r,) can be obtained.

The means and variances of the forward contract and spot market derived in this
section can be substituted into the portfolio selection model (6.4) to obtain the optimal

portfolio. The means and variances of other markets and instruments can be derived in
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Integer Programming (MIP) model which can be solved more efficiently by
commercial software such as CPLEX [119]. However, for the problem in this chapter,
a number of assumptions and simplifications have to be made in order to build the MIP
model. It can then be solved by commercial software such as CPLEX. In this chapter,
we would like to explore the optimal portfolio with the original objectives and
constraints in order to make the analysis as comprehensive as possible. DE, like other
EAs has been proven to be able to locate the global optimal solution and more
importantly can handle nonlinear, non-convex and discontinues optimization problems.
Research has proven that compared with other EAs, DE is very efficient for global
optimization problem. Therefore, DE is used in this chapter. Moreover, with the model

presented in the chapter, it can be casily modified into MIP form if needed by a user.
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Figure 6-1 A Typical Differential Evolution (DE) |76]

6.5 Case study

6.5.1 Experiment Setting

In this section. the effectiveness of the proposed approach is demonstrated with data in
a real market. The Australian NEM is selected for case studies in this chapter. The
price model of the spot market is built based on the market data from 2006 to 2007,
which is published in the website of NEM [42].We assume that there is a GENCO who
has two 197-MW fossil generators located in the Queensland market of Australia NEM

[42]. The information of the experiment is given in Table 6-1.
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revenue is calculated with the real market data of Jul 2007, then compare it with the
performances of the other two strategies, which are allocating all of the capacity to the

spot market and allocating all of the capacity to the forward contract.

Table 6-4 Performance Comparison of Different Portfolios (a=5)

Portfolio Expected Revenue  Actual Revenue  Revenue SD
(MS) (MS) ()
Allocating all capacity in spot market 3.4893 3.3887 10651
Allocating all capacity in forward contract 3.1205 3.1205 0
Proposed Portfolio 3.3676 3.3672 41359

In Table 6-4, the actual revenue is calculated by assuming that the corresponding
portfolio is applied, while spot market prices are set as the real market prices in Jul 07.
As shown in Table 6-4, if the proposed portfolio is employed in Jul 07, its revenue will
be close to the actual revenue obtained by allocating all of the capacity to the spot
market. However, the standard deviation of its revenue is much smaller, indicating that
it has much lower risks than selling all of the power into the spot market. Moreover,
the difference between the actual revenue and expected revenue of the proposed
portfolio is insignificant. This implies that the proposed method can appropriately

estimate the return characteristics of different assets.

The risk aversion degree represents the generator’s attitude towards risk, which has
significant impact on the portfolio selection. The relationship between the risk aversion
degree and optimal proportions of assets is plotted in Fig. 6-2. As observed, the
forward contract will have a higher proportion in the proposed portfolio if the risk
aversion degree rises. This phenomenon is reasonable since allocating greater capacity

to the forward contract can decrease risks.
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Figure 6-2 Risk Aversion Degree v.s. Asset Proportions
The risk aversion degree and the corresponding means and standard deviations of the

proposed portfolio are given in Fig. 6-3. Unsurprisingly, the standard deviation of the
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return decreases as risk aversion degree increases, which indicates that the generator

tends to select a less riskier portfolio if it is more risk averse.
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Figure 6-3 Risk Aversion Degree v.s. Return Mean and SD
The costs of the generator are other factors that can significantly influence its portfolio
selection. To study the impact of generator’s costs, the parameters a.b,c are
multiplied by a scale coefficient s . The corresponding optimal portfolio is then
obtained and illustrated in Table 6-5. As shown in Table 6-5, the return mean and SD
both decrease as the scale coefficient s increases. A greater s indicates greater
generation costs. It is more difficult for the generator to gain profits in the spot market
if its costs rise. Therefore, higher costs weaken the generator’s incentive to take risks.

It thus tends to select forward contracts to hedge its risks.

Table 6-5 Cost Scale Coefficient and Corresponding Optimal Portfolio

S Return Mean of the Proposed Return SD (tl' {I\c Proposed Portion of the Forward
: Portfolio(%) Portfolio(%) Contract

0.6 6.37 1.9 0.346

0.8 4.54 1.51 0.354
| 3.44 1.25 0.366

1.2 2.7 1.07 0.383

1.4 2.17 0.93 0410

6.6 Conclusions

In deregulated electricity markets, generators have a difficult task of selecting the
optimal portfolio, which consists of a variety of markets and contracts. Theoretically,
the portfolio selection problem aims at allocating gencration capacities to proper
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In order to test the robustness of the proposed algorithm, the normal distribution noise
was added into the training data. The result shows that if the noised data were used for
network training, the prediction performance will be slightly influenced. The best

results are shown as Fig.7-12 and Fig.7-13. Summary of the studies are given in Table

7-3.
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Table 7-3 Summary of Chaos Time Series Prediction Experiment Data

Mackey-Glass Time Series | A7=5 AT =10 AT - 5 +Noise
Neuron Number 11 24 17

Training MSE 1.633¢-3 | 4.523¢-3 | 6.173¢-3
Testing MSE 1.688¢-3 | 4.222¢-3 | 6.777e-3

7.4.2 Electricity Reference Price Forecasting

In this section, the proposed forecasting method is tested with the Queensland
electricity regional reference price. The Queensland market is part of the Australian
NEM which is composed of the states of New South Wales, Victoria, South Australia.
Queensland and Tasmania. The market price data are taken from the NEMMCO

website [42]. It is widely accepted that the electricity price is highly volatile and
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difficult to predict. In the following analysis, the proposed method will be used on

such data series to illustrate its capability in handling electricity price data series.

There are three types of scasons each year in Australia: winter (May-Aug), middle
(Mar-Apr, Sep, Oct) and summer (Nov-Feb) [137]. The simulation experiment is
performed based on history data of the Australia NEM. The two main factors which
influence the electricity regional reference price are total demand and dispatchable
generation, which are chosen as inputs of the RBF neural network, and the output is
the relevant day-ahead electricity regional reference price (RRP). In the NEM, a time
interval is 5 minutes, and there are 288 time intervals in a trading day. According to
NEM, a trading day for the NEM starts at 4:00 A.M. in one day and ends at 4:00 A.M.
the next day [42].

Normally the price spikes need to be removed as noise before the prediction
algorithms are applied; otherwise the prediction algorithms may result in large errors.
However, the price spikes also have significant influence in the electricity market. In
this test, in order to strike the right balance between these two aspects, we adopt the
wavelet de-noising technique [138] is adopted to process the collected data samples.

The prediction results are presented in Figs. 7-14 and 7-15.
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Figure 7-14 Electricity Reference Price Forecasting Training Result
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Figure 7-15 Electricity Reference Price Forecasting Testing Result

7.4.3 Results Analysis

As clearly shown in the result, it can be concluded that, the proposed hybrid training
method for RBF neural network overcomes the blindness in choosing a suitable
network structure. Obviously the neural network optimized by this self-learning
method ensures the overall generation ability. The promising network predictions

performance on the price data illustrated the efficiency of the proposed method.

It is unpractical to predict a whole year’s data with one artificial neural network model
because it is a nontrivial task and the processing would be very complicated due to a
large amount of data involved, and alternative approaches should be used, although the
result might be useful for GENCOs or ISOs. Moreover, the weeks-ahead and months-
ahead long horizon prediction lacks strict theory basis, because there is not certain
relationship between different weeks and months, only some similarity could be found
from the same week and month in previous different years. Furthermore, the dates of
week days, weekends, and holidays are totally different within two years. In addition,
the factors of weather condition could be taken into consideration and some extreme

contingencies [ 139] are also unpredictable.

The most effective approach for regional reference price prediction is to develop
specially designed tools for holiday and the spike effect, and take into account the
historical information of previous years, as well as other relevant data such as weather

conditions.
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least square [154] method will be employed to estimate the relationship between the

spot price and its relevant factors.
8.4  Case Studies

In this study, the historical contract price data of Australian market are selected to
cvaluate the performance of the proposed approach. The model generated swap and
cap prices will firstly be compared with the historical prices to verify that the proposed

contract pricing approach is effective.

The authors firstly compare the actual forward curves of the first three quarters of 2008
with the forward prices given by the proposed model. The characteristics, including
mean, standard deviation (SD), and maximum (MAX) of the swap price data are given

in Table 8-1:

Table 8-1 The Characteristics of the Swap Price Data

Q12008 Q2 2008 Q3 2008
Mean SD Max Mean SDh Max Mean SD Max
Peak 127.04 18.23 163 74.76 238 125 72.05 15.88 124
Off-Peak 32.28 4.02 40.5 34 86 7.27 48 34.49 6.96 44.75
Flat 73.34 8.74 87.7 51.85 14.07 78.58 51.07 10.3 79.47

The model generated forward curves are given in Figs 8-2 — 8-10.
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Figure 8-3 Model Generated Forward Prices for Quarter 1 2008 — Off-peak Load
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Figure 8-4 Model Generated Forward Prices for Quarter 1 2008 - Flat
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Figure 8-5 Model Generated Forward Prices for Quarter 2 2008 - Peak Load
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Figure 8-6 Model Generated Forward Prices for Quarter 2 2008 — Off-peak Load
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Figure 8-7 Model Generated Forward Prices for Quarter 2 2008 - Flat
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Figure 8-8 Model Generated Forward Prices for Quarter 3 2008 ~ Peak Load
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Figure 8-9 Model Generated Forward Prices for Quarter 3 2008 - Off-peak Load
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Figure 8-10 Model Generated Forward Prices for Quarter 3 2008 - Flat

As is shown in above figures, the forward curves, which are generated by the model,

well approximate the actual forward curves for peak load, off-peak load and flat

contracts. The Root Mean Squared Error (RMSE) and Mean Absolute Percentage

Error (MAPE) of the proposed model are given in Table 8-2. Considering the high

volatility of the electricity market, the results are satisfactory.

Table 8-2 RMSE and MAPE of The Proposed Model

RMSE MAPE
Q12008 | Q22008 [ Q3 2008 Q12008 | Q22008 [ Q3 2008
Peak 13.2886 | 8.0709 | 7.591 Peak 14.78% | 12.33% | 10.88%
Off-peak 32628 | 3.5948 | 3.5798 Off-Peak 7.55% | 6.98% | 7.86%
Flat 73847 | 5.6326 | 5.3036 Flat 9.06% | 9.22% | 9.16%

In order to further test the effectiveness of the proposed model, the model generated

cap prices are compared with the actual cap prices. The historical cap prices of the

Victoria and Queensland markets for quarter 1, 2009 are selected. The characteristics

of the data are given in Table 8-3.
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Table 8-3 The Characteristics of 2009 Q1 Cap Prices

VIC market QLD market
Mean 10.19 18.16
Sb 7.87 11.62
Max 40.25 55.5

The historical and model generated cap premiums are depicted in Figs 8-11 and 8-12.
As clearly illustrated, the model generated cap prices are close to the actual cap prices,
which demonstrates that the proposed pricing model works well. The RMSEs for
Queensland and Victoria markets are 4.29 and 2.71 respectively, while the MAPEs are
19.29% and 22.02%.
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Figure 8-11 Actual Premium v.s. Model Premium for QLD Flat Contract
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Figure 8-12 Actual Premium v.s. Model Premium for VIC Flat Contract
To further investigate the performance of the proposed framework, this model is
employed to estimate the VaR of five different portfolios. The horizons of risk
assessment for the five portfolios are all set as from January 1st 2008 to March 31st
2008. The risk free interest rate is assumed to be a fixed value of 7%. The definitions

of the five portfolios are given in the Table 8-4. The positive symbol (+) denotes a
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Appendix

The Australian National Electricity Market (NEM) consists of 5 interconnected
regional markets including Queensland (QLD), New South Wales (NSW). Victoria
(VIC), South Australia (SA) and Tasmania (TAS). The interconnectors of these
regions and their geographic locations are shown below:

Figure A-1 Hlustration of the Australian National Electricity Market
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