2,189 research outputs found

    A layered control architecture for mobile robot navigation

    Get PDF
    A Thesis submitted to the University Research Degree Committee in fulfillment ofthe requirements for the degree of DOCTOR OF PHILOSOPHY in RoboticsThis thesis addresses the problem of how to control an autonomous mobile robot navigation in indoor environments, in the face of sensor noise, imprecise information, uncertainty and limited response time. The thesis argues that the effective control of autonomous mobile robots can be achieved by organising low level and higher level control activities into a layered architecture. The low level reactive control allows the robot to respond to contingencies quickly. The higher level control allows the robot to make longer term decisions and arranges appropriate sequences for a task execution. The thesis describes the design and implementation of a two layer control architecture, a task template based sequencing layer and a fuzzy behaviour based low level control layer. The sequencing layer works at the pace of the higher level of abstraction, interprets a task plan, mediates and monitors the controlling activities. While the low level performs fast computation in response to dynamic changes in the real world and carries out robust control under uncertainty. The organisation and fusion of fuzzy behaviours are described extensively for the construction of a low level control system. A learning methodology is also developed to systematically learn fuzzy behaviours and the behaviour selection network and therefore solve the difficulties in configuring the low level control layer. A two layer control system has been implemented and used to control a simulated mobile robot performing two tasks in simulated indoor environments. The effectiveness of the layered control and learning methodology is demonstrated through the traces of controlling activities at the two different levels. The results also show a general design methodology that the high level should be used to guide the robot's actions while the low level takes care of detailed control in the face of sensor noise and environment uncertainty in real time

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    A Survey of Brain Inspired Technologies for Engineering

    Full text link
    Cognitive engineering is a multi-disciplinary field and hence it is difficult to find a review article consolidating the leading developments in the field. The in-credible pace at which technology is advancing pushes the boundaries of what is achievable in cognitive engineering. There are also differing approaches to cognitive engineering brought about from the multi-disciplinary nature of the field and the vastness of possible applications. Thus research communities require more frequent reviews to keep up to date with the latest trends. In this paper we shall dis-cuss some of the approaches to cognitive engineering holistically to clarify the reasoning behind the different approaches and to highlight their strengths and weaknesses. We shall then show how developments from seemingly disjointed views could be integrated to achieve the same goal of creating cognitive machines. By reviewing the major contributions in the different fields and showing the potential for a combined approach, this work intends to assist the research community in devising more unified methods and techniques for developing cognitive machines

    How Albot0 finds its way home: a novel approach to cognitive mapping using robots

    Get PDF
    Much of what we know about cognitive mapping comes from observing how biological agents behave in their physical environments, and several of these ideas were implemented on robots, imitating such a process. In this paper a novel approach to cognitive mapping is presented whereby robots are treated as a species of their own and their cognitive mapping is being investigated. Such robots are referred to as Albots. The design of the first Albot, Albot0, is presented. Albot0 computes an imprecise map and employs a novel method to find its way home. Both the map and the returnhome algorithm exhibited characteristics commonly found in biological agents. What we have learned from Albot0’s cognitive mapping are discussed. One major lesson is that the spatiality in a cognitive map affords us rich and useful information and this argues against recent suggestions that the notion of a cognitive map is not a useful one

    A review of sensor technology and sensor fusion methods for map-based localization of service robot

    Get PDF
    Service robot is currently gaining traction, particularly in hospitality, geriatric care and healthcare industries. The navigation of service robots requires high adaptability, flexibility and reliability. Hence, map-based navigation is suitable for service robot because of the ease in updating changes in environment and the flexibility in determining a new optimal path. For map-based navigation to be robust, an accurate and precise localization method is necessary. Localization problem can be defined as recognizing the robot’s own position in a given environment and is a crucial step in any navigational process. Major difficulties of localization include dynamic changes of the real world, uncertainties and limited sensor information. This paper presents a comparative review of sensor technology and sensor fusion methods suitable for map-based localization, focusing on service robot applications

    Decision tree learning for intelligent mobile robot navigation

    Get PDF
    The replication of human intelligence, learning and reasoning by means of computer algorithms is termed Artificial Intelligence (Al) and the interaction of such algorithms with the physical world can be achieved using robotics. The work described in this thesis investigates the applications of concept learning (an approach which takes its inspiration from biological motivations and from survival instincts in particular) to robot control and path planning. The methodology of concept learning has been applied using learning decision trees (DTs) which induce domain knowledge from a finite set of training vectors which in turn describe systematically a physical entity and are used to train a robot to learn new concepts and to adapt its behaviour. To achieve behaviour learning, this work introduces the novel approach of hierarchical learning and knowledge decomposition to the frame of the reactive robot architecture. Following the analogy with survival instincts, the robot is first taught how to survive in very simple and homogeneous environments, namely a world without any disturbances or any kind of "hostility". Once this simple behaviour, named a primitive, has been established, the robot is trained to adapt new knowledge to cope with increasingly complex environments by adding further worlds to its existing knowledge. The repertoire of the robot behaviours in the form of symbolic knowledge is retained in a hierarchy of clustered decision trees (DTs) accommodating a number of primitives. To classify robot perceptions, control rules are synthesised using symbolic knowledge derived from searching the hierarchy of DTs. A second novel concept is introduced, namely that of multi-dimensional fuzzy associative memories (MDFAMs). These are clustered fuzzy decision trees (FDTs) which are trained locally and accommodate specific perceptual knowledge. Fuzzy logic is incorporated to deal with inherent noise in sensory data and to merge conflicting behaviours of the DTs. In this thesis, the feasibility of the developed techniques is illustrated in the robot applications, their benefits and drawbacks are discussed
    • …
    corecore