6 research outputs found

    Fuzzy ARTMAP Ensemble Based Decision Making and Application

    Get PDF
    Because the performance of single FAM is affected by the sequence of sample presentation for the offline mode of training, a fuzzy ARTMAP (FAM) ensemble approach based on the improved Bayesian belief method is supposed to improve the classification accuracy. The training samples are input into a committee of FAMs in different sequence, the output from these FAMs is combined, and the final decision is derived by the improved Bayesian belief method. The experiment results show that the proposed FAMsā€™ ensemble can classify the different category reliably and has a better classification performance compared with single FAM

    Fuzzy ARTMAP Ensemble Based Decision Making and Application

    Get PDF
    Because the performance of single FAM is affected by the sequence of sample presentation for the offline mode of training, a fuzzy ARTMAP (FAM) ensemble approach based on the improved Bayesian belief method is supposed to improve the classification accuracy. The training samples are input into a committee of FAMs in different sequence, the output from these FAMs is combined, and the final decision is derived by the improved Bayesian belief method. The experiment results show that the proposed FAMs' ensemble can classify the different category reliably and has a better classification performance compared with single FAM

    Novel control of a high performance rotary wood planing machine

    Get PDF
    Rotary planing, and moulding, machining operations have been employed within the woodworking industry for a number of years. Due to the rotational nature of the machining process, cuttermarks, in the form of waves, are created on the machined timber surface. It is the nature of these cuttermarks that determine the surface quality of the machined timber. It has been established that cutting tool inaccuracies and vibrations are a prime factor in the form of the cuttermarks on the timber surface. A principal aim of this thesis is to create a control architecture that is suitable for the adaptive operation of a wood planing machine in order to improve the surface quality of the machined timber. In order to improve the surface quality, a thorough understanding of the principals of wood planing is required. These principals are stated within this thesis and the ability to manipulate the rotary wood planing process, in order to achieve a higher surface quality, is shown. An existing test rig facility is utilised within this thesis, however upgrades to facilitate higher cutting and feed speeds, as well as possible future implementations such as extended cutting regimes, the test rig has been modified and enlarged. This test rig allows for the dynamic positioning of the centre of rotation of the cutterhead during a cutting operation through the use of piezo electric actuators, with a displacement range of Ā±15Ī¼m. A new controller for the system has been generated. Within this controller are a number of tuneable parameters. It was found that these parameters were dependant on a high number external factors, such as operating speeds and runā€out of the cutting knives. A novel approach to the generation of these parameters has been developed and implemented within the overall system. Both cutterhead inaccuracies and vibrations can be overcome, to some degree, by the vertical displacement of the cutterhead. However a crucial information element is not known, the particular displacement profile. Therefore a novel approach, consisting of a subtle change to the displacement profile and then a pattern matching approach, has been implemented onto the test rig. Within the pattern matching approach the surface profiles are simplified to a basic form. This basic form allows for a much simplified approach to the pattern matching whilst producing a result suitable for the subtle change approach. In order to compress the data levels a Principal Component Analysis was performed on the measured surface data. Patterns were found to be present in the resultant data matrix and so investigations into defect classification techniques have been carried out using both Kā€Nearest Neighbour techniques and Neural Networks. The application of these novel approaches has yielded a higher system performance, for no additional cost to the mechanical components of the wood planing machine, both in terms of wood throughput and machined timber surface quality

    Applications of simulation in maintenance research

    Get PDF
    The area of asset maintenance is becoming increasingly important as greater asset availability is demanded. This is evident in increasingly automated and more tightly integrated production systems as well as in service contracts where the provider is contracted to provide high levels of availability. Simulation techniques are able to model complex systems such as those involving maintenance and can be used to aid performance improvement. This paper examines engineering maintenance simulation research and applications in order to identify apparent research gaps. A systematic literature review was conducted in order to identify the gaps in maintenance systems simulation literature. Simulation has been applied to model different maintenance sub-systems (asset utilisation, asset failure, scheduling, staffing, inventory, etc.) but these are typically addressed in isolation and overall maintenance system behaviour is poorly addressed, especially outside of the manufacturing systems discipline. Assessing the effect of Condition Based Maintenance (CBM) on complex maintenance operations using Discrete Event Simulation (DES) is absent. This paper categorises the application of simulation in maintenance into eight categories

    A Neural Network Approach to Dependent *Reliability Estimation.

    Get PDF
    This research presents the creation of a new model for automating the generation of component and system reliability estimates from simulated field data for tightly coupled systems. The model utilizes the CMAC neural network architecture, which resembles the human cerebellum and is capable of approximating nonlinear functions. An analysis and testing of the network as a tool for reliability prediction of dependent components within an assembly has been performed. In order to evaluate the performance of the model, the network has been tested on simulated data and provided over 90% performance accuracy in learning non-linear functions that represent the dependency between components. This serves as a valuable tool for maintenance personnel faced with important and costly decisions regarding equipment maintenance policies
    corecore