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Abstract

Rotary planing, and moulding, machining operations have been employed within the
woodworking industry for a number of years. Due to the rotational nature of the machining
process, cuttermarks, in the form of waves, are created on the machined timber surface. It is
the nature of these cuttermarks that determine the surface quality of the machined timber. It
has been established that cutting tool inaccuracies and vibrations are a prime factor in the
form of the cuttermarks on the timber surface. A principal aim of this thesis is to create a
control architecture that is suitable for the adaptive operation of a wood planing machine in
order to improve the surface quality of the machined timber.

In order to improve the surface quality, a thorough understanding of the principals of wood
planing is required. These principals are stated within this thesis and the ability to manipulate
the rotary wood planing process, in order to achieve a higher surface quality, is shown. An
existing test rig facility is utilised within this thesis, however upgrades to facilitate higher
cutting and feed speeds, as well as possible future implementations such as extended cutting
regimes, the test rig has been modified and enlarged. This test rig allows for the dynamic
positioning of the centre of rotation of the cutterhead during a cutting operation through the
use of piezo electric actuators, with a displacement range of £15um.

A new controller for the system has been generated. Within this controller are a number of
tuneable parameters. It was found that these parameters were dependant on a high number
external factors, such as operating speeds and run-out of the cutting knives. A novel approach
to the generation of these parameters has been developed and implemented within the
overall system.

Both cutterhead inaccuracies and vibrations can be overcome, to some degree, by the vertical
displacement of the cutterhead. However a crucial information element is not known, the
particular displacement profile. Therefore a novel approach, consisting of a subtle change to
the displacement profile and then a pattern matching approach, has been implemented onto
the test rig.

Within the pattern matching approach the surface profiles are simplified to a basic form. This
basic form allows for a much simplified approach to the pattern matching whilst producing a
result suitable for the subtle change approach. In order to compress the data levels a Principal
Component Analysis was performed on the measured surface data. Patterns were found to be
present in the resultant data matrix and so investigations into defect classification techniques
have been carried out using both K-Nearest Neighbour techniques and Neural Networks.

The application of these novel approaches has yielded a higher system performance, for no
additional cost to the mechanical components of the wood planing machine, both in terms of
wood throughput and machined timber surface quality.
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Glossary of Terms

Albedo

Chatter

Cuttermarks

Jointing

Kerf

A measure of the reflectivity of a surface. It is defined as the proportion of
incident light that is reflected by the surface.

Vibration of the machining process due to the difference in displacement
between the cutting tool and the workpiece.

Waves cut into the surface caused by the kinematics of the rotary
machining process

A process employed in the wood planing industry to true all the cutting
knives around the cutterhead to a common cutting circle

The width of the groove generated by a cutting tool, such as a saw
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1. Chapter 1 - Introduction

With world competition forcing all manufacturers to become more efficient and reduce cost
whilst increasing both performance and reliability, we are forced to re-evaluate all the
processes involved with the production of goods. This document is concerned principally with
the production machine, more specifically, intelligent production machines. Figure 1-1 shows
a current computer numerically controlled, CNC, lathe, although the same impetus are

relevant upon all machining processes.

Figure 1-1 - CNC Lathe

In recent years there has been a move towards ‘Lights Out Machining’ (Noél, Sodhi et al.
2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi et
al. 2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi et al. 2007)(Noél, Sodhi
et al. 2007) where, to increase machine utilisation, the machines are left running overnight
without operators. This type of process was slow to take hold initially, as there were doubts
over reliability and whether the machines could be ‘trusted’ to carry out all operations
without the guidance of an experienced operator, however the fledgling technology more
than proved itself and has now been adopted by a large proportion of manufacturing centres.

This has obvious advantages, with reduced lead times and increased productivity being



perhaps the most obvious, but it has also allowed companies to make, and obtain, bids for

otherwise non commercially viable contracts, (Rooks 2003).

It has been estimated that an intelligent manufacturing machine system would improve
utilisation by 100% and further increase productivity/quality by a factor of two in certain
industry sectors, if the full capabilities of the machine were harnessed at all times. With such
large possible improvements over current processes this type of system cannot be ignored or
side-lined. The current methodology involves computer numerically controlled, CNC,
machines, running to preloaded programs. This allows a certain amount of flexibility and
indeed a much greater level of utilisation of the machine over a machine with a constant brief

by the operator.

Also hypothesised is that if machine health and the process health were established and
monitored during use operating parameters could be adjusted to exploit the best possible
performance for the actual operating conditions, leading to increased production and
reliability. This type of automatic process adjustment is set to dramatically change existing
process machinery performance, from the current total dependence on mechanical and
material characteristics of the process-workpiece interaction to a scenario where the
advanced sensing, a-priori knowledge base, real-time determined process and machine/tool
condition knowledge and dependant control actions, will result in a high speed adaptive
intelligent machine capable of managing strategy and forming tactical decisions about process

performance and delivery schedules.



1.1 Wood Planing Fundamentals

Surface quality is characterised by two features (Jackson, Parkin et al. 2002), surface
roughness and surface waviness. Surface roughness being defined as the shorter-wavelength
component of the surface form, primarily due to two factors, timber properties such as wood
species and moisture content, and cutting edge geometry. Surface waviness is defined as the
longer-wavelength component of the surface form (Hynek 2004) . These defects are illustrated
in Figure 1-2 below. Surface waviness is caused through the fundamental kinematics on the
rotating knives. As they remove the material they leave circular impressions in the material

surface, often referred to as cuttermarks.

Waviness and Roughness

R L N S W N

Waviness

LT N T Y W

Waviness defect

S e I . T

Figure 1-2 - Surface Features - (Hynek 2004)

Factors such as the type of cutterhead, machining parameters and machine condition can
influence the surface waviness. (Goodchild 1963) studied the influence of vertical cutterhead

harmonic movement with frequency equal to several multiples of spindle speed, and



introduced a parameter which describes sensitivity of the cutting process to vertical vibration.
This factor was defined as a critical amplitude of vertical cutterhead movement that causes
the resultant surface finish to appear as if it were machined with fewer knives. Multiple critical
amplitudes can be defined dependant on the number of actual knives on the cutterhead. As
an example three critical amplitudes can be defined for a four knife cutterhead. The circular
arc theory allows the derivation of the equations for the critical amplitudes. However this
theory does not allow for the study of more general cases of cutterhead movement,

cutterhead inaccuracies or a combination of the two.

Another factor that can have an effect on the surface quality are the cutting forces generated
by the machining process. Large forces occur each time a cutting tooltip engages with the
wood surface. These forces have been measured in the order of 30-1000N. Factors such as
cutting direction, sharpness of knife, angle of knife engagement, chip thickness, cutting depth

and timber properties all effect the cutting forces, (Jackson 1986), (Beer, Sinn et al. 2005).

The current wood planing technique is to feed the timber towards the rotating cutterhead at
speed vy, illustrated in Figure 1-3. The cutting speed typically lies within the range 30 - 80
ms~1, with the feed speed also high, when compared to metals, typically within the range

0.08 — 1.6 ms~! (Elmas 2008).
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Figure 1-3 - Principle of Rotary Machining Process - (ElImas 2008)

Figure 1-3 illustrates the detrimental effect surface waviness can have on machined timber.
The length of these cuttermarks, p, also known as the pitch, is usually taken as a measure of

surface quality. Table 1-1 shows typical cuttermark lengths together with cuttermark heights

for three different quality levels produced by a cutterhead with a 120mm diameter.

Table 1-1 - Surface Quality Classification - (Elmas 2008)

Surface quality Cuttermark length (mm) (cu(i?t:;:;?ia;: d}rll :ggt:ggﬁln)
Average 20-25 83-13
Good 1.5-18 47-68
High 1 0 orless 2 or less

A high quality surface finish should have cuttermarks of <1lmm length in a regular manner.

This profile is almost undetectable by the human eye and the regularity of the wave appears

‘wave free’, (Jackson 1986).



1.2 Demonstrator

Within the Intelligent Automation Centre at Loughborough University exists a vast amount of
experience with wood machining, particularly wood planing, and a rotary wood planing test
rig to use for experimentation. It has been decided that the practical demonstrator for this
project will be this wood planing machine. This will both help reduce costs and lead time as
the machine will not have to be designed, assembled and tested, see Figure 1-8. The

schematic of the test rig is given below.

Smart spindle
unit

Piezo actuator N
mountings —~ J‘i""

Spindle drive

Eddy current
sensor

Spindle unit
support

Base frame

Figure 1-4 - Test Rig Schematic, (Hynek 2004)



This test rig is capable of small scale wood planing, see chapter 4 for further details.

The fundamental principle of the rotary machining process lies in separation of the material by

knives which are clamped in a rotating cutterhead as shown in Figure 1-5.

w f Cutterhead

Cutting Tip

w: Spindle Rotational Speed

vi: Feed Speed

Timber

Figure 1-5 - Wood Machining Process

Figure 1-6 shows a photo of a real production machine cutterhead.



(futterhead

Cutterhead Rotation Direction

Figure 1-6 - Cutterhead Detail - (Hynek 2004)

A timber surface machined by rotary process consists of a number of waves due to the
kinematics of the rotary machining process. In many applications it is desirable to reduce, or
eradicate totally, these waves, such as furniture or window frame manufacture, (Malkogoglu
2007). The machining method and quality may also have an effect on the structural properties
of an assembled wooden product. Typically wooden structures are bonded together and in
these cases the machining method and surface quality are a major factor in the bonding
strength, (Ozcifci, Yapici 2008). Figure 1-7 shows an example of surface quality that would not
be acceptable where a high quality surface finish was required. If the surface quality was
similar to that shown, further processing of the timber is required, such as sanding, (TAYLOR J,
CARRANO A et al. 1999, Sulaiman, Hashim et al. 2009) . In the figure, as orientated below, the
cuttermarks are clearly visible as vertical lines on the timber surface. These cuttermarks

attract the eye, and detract from the overall impression of timber surface quality.



Figure 1-7 - Surface Waviness - (Elmas 2008)

Figure 1-8 - Existing Wood Planing Experimental Machine



Although an existing test rig has been selected as the demonstrator for this research, Figure
1-8, modifications have been carried out to overcome certain limitations with the existing
setup. The existing test rig has been used to design, and test, active vibration control (EImas
2008), with limited actual cutting test being carried out. The control of the motor speeds was
therefore fairly primitive, the system employed a variac to set the no load speed but no
feedback was implemented such that when cutting commences the speed dramatically
reduces. It was decided to modify the test rig in order to allow for a feedback loop for motor
speeds to be employed, whilst at the same time extending the rotational speed range of the
system. In order to measure the surface profile in real time and then take account of the
measured surface, a larger slide length was required. This allows the timber to pass below the
cutterhead and then into the visible range of the camera system, whilst timber is still being
cut. Changes can then be made to the control system and these changes observed on a single

piece of timber.
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1.3 Research Aims and Objectives

The overall aim of this research is to develop a control architecture that is suitable for
adaptive operation of a high performance rotary wood planing machine, in order to improve
the surface quality of the machined timber surface. Within this research the specific research

areas are:

e Test Rig Upgrade
0 To upgrade the small scale planer test rig in order to allow an increased scope
of operation
0 Carry out commissioning tests to validate the updated test rig setup
e Real-Time Controller Parameter Adjustment
0 To investigate the effect of parameter adjustments to the controllers
operation
O To develop a system capable of predicting the required parameter
requirements based on known a-priori conditions
0 To implement a system that can apply the predicted parameter conditions
e Defect Characterisation
0 To develop a software tool to understand the nature of the causes of the
defects on the timber surface
e Real-Time Reference Path Modification
0 To develop a novel system to generate links between specific knives and their
respective cuttermarks
0 To design and implement a system that can modify an existing reference path
to implement the additional data generated by the link between specific
knives and their cuttermarks

e Overall Assessment

11



0 To perform cutting tests on the small scale planer test rig in order to ascertain

the effectiveness of the path modification techniques
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1.4 Proposed Control Architecture

In order to achieve the aims as set out in section 1.3, a new control architecture has been
proposed. This single control system is able to compensate for cutterhead inaccuracies and
process disturbances, such as vibrations. Although these have been studied independently,
(EImas 2008, Hynek 2004), this is the first attempt to design a control architecture combining

this previous research with new approached developed here.
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Figure 1-9 - Proposed Knowledge Based Control Architecture
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The proposed control architecture is shown in Figure 1-9. The architecture consists of an
inner, primary, control loop and an outer, secondary, control loop. The primary control loop
concerns real-time monitoring and minor process adjustments of the plants process
parameters. Within this loop sensors are used to measure the dynamic state of the plant with
the signals passed to a controller driving the plant to the desired state. The desired state is
pre-determined based on a-priori knowledge concerning the plant, as well as process

disturbances.

Feedback is measured using a vision system focussed on the actual surface output. This
measured surface output is then passed to the outer, secondary, control loop. Here the
surface is characterised and the controller parameters are altered in a heuristic manner in
order to achieve the system goal, an improved surface finish. This approach allows the plant
to produce high quality surface finishes through the adjustment of controller parameters in

real-time.

1.5 Project Scope, Work Breakdown and Methodology

The overall project involves a large amount of work, far more than can be reasonably achieved
within the time constraints of the authors placement, and as such forms part of a team
project, involving the author (MRC) and P. S. Ogun (PSO). This thesis considers the adaptive
areas of the overall project, involving decision making and guidance planning. In order to
achieve this, with the underlying emphasis being the usage of a-priori knowledge, an a-priori

knowledge base for certain aspects of the work is also considered.
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Figure 1-10 gives a breakdown of the separate work packages. These work packages are split

as follows:

e Creation of process model for wood planing

e Synthetic data creation for defect characterisation

e Wood surface defect characterisation

e Visual based wood surface measurement

e Creation of heuristic process adjustment technique

e Testrig upgrade

e System identification

e Adaptive gain generation

e Controller design

e Experimental testing

Creation of
Process Model
for Wood
Planing

Synthetic Data
Generation for
Defect
Characterisation

Wood Surface
Defect
Characterisation

Vision Based
Wood Surface
Measurement

Creation of
Heuristic

Test Rig
Upgrade

Process
Adjustment
Technique

(PSO)
(MRC)
(MRC)
(PSO)
(MRC)
(MRC)
(PSO & MRC)
(MRC)
(MRC & PSO)

(MRC & PSO)

Experimental

System

Identification

Testing

A-Priori
Knowledge Base

Adaptive Gain

Generation

Controller

Design

Figure 1-10- Project Breakdown Structure
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The research reported in this thesis utilises multiple modelling and simulation techniques in
order to gain an understanding of the processes involved with rotary wood planing. The model
based approach has been selected as it allows rapid development of multiple solutions to the
areas of specific interest. However, certain aspects of the work reported here have employed
real world data recorded from the small-scale planer test rig. Due to the complexity, and
multiple unknown conditions, which would have made the creation of an accurate model
difficult, this method allowed measurement of the required parameters in a high speed
manner without the need for the creation of a model. However, not having an accurate model

of the plant may lead to difficulties when attempting to test further control approaches.

Using the real-world measured data, a system has been created that alters certain parameters
of the main plant controller in order for accurate implementation of rectifying actions across a
wide range of operating conditions. Utilising a generic rotary wood planing model, a large
synthetic a-priori data base has been created and the data held within this database used to
create models of the controller. This has allowed the development of a tool to classify both
the defect cause and, separately, rectifying actions to overcome those defects. Finally, a new
heuristic subtle change approach has been created in order to generate missing links between
specific cutting knives and their cuttermarks. Once these links have been generated, rectifying

actions can be taken in order to machine an improved surface quality.

1.6 Research Achievements

This novel research has resulted in a new control structure consisting of a heuristic subtle
change technique combined with a simple pattern matching approach. Although the

underlying approach employs iterative techniques with significant trial and error, the newly
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linked approaches of deliberately introducing a known defect causing error, and then the
comparison of a simplified surface form, provide a powerful tool for the introduction of
intelligent control. This new structure allows intelligent control to be applied to processes
where previously the lack of system knowledge prohibited its implementation. This technique

can also be applied continuously in real time, thereby advancing previous work in this area.

A new software tool has been created that both provides additional information suitable for
application within the new control structure and subsequent ‘blocks’” and for an end user. For
the user the software tool will enable a more accurate identification of the cause of the
surface defect, and although within the control structure the end use is the same,
identification of the defect, the novel software tool will suggest a set of rectifying actions to
generate a more ideal surface waveform. It is also the case that once an ideal surface
waveform has been generated, a particular surface defect type, that may be desired for a

particular application, can be more easily introduced.

The original small scale planer test rig, which in itself has a high degree of novelty with piezo
electric actuators mounted around the rotating shaft to effect the centre of rotation of the
cutterhead, has been significantly upgraded. The test rig is now significantly more capable in
terms of both processing speeds and cutting power. Although this facility has been used to
enable the research within this thesis, the capability of the test rig is such that it now opens up
further research into complimentary areas such as surface measurement, using different
camera based system, of moving timber and sinusoidal based displacement based control

strategies in order to achieve a higher quality machined timber surface.
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1.7 Overview of Thesis

This thesis consists of nine chapters.

Chapter one gives an introduction to this research. The main research aims are stated as well
as the structure of this report. The overall theme of the group project is presented and the

work split given.

Chapter two explores the literature regarding wood machining in general, and ‘sets the scene’
of the current technology base. Importance has been given to wood planing and specific focus
on adaptive technologies. The chapter focus remains however on the actual implementation

of techniques rather than the more abstract.

Chapter three focuses on the wood planing technology and physical implications of the rotary
wood planing process on the surface quality of the wood. The wood planing process is

explained in detail with the governing equations given.

Chapter four sets out the drawbacks with the current systems and describes the proposed

solutions. Flow diagrams are also given describing the methodology used within this thesis.

Chapter five describes in detail the small scalar planer test rig capabilities. The upgrades
carried out are described, with further technical drawings given in the appendix.

Commissioning tests are described and results presented.
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Chapter six gives details of some work carried out by other research members linked with this
project, as this is necessary to fit the main body of work for this chapter into context, that
being the work on the LQG controller. It explains some of the limitations with the controller,
and hence the need for a more adaptive and intelligent system. The main focus of this chapter
is the Q to R ratio generation and selection and the differing effects of the different ratios.
This work is mainly simulated due to time restraints and complications with the actual test rig.
Descriptions are given about the database generation, requirements and the final system

implementation.

Chapter seven studies the extraction of meaningful, real world, scenarios from the principal
component analysis data, such as ‘single proud knife’ etc. This is brought about by the use of
K-nearest neighbor algorithms and pattern recognition algorithms. Advantages and
disadvantages of both are discussed and examples given. A final selection is made based upon
initial performance and then further testing carried out. Again the requirements of a database

are shown and again the data provided has been artificially simulated to speed up the process.

Chapter eight develops a new novel type of control system, the heuristic subtle change
approach. This type of control system makes small changes to controlling signals in real time
and attempts to extract more meaningful data about the health of the machining process

whilst also attempting to increase the quality of surface profile produced.
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Chapter nine summarises the work and combines all the aspects carried out by the author and
collegues together into a single combined system. This shows the overall performance of the
new architecture and more easily shows the benefit of the work done with this thesis rather
than the individual parts being shown in isolation. Performance gain is demonstrated with
particular emphasis on the work carried out within this thesis, but other members’ work will
be highlighted in order to gain a full understanding of the complete system. This chapter is
intended to group all the separate areas of work into a single combined system, showing the
data flows throughout the system and the impact one subsystem has on the subsequent

systems.

Chapter ten discusses the effect this work will have on the wood planing industry, and other
associated industries. The benefits of the total body of work are highlighted and future work
efforts are put forward. The results are also put into context with the complete architecture

and the project relevancy put forward and how this can be employed.
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2 Chapter 2 - Literature Review

This chapter is a critical review of previous authors work in the areas of adaptive techniques,
tool wear rates and statistical tools as well as general woodworking and metal working
technologies. There are also sections establishing a research baseline for mechanical items
such as piezo electric actuator as well as a sub-section on data processing. Vibration stabilising
techniques are also discussed as these effects have a negative effect on the resultant surface
form, as shown in Figure 3-6. This chapter concludes by highlighting a research gap and
proposing a new system architecture in an attempt to instigate an intelligent system capable

of running in real time.

Authors such as (Hynek 2004) and (Elmas 2008) have proposed real time adjustment of the
knife tip trajectory to help reduce the surface waviness. (Vahebi Nojedeh, Habibi et al. 2011)
have used similar techniques to enhance the accuracy of a vertical milling machine. These
methods involve moving the cutterhead itself with piezo electric actuators. This project is an
extension of these works and looks to intelligently alter all parameters to gain a superior

surface finish, the ideal being to create a surface free from waves and roughness.

Section 2.7 is an overview of some of the more interesting research being carried out with
adaptive techniques. These techniques involve, but are not limited to, neural networks, fuzzy

logic, iterative learning, anfis, self-organising maps and K-nearest neighbour.
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2.1 Material Removal Techniques

Although the demonstrator for this project is a wood planing machine, it is important to
consider the potential for technology transfer between this specific area of implementation
and other similar areas, such as grinding, turning and milling, all processes with rotating
components and material removal. Most of the research in this area centres on metal working
rather than wood machining principally due to the potential markets and possible investment.
Much of the research focus is on the new software tool design and innovative methods of

control.

2.2 Metal Machining

Metal surface grinding is an efficient machining process for the production of precision
surfaces on a workpiece, where the wheel position relative to the workpiece must be
accurately controlled in order to achieve the desired surface profile and finish and also the
wheel itself have a high quality surface finish (Cao, Lin et al. 2013, Hecker, Liang 2003). A
precision positioning mechanism is proposed by (Tian, Zhang et al. 2011), a flexure-based
mechanism utilising a piezo-electric actuator to improve both static and dynamic

performance, schematically shown in Figure 2-1.
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Figure 2-1 - Piezo-driven flexure-based mechanism, (Tian, Zhang et al. 2011)

The author points out that piezo actuators suffer from hysteresis effects, but that these can be
overcome through the use of a closed-loop control system. It was found that the overshoot of
the system was directly linearly system proportional to the step input size until a critical point
was reached at which point the linearity of the system was lost. At this step input size the
table was separating from the actuator thereby increasing the level of overshoot. However by

increasing the preload of the system this was generally overcome.

Two types of command signal were utilised to drive the piezo actuator, slope and cycloidal,
and the resulting overshoot and settling times observed. As the rise time increased, it was
noted that the overshoot generally decreased. Below a critical rise time value, the slope
command had a lower maximum overshoot than the cycloidal command. As the rise time was
increased the maximum overshoot of the slope command became larger than the cycloidal

shape. As rise time increased the settling time of the flexure based system reduced, but
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beyond a critical point, an increase in rise time did not bring about a further reduction in
settling time. In a similar result to the overshoot, and very low rise times of the command
signal the settling time of the slope command was less than that for the cycloidal command,
but at a critical value, dependant on the system characteristic, the cycloidal command

generated a reduced settling time.

A similar system was proposed by (Gao, Zhang et al. 2001), however rather than a flexural
system to generate the restoring force to the piezo actuator, preloaded springs were used, as
shown in Figure 2-2. Both these systems operate by moving the workpiece which has a much

reduced mass to the rotating wheel.

Top piece Moving part

Rubber seal

Ball bearing guide

Preload spring
PZT

Capacitive sensor

[ [/

Figure 2-2 - Schematic diagram of workpiece micro-positioning table, (Gao, Zhang et al. 2001)

Traditionally metal turning involves rotating the workpiece and forcing a static tool into the

surface to drive off chips of material (Kilic, Raman 2007). Certain materials have developed
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empirical rules, such as using low cutting speeds, high feed rates and copious amounts of
cutting fluid, such as titanium, (An, Fu et al. 2011). In order to increase productivity, and
therefore competitiveness in the marketplace, an increase in material removal is sought. One
potential solution to this is presented by (Lei, Liu 2002) where a rotating tool is used rather
than a stationary one, shown in Figure 2-3. This solution allows much improved cooling to the
cutting tool. However the major advantage with this type of system is the independent control
of the rotational speed. This results in a tool life that is less sensitive to cutting speed than for
the traditional stationary tool. The authors report that the tool life of the rotary driven tool is
approximately thirty seven times that of the stationary tool on average. This allows for fewer

indexing operations of the tool further increasing productivity over the stationary tool.
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Charge
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Figure 2-3 - Set-up of the rotary driven tool on a lathe, (Lei, Liu 2002)

It is often agreed that the need to improve quality and productivity in precision manufacturing
constantly drives the need for machine spindles with higher performance, (Brecher,

Spachtholz et al. 2007). In processes such as milling, turning and grinding, there is typically a
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rotary spindle for cutting and a Z axis stage to support the spindle for feeding. This often
requires the spindle to be supported with its own journal and thrust bearings and the Z axis to
be supported by a secondary set of lateral and axial bearings. The serial duplication of radial
and axial bearings increases machine cost, reduced overall stiffness and decreases achievable
precision, (Lu, Paone et al. 2009). In this work a prototype spindle unit was developed,
composed of three separate elements, an aerostatic journal bearing assembly, a permanent
magnet brushless motor and an armature plate for a magnetic actuator. Three key control
issues are highlighted, the large dynamic range between the mm stroke and nanometre scale
resolution, highest possible axial control bandwidth for dynamic stiffness, and rotary speed
feedback while allowing axial motion. Mechanical properties were compared with a
commercially available aerostatic spindle with standard aerostatic thrust bearings and
replacing it with a magnetic thrust bearing. It was found that this prototype advanced spindle
achieved a higher load capacity, higher stiffness and less error motion than the standard
aerostatic spindle. This potentially allows the use of aerostatic bearings within machine tools
to achieve both high accuracy and high stiffness, especially in the axial direction, which is
often lacking. The magnetic thrust bearing also benefits from the lack of friction so there is no

deficit in performance. The prototype is shown in Figure 2-4.
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Figure 2-4 - Assembled prototype rotary-axial spindle, (Lu, Paone et al. 2009)

However, (Zuperl, Kiker et al. 2006) discuss the application of an adaptive, neural network
based, solution deployed on a standard Heller CNC milling machine. The author reports that
using the adaptive system improved both surface finish and tool wear rates. (Cus, Zuperl
2008) further develop these concepts and report that through dynamic adaption of feedrate
and spindle speed the system is able to control surface roughness and cutting forces, and that

by maintaining constant cutting forces, constant quality of surface is assured.

(Gao, Yao et al. 2002) have successfully employed a piezo electric actuator onto a boring bar.
Deflection feedback for the controller was generated through a strain gauge and the piezo
actuator was actuated in real time to compensate for any deflections of the boring bar. On
line error prediction was generated through the use of forecasting compensatory control, FCC,
based on an autoregressive, AR, model of the system. It was found that the errors in the
system using this AR model were acceptable, with the forecast errors normally distributed

about a zero mean and a maximum value of approximately 3.5um.
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2.3 Wood Machining

Circular saws are widely used in the wood processing industry for applications ranging from
primary lumber manufacture to furniture production. Vibrations in the saw blade contribute
directly to poor cutting accuracy and poor surface finish, (Nishio, Marui 1996). Vibrations also
contribute to material wastage, with approximately 12% of the raw material in woodcutting
ending up as waste due to excessive sawing gap caused by vibration. (Chen, Wang et al. 2003,
Nishio, Marui 1996). In the above paper the authors describe an LQG controller and a novel
test rig utilising two sets of magnetic actuators acting on the outer annuli of the cutting blade.
Eddy current probes measure the displacement of the blade at four positions around the
blade, with these signals being fed into the LQG controller. This is shown diagrammatically in

Figure 2-5.
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Figure 2-5 - Structure of circular saw test rig for vibration control, (Chen, Wang et al. 2003))

The authors reported that the system reduced vibration by 66%, and that the saw gap, kerf,
was reduced by 25%. This resulted in a dramatic reduction in waste and based on 1995 lumber
prices would have resulted in an increase of revenue of approximately $645,000 for a mill
producing 100 million foot board measure, MMFBM, of lumber annually. (Denaud, Bleron et
al. 2007) describe a technique of acoustic analysis to detect errors in the machining process of
timber, which is a similar technique as to that employed by (Diniz, Liu et al. 1992) although
within this particular research the material under investigation was steel rather than timber. It
was reported that acoustic emission were indeed a satisfactory method of establishing tool

wear and the online growth of surface roughness.
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(Iskra, Hernandez 2012) present a system capable of estimating the surface roughness of
paper birch wood while routing. Transducers were mounted on the router spindle and also
around the workpiece. Statistical regression was used in conjunction with neural networks to
establish links between the measured signals and the actual cutting depth and surface
roughness. It was found that a microphone at a constant distance from the workpiece to be
the most useful sensor and a model was then generated to predict the surface roughness
regardless of the depth of cut. Similar techniques for predicting wood surface finish are also
reported in (Iskra, Hernandez 2009, Iskra, Tanaka 2006). Further research correlating tool
wear to surface quality, thereby allowing for easier in-direct measurements, has been

proposed by (Lemaster, Lu et al. 2000).

2.3.1 Rotary Wood Planing
A number of novel solutions to improving the surface quality of rotary planed timber have

been proposed within the research community. These have focused on reducing the
cuttermark heights of the machined timber surface caused by three main effects, knife run-
out, vibrations, and the geometric effects of the rotary process. As given in equation ( 3-2 ) for
a given cutterhead, reducing the pitch of the wave reduced the cuttermark height, ignoring
vibration effects, and improving the surface quality. A major cause of vibration in any rotating
machinery is out of balance masses. These out of balance masses, when rotating at high
speed, cause sinusoidal vibrations. In the small planer rig demonstrator at Loughborough
Intelligent Automation Centre, these are normal to the cutting plane. One novel technique put
forward is dynamic movement of the cutterhead itself. Within this general principal two forms
of movement have been proposed, horizontal movement and vertical movement of the

cutterhead.
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2.3.1.1 Horizontal Cutterhead Movement

(Brown 1999, Brown, Parkin 1999) extensively studied the horizontal cutterhead movement
approach. In principal when each knife comes into contact with the wood surface, the
cutterhead is advanced in the horizontal direction whilst the cutterhead continues to rotate.
As the knife leaves the surface the cutterhead is retracted back and the process repeats for

the following knife.

The waviness reduction can be visualised using Figure 3-2, where d, is the distance travelled by
the cutterhead while the knife is in contact with the timber. This distance is usually quite small
in comparison with the cuttermark pitch. However introducing the horizontal movement
increases the value of d;, and through the mathematical relations, reduces the waviness
height. As can be seen in Figure 2-6, significant reductions can be achieved with horizontal

movements of 40% of the wave pitch.
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Figure 2-6 - Cuttermark shape influenced by horizontal cutterhead movement ((Hynek 2004))

Significant waviness reduction can be achieved with a horizontal movement of the cutterhead,

approaching a 100% reduction when the movement of the cutterhead approaches the same

level as the pitch of the wave. However, for practicality reasons this becomes incredibly hard

to achieve given the very small time windows available to move the cutterhead, and therefore

the large speed required to move the cutterhead within these small time windows, and the

relatively large distances required to move the cutterhead.

32



2.3.1.2 Vertical Cutterhead Movement

Vertical cutterhead movement was proposed by (Hynek 2004). It is similar in general principal
to the horizontal cutterhead movement but transposed 90 degrees. As the tooltip contacts
the material surface the cutterhead moves vertically upwards reaching a maximum point as
the knife reaches its lowest point in the cutterhead revolution. As the cutterhead continues to

rotate, it is moved vertically downwards. This is shown in Figure 2-7.

Figure 2-7 - Vertical Cutterhead Movement ((Hynek 2004))

The author points out that this type of cutterhead movement is only applicable for straight
knives. Helical knives, as commonly used in metal milling, would not suit this type of
movement as at least one cutting edge, or part of one cutting edge, is always in contact with
the part. This renders it impossible to synchronise the vertical cutterhead movement with the

angular position of the cutterhead.
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This analogue type of vertical movement will reduce the waviness by approximately the
magnitude of cutterhead movement, y,. Therefore to reduce the surface waviness by a given
factor, vertical movement requires a much reduced cutterhead movement when compared to
horizontal movement. The author comments that again, as with horizontal cutterhead
movement, it is theoretically possible to totally remove all surface waviness by forcing the
knife tip to follow a horizontal line matching the vertical cutterhead movement to the arc path
followed by the knife tip when no vertical displacement is applied. However it is noted that to
achieve this type of cutterhead movement, actuators with very low response times need to be

sought which may not be commercially available.

A development of the vertical cutterhead movement technique is in vibration control. (Elmas
2008). The author continued to use the smart spindle unit, Figure 5-6, with piezo actuators to
overcome system vibration. The system operation principal is described here. The vertical
displacement of the cutterhead is measured using eddy current probes located within the
smart spindle unit. These are located at 45 degrees to the vertical, due to the vertical position
of the piezo actuator, so these signals need to be resolved to give a vertical displacement. The
level of displacement is then input to an LGQ controller. This controller generates an output
signal, fed through amplifiers, to the piezo actuators to apply a corrective force to the spindle
to reduce the level of vibration. It was reported that with a closed loop system 68% of the

vibration amplitude could be reduced.

However these two proposals each only counter the effects of a single aspect of the
machining process, the geometric effects or the undesirable vibration induced through out of

balance masses. Neither proposal is able to compensate for knife run-out, or indeed a mixture
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of all of these effects. The work described by (Ogun 2012) is able to partially overcome all of
these negative components on the wood surface profile. This work is an extension of both the
work carried out by (Hynek 2004, Elmas 2008) , insofar as it uses vertical displacement of the

cutterhead coupled with an LQG controller.

In order to reduce the effect of the TIR, rather than a sinusoidal pulse to the piezo actuator, a
digital pulse is deployed. This shifts the cutterhead vertically, changing the effective radius of

the knife. This can see seen in Figure 2-8.

Vertical pulse

Figure 2-8 - Principals of the cutterhead inaccuracies compensation ((Ogun 2012))

This process eliminates the need for the knives to be jointed saving both time and money for

the production process. Again there are limitations to the available cutting speed due to the
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step response of the actuator, but it is possible to move the cutterhead immediately after the
previous knife has left the surface of the timber, to the position required to overcome the TIR

of the subsequent knife, thereby extending the time available to move the cutterhead.

The system uses an LQG controller, but rather than attempting to maintain a rotational axis
about the zero position, the controller tracks a desired reference path. As the controller is
attempting to minimise the error between the reference signal and the actual spindle position
it is therefore not only overcoming the effect of TIR, it is also functioning as an active vibration

controller simultaneously.

Another key aspect to this work is that it combines a disturbance feed-forward control loop
with a feedback LQG control scheme. (Ogun 2012) reports that in the presence of significant
disturbances, especially, where there is a long delay between plant output measurements and
input pulses, a simple feedback control system alone may not meet the required tracking
performance. Significant improvements were made to tracking performance as disturbances
can be measured and fed forward into the control loop, giving the controller time to apply
corrective action. This is only possible when disturbances can be measured and compensated
for before they affect the process performance however. This is shown schematically in Figure

2-9.
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Figure 2-9 - Control system with both feed-forward and feedback control, (Ogun 2012)

2.4 Semi Active Vibration Reduction

Semi active vibration control is an approach that offers the reliability of passive systems, yet
maintaining the adaptability and versatility of active system, (Jalili 2002). In addition, semi-
active systems do not destabilize the structure, (Kori, Jangid 2009). Active damping has been
employed successfully deployed, (Ganguli, Deraemaeker et al. 2007, Zhang, Sims 2005), and
others including (Soliman, Ismail 1998) where a simple system was designed such that when
chatter was detected the control system ramped up the spindle speed in search of an

operating condition where chatter ceased.

(Lim, Park et al. 2005) propose a semi active system using an electrorheological (ER) fluid
damper coupled with an Al system to damp rotational motion. The damper, as shown in

Figure 2-10 - ER Damper, was designed and manufactured. The properties of the ER fluid can
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be altered by subjecting the fluid to an electric field. The damper is a thin circular cylinder.
Once it is fixed in place the disk inside the damper does not rotate, rather it moves in a

vertical direction within the electric field developed between the housing and the disk.
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Figure 2-10 - ER Damper, (Lim, Park et al. 2005)
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The author reports that as the electrical field was increased, the damping effect increased and
the time constant of oscillation reduced, thereby offering some level of vibration control of

the system.

(Lara-Prieto, Parkin et al. 2010) discuss the use of magnetorheological (MR) fluid within beams
to adaptively alter the stiffness, thereby modifying the vibration characteristics of the beam. It
was found that under the influence of a magnetic field, of 0.11T for this specific example, the
beams damping ratio increased considerably from 0.46% in the absence of the magnetic field,
to 0.65% with the magnetic field. The effect of activating the MR fluid in a specific region was
also reported and the natural frequency of specific area could be increased with the addition
of a localised magnetic field. These tuneable MR fluid filled beams could be incorporated into
spindles to alter the natural frequencies away from operating conditions if required, thereby

altering the chatter characteristics of the spindle.

Boring tool chatter characteristics can also benefit from MR fluids. (Sathianarayanan,
Karunamoorthy et al. 2008) present a study utilising an MR fluid filled damper. Magnetic coils
within the piston provide the magnetic field. As the piston reciprocates the MR fluid flows
through an annular gap offering a damping effect. As the current to the magnetic coils is
altered the resulting stiffness of the MR fluid changes and so does the damping effect. This
MR fluid damper was applied to a boring bar on a lathe during a boring operation. It was
concluded that chatter suppression could be achieved using this technique. (Adkins, Zhiming
Huang et al. 1996) have used an electromagnetic absorber successfully to achieve a high level
of damping in boring bars. A reduced feedback controller was deployed within the simulation

using model control theory with a quadratic performance index.
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The disadvantages of the ER fluids is a relatively narrow operating range in terms of
temperature, (10-70°C) compared to (-40-150°C), and high operating voltages (2-5KV) whereas
MR fluids operate in the region of (12-24V). However the response times of the ER fluids are in
the range of a few milliseconds whereas MR fluids systems tend to have larger response

times, 25-65ms, (Abele, Altintas et al. 2010, Kavlicoglu, Kavlicoglu et al. 2007).

An interesting application of piezo-electric actuators is described by (Clark 2000) whilst the
system is in motion the actuator is held in a high stiffness state, such that energy is stored in
the actuator. When the systems motion would cause it to receive energy back from the
actuator, the actuator is switched to its low stiffness state, dissipating the energy, thereby
inducing a vibration damping motion. A similar technique was deployed to alter the
vibrational characteristics of excited mass spring setup, (Ramaratnam, Jalili 2006). The authors
again report that this technique of switching the stiffness as the system is moving away from
its equilibrium state, to a higher stiffness, and then returning the system to a lower stiffness as

it returns to the equilibrium state, was highly successful.

2.5 Surface Inspection

Once a surface has been machined, a crucial element will be some form of surface inspection
to ascertain the actual surface profile produced. A requirement of a measurement system is to
measure to a suitable accuracy and high reliability, to levels suitable for the application.
Within rotary wood planing the pitch of the wave may be between 1-2.5mm with the height
of the wave between 2-13um, Table 1-1, so any measurement system for this machining

process would need to be able to capture detail to these levels. Various measurement systems

40



have been proposed, (Sandak, Tanaka 2003), (Leach, Giusca et al. ), where broadly two types

of measurement system exist, contact and non-contact measurement.

2.5.1 Contact Measurement
Contact measurement is normally carried out using a mechanical stylus, (Kiran, Ramamoorthy

et al. 1998, Garratt, Nettleton 1992). The device measures the surface usually by contacting
the stylus tip across the surface. The surface profile is then recorded by the vertical
displacement of the stylus tip. These devices often have a vertical resolution in the
micrometre range and in specific applications, the vertical resolution can be to the nanometre
level, (Dietzsch, Groger et al. 2007). However these mechanical systems do not lend
themselves to high levels of automation due to the relatively slow measurement speeds often
being a post process approach as the stylus tip can jump at high measuring speeds, often
known as ‘bouncing’. (Elmas, Islam et al. 2011). A further disadvantage of this type of system
is that is can be destructive to soft surfaces like wood, due to the loading of the stylus and the
very small radius tips, generating high tip pressures and ‘ploughing’ into the material surface.
(Groger, Dietzsch et al. 2005) describe in detail a number of issues resulting from stylus
measurements including concerns about the reproduction of the real surface due to the
mechanical limitations of the stylus tip radii, 2um. These disadvantages have led to the
development of non-contact measurement systems. However, these types of system cannot
be used in ‘dirty’ environments, can require high set up times and are not affected by colour

of reflectivity of the material under measurement, (Lee, Kim et al. 1987).

2.5.2 Non-Contact Measurement
Various non-contact methods of surface measurement have been proposed, with most being

optical including optical profilometers, microscopes, image analysers and optical light
sectioning. (Islam, Parkin et al. 2011). It has been proved that many techniques developed for

metals are not suitable for timber surface measurement, (Parkin, Jackson 1996) , (Yang,
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Jackson et al. 2006, Parkin, Jackson 1996) propose a light sectioning method where an oblique
light stripe is projected from the side of a sample onto the surface to produce a light section,

as shown in Figure 2-11.

Figure 2-11 - Principal of light sectioning, (Yang, Jackson et al. 2006)

This light section produces a wavy line caused by the wavy nature of the surface. A
relationship between the height of the wave and the height of the Cuttermark is described,
and with this relationship the heights and widths of the cuttermarks can be calculated. The
author reports good correlation between the light sectioning method and laser profilometers.
However the setup used within this experimentation projected the laser stripe parallel to the
feed direction, which is not always feasible to implement. This misalignment of the laser stripe
causes an inclination of the of the wavy line of the material surface, which the author reports
can be removed successfully through the use of least squares mean line of the light section. It

is possible that this type of measurement system could be implemented on a production
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machine, but possible errors and distortions may occur due to blurring of the image due to the

movement of the surface across the image window, would need to be filtered out.

A further novel non-contact surface inspection method is the photometric stereo technique,
(Yang 2006). This setup uses a single camera and two light sources which are illuminated

independently of each other, as shown in Figure 2-12.

Camera

Figure 2-12 - Schematic of the two-image photometric stereo setup, (Ogun, Jackson et al. 2012)

The photometric stereo technique is used to estimate the local gradient of a surface from
multiple images captured in a fixed spatial location but under different illumination directions.
In this work the illumination sources are set 180° apart and as low as possible to the surface as
is realistically achievable. This technique does assume that the wood exhibits a diffuse

reflectance, this is nearly the case for unpolished wood, (Maristany, Lebow et al. 1993), which
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allows the use of this technique. It should be noted that this technique assumes that there is
no height variation along the Y axis, and will only produce a two dimensional plot of the
surface form. For a rotary wood planing machine this is a fair assumption assuming correct

machine setup, (Elmas, Islam et al. 2011).

The two images gathered by the camera will have different reflectance maps, and the
assumption that the two illumination sources have similar intensity values allows these two
images to be sufficient to compute the gradient of the surface. The images are converted to
intensity profiles using column-wise averaging techniques. A frequency domain integration
method is then used to extract the surface profile from the gradient data. However, constants
of integration may not be solved so offsets in the surface profile may cause a skew in the

calculated profile.

This method requires the surface under investigation to remain stationary as to allow the
multiple images to be correlated. A temporal multiplexing method was applied to the moving
photometric stereo problem. Here the images are taken in quick succession and a method to
determine pixel correspondence between successive image to allow the surface to be passing
under the camera has been proposed, (Ogun, Jackson et al. 2012). However using this
technique the correlation between a 15 pixel offset set of images was only found to be 56%.
With a lower 8 pixel offset in the images the correlation between static and dynamic profiles
was measured to be 87%. This allows some dynamic movement to be implemented at limited
offsets. This limits the passing speed of the surface by the response time of the camera and

illumination systems. The results for temporal multiplexing for the higher speed, larger offset
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images, may be due to limitations due to the need for the high intensity of lighting needed to

realise very short image acquisition periods, (Smith, Smith 2005).

2.6 Data Processing

The surface profile measurement systems described in section 2.6 will produce a surface plot.
This data however needs to be translated into a form that can be analysed to identify and
characterise surface defects. (Gorecki 1990) proposes the uses of an optical transform system
using Fourier spectra sampling. This Fourier sampling reduces the dimensionality of the
sampled data set, down to a data set of 64 values per sample, which then allows classification
techniques to be undertaken. The author reports that the system is capable of surface analysis
of machined metal in the wave height range of 0.05 to 2um. The Fourier spectrum analysis of
machined surfaces is able to identify modes and dominant harmonic components of the
surface profile. This can extract the fundamental waviness pitch from the surface of a rotary
planed timber, (ElImas 2008). This data can then be used to characterise surface profiles.
However, the Fourier spectral analysis requires that the input, in this specific case a surface
profile, be strictly periodic or stationary. In real machining processes artefacts within the
timber, or the natural timber properties, may not be uniform along its length, (lkonen,
Kelloméki et al. 2003). This can lead to a non-periodic surface profile causing the Fourier

spectral analysis to fail.

(Lebow, Brunner et al. 1996) present a system using principal component analysis, PCA, to
reduce the dimensionality of the data set. The PCA is able to decompose a complex signal into

its fundamental patterns in the form of empirical basis functions. PCA can be applied to any
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type of input signal, which has benefits when considering surfaces with random defects which

cannot be foreseen.

2.7 Adaptive Techniques

Recently much research has been carried out in the field of adaptive techniques with
researchers approaching this from many different backgrounds, (Park, Kim 1998). However,
adaptive control is not without its own problems and complexities. (Anderson, Lee et al. 2005,
Anderson, Dehghani 2008) report on a number of potential problems of adaptive control split
into two main groups. Firstly a collection of problems where specific difficulties only became
apparent sometime after the generation of initial ideas, included in this group are the MIT
rule, bursting, the Rohr’s counterexample, and iterative control and identification. The second
group of problems describe generic problems, such as impractical control objectives, transient

instability, and suddenly unstable closed loop, and finally changing experimental conditions.

(Park 2001) has developed a system for continual improvement of cutting conditions for
milling operations called GELCC, generation and evolutionary learning of cutting conditions.
The technique performs three functions, the modification of cutting conditions obtained from
a data handbook, incremental learning of obtained cutting conditions using fuzzy artmap
neural networks, FAMNN, and then finally the substitution of these improved parameters to
the milling procedure. Within the structure previous data is stored as either tables or graphs,
which show the modification of the ratio of cutting conditions for the types and materials of

cutters, or other important factors.
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A 4-layer neural network, NN, was used to generate the modified cutting conditions. The rate
of error convergence was checked by changing the number of hidden layers, the number of
neurons within each layer and the learning rate. These values though were arbitrarily changed
by a human operator whilst designing the NN. The modified cutting parameters are then
passed to two fuzzy ART neural networks. These are configured to work in parallel such that
one learns the feedrate and the other the cutting speed. The fuzzy ART NN categories are
given learning patterns according to similarities among them. The vigilance parameter and

learning rate influence the number of categories.

In general the higher the vigilance parameter the more specific categories are created. The
new input pattern is presented to the two ARTMAP’s and if the map field receives inputs from
both ARTMAP’s, the network learns by modifying the weight vectors of the chosen categories
for the input layers of the ARTMAP’s. If there is a mismatch the vigilance parameter of one of
the ARTMAP’s is increased, and the system searches again for another category. This
continues until either the system finds a matching category or a new one is created. Results
from an initial test on a vertical CNC milling machine show that the system facilitates the
improvement of cutting parameters through the continual operation of the machine.
(CARPENTER 1992) comments that an ARTMAP voting strategy can be used to assign
confidence estimates to competing predictions given small, noisy or incomplete training sets.
A further advantage to the fuzzy ARTMAP structure is the ability for it to be incrementally

trained, (Javadpour 2003).

(Pomerleau 1991) demonstrates the first successful use of a neural network with real-time

sensors. The system is used to steer an autonomous land vehicle along a road using a video
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camera. The network is trained using a backpropogation algorithm so that the networks
performance more closely corresponds to the correct steering angle. The system is presented
with a series of images as input and the corresponding steering angle as output. The
backpropogation algorithm then modifies the weights of neurons to achieve the required
outputs. However to speed learning a further algorithm was generated that allowed learning
in real time where the system imitated a human operator to achieve the required steering

angle whilst watching the video feed input.

However this can lead to problems as if the training data is not fully representative of the full
task, the system is not guaranteed able to take successful action when encountering these
situations. A further problem was encountered where if a period of straight road was
encountered, no changes to the input, it is possible for the system to ‘overlearn’ due to
repetitive inputs, causing the system to ‘forget’ previously learned data about curved roads,
(Chauvin 1990), (Fierro 1998, Chauvin 1990) presents a neural network integrated with a
kinematic controller for the control of a nonholonomic mobile robot. The neural network is
used as a torque controller, based on the approximation of the non-linear dynamics of the
cart. However the system is limited to certain constraints. The neural network can cope with
unmodeled disturbances, but only within bounds, and the velocity inputs from the kinematic
controller must be smooth. The network uses the gradient algorithm based on

backpropagated error to tune the weights of the neurons.

(Rekdalsbakken 2006) demonstrates a novel method of training a neural network for
balancing an inverted pendulum. Rather than using the more traditional back propagation

method, the author uses a genetic algorithm where the chromosomes are coded with the
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values of each node within the single hidden layer of the network. Throughout the
development of the different generations mutation rates were changed in an attempt to
improve the overall performance of the NN, however at the close of the experiment none of
the final chromosomes were able to balance the inverted pendulum more successfully than
the modal control algorithm. This appears to be due to the population reaching a local
suboptimal level after a set number of generations and then failing to adapt further. However
it is proposed that changing some test parameters, such as epoch time and mutation

probabilities, would cause the chromosomes to leave this suboptimum position.

(Balazinski 2002) has carried out a comparison of three different artificial intelligence
methods, feed forward back propagation neural network, fuzzy decision support system and a
neural network based inference system, for tool condition monitoring. The system uses
cutting force measurements as they are more sensitive to tool wear than either vibration or
acoustic methods. However this type of measurement technique is sensitive to the size of
uncut chip cross-sectional area, a product of feed rate and depth of cut. However the results
presented show very little dependence on the cutting force with tool wear rate, and that the

tool wear rate is far more dependent on the cutting parameters.

It was suggested that if the cutting force is to be used as a measure of tool wear rate it must
be used in conjunction with the depth of cut. A three layer multi-layer perceptron, MLP, with
three input cells in the input layer, five in the hidden layer and a single output and was trained
using back propagation. The fuzzy decision support system is used to handle uncertain or
imprecise knowledge, (Zadeh 1973), and the fuzzy rules were provided by a human expert.

This is a possible draw-back of the fuzzy system as if the rules are either inaccurate or
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insufficient the system performance will be reduced. The authors conclude that the simple
network was not susceptible to overtraining, as all errors stabilised after 100,000 iterations,
but that retraining the system is slow, if it is to be used on the factory floor, between 15 — 30
minutes depending on the number of neurons within the hidden layer. Whilst testing the
neural network based fuzzy inference system there was no dependence on the number of
iterations as a similar result was obtained with just 2 as to 200 iterations. The number of fuzzy
rules did have an influence on the system performance, however 5 rules gave an optimum,
fewer than 5 to model the learning data and more than 5 resulted in a loss of generalisation of
the model. However the training time for this model was much improved over the neural

network alone at <1 minute.

Fuzzy Logic, FL, deals with uncertainty by attaching degrees of certainty to the answer,
(McKone 2005). An advantage of fuzzy logic is that the rules are conceptually easy to
understand and parameters have clear physical meaning, (Altug 1999). However one problem
often attributed to the use of fuzzy logic is the generation of these rules. These have to be
created by an experienced operator within the area of interest. This can be a time consuming
procedure and if the rules are not complete can lead to a mal performing system. (Nagata,
Kusumoto et al. 2009) propose the use of a fuzzy controller to modify the feedrate when
machining timber cylinders. The proposed controller attempts to prevent the brittle failure of
the timber whilst maintaining the highest possible throughput. Here the main factor affecting
the feedrate is the relief complexity and the type of timber, however the feedrates are
calculated before the actual machining process, and the system is not designed to be run in

real-time.
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A Fuzzy Neural Network, FNN, has also been used to control a high speed milling machine,
(Zhou 2002), specifically maintaining the optimum cutting forces for highest productivity
levels. In this work the FNN was designed to overcome specific problems to previous works.
The author states that due to scaling factors, the dynamic performance of the system has
been ignored, and as such the networks were unable to totally replace the more traditional
PID control system. The new FNN proposed also attempts to converge much more quickly and
in a stable manner. The FNN proposed main difference is that it has an extra input and output
layer where scale conversion can be finished dynamically. Fuzzy conversion is actually carried
out within the neurons of the network itself, aswell as the assignment of the membership
functions and the rule matching processes. However the 49 fuzzy control rules used by the
system were based on data generated by experienced manufacturing engineers. However
these membership functions, and indeed the fuzzy control rules can be tuned by online
learning. This same FNN approach has been successfully employed in forecasting returns of
scrap product, (Marx-Gémez, Rautenstrauch et al. 2002), demonstrating the flexibility of the

approach to be used in a wide range of applications.

When plant exhibits time varying dynamics, direct inverse control does not guarantee
satisfactory response characteristics and steady state errors may remain, (Denai, Palis et al.

2004). In this paper the control structure shown in Figure 2-13 was proposed.
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Figure 2-13 - On-Line Inverse Learning, (Denai, Palis et al. 2004)

On line learning of the ANFIS inverse model occurs at each time step to fine tune the
membership function parameters of the ANFIS controller. This structure was employed to
model neuromuscular systems as an example of a system where there are systems with high
degrees of uncertainty, rather than a neural network control scheme as the method of
gradient decent cannot guarantee that the output tracking error will converge to zero. The
appropriate combination of both neural and fuzzy inference systems provide a valuable
modelling approach to complex systems. The on-line inverse learning model, Figure 2-13, does
not require an intermediate model of the plant and hence is applicable to any system for

which the inverse model can be identified online.

Genetic algorithms have also been used in conjunction with fuzzy logic rules, (Gonzalez, Perez
1999). The system uses a genetic algorithm to extract a set of fuzzy rules, from examples, that
best represents the system. This process is developed from an iterative approach, and the
new rule obtained is added to a final set of rules for the overall system. In order to select a

new rule, the previous rule selected by the system is penalised, by eliminating the examples
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from the training data covered by this rule, and the process repeated. This is repeated until
the set of fuzzy rules adequately covers the training data, although no mention of how this is
score is given. The author describes however that the previous versions of SLAVE, (Gonzalez,
Perez 1996), (Gonzalez, Perez 1993) and (Gonzalez, Perez 1998) did not take into account the
previously selected fuzzy rules when choosing a new rule, which could lead to unexpected
interactions between the rules obtained, and so to avoid this a new method is proposed, a
method to evaluate the ‘goodness’ of the rules that takes the cooperation/competition of the
rules into account. This is done by splitting the rule set, by applying another concept from the
example data, into the rule set that describes this new concept and the rule set that describe
the remaining concepts. The maximum positive covering degree is then defined as the
maximum covering subset of the rules that describe the new concept example. In the same
way the definition of the maximum negative covering degree is given. While the positive
covering degree is higher than the negative covering degree the new concept example will be
correctly classified. However no information is given about eliminating earlier selected rules,
only the choice of new rules depends on the previously selected rules. Therefore an optimum

set of rules may be missed if an early selected rule interacts poorly with a remaining rule.

Iterative learning controller, ILC, can also be credited with intelligent learning behaviour.
These learn in a similar method to humans and as such are more easily understood. A trial is
performed, the error measured and then a retrial carried out based on an update law and the
error from the previous attempt. One advantage that these controllers have over others, such
as fuzzy logic, neural networks etc, is that the system can operate with or without any
previous knowledge or training data. However the nature of an ILC does require a repetitive
task to be carried out, hence the solution is not a universally applicable one. These controllers

have been used in many environments from motion tracing, (Hamamoto 2001), to stroke
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rehabilitation, (Hughes, Burridge et al. 2008). (Ziliani 2007) describe an ILC for contour
tracking used by an industrial SCARA robot. The ILC strategy is proposed to overcome issues
such as the inability to tune the control design parameters of the original PID controller. The
controller is also designed to overcome the joint backlash which causes error in the system
and to overcome the error assigned to static friction when the manipulator velocity changes
sign. A standard ILC strategy requires a pre-specified time-based reference signal, the robot
position is predefined at the same time instant in each repetition. However since in contour
tracking the piece being tracked is of unknown shape, (Ziliani 2007) has overcome this normal
pre-requisite. This is done by modifying the normal force set point according to the normal

force error measured in the previous repetition.

Further studies have also shown the even with small reset datuming errors, learning can still
be carried out, (Lee 1996). Continuing the work of (Lee 1996), (Sun, Wang 2001) have
developed a solution to overcome the initial error using an initial rectifying action. Results
show that the techniques employed also improve the overall system robustness. (Madady
2008) have again taken this approach further and explored the use of an ILC for time
dependant systems, where the system parameters and initial conditions are variable in
various iterations, using a closed loop control law. The system described by (Madady 2008)
proposes using the self-tuning iterative learning control systems, STILCS, to solve the time
dependant system. The system uses adjustable gains, called learning gains, controlled by both
the input and output data of the previous operation. The author mathematically proves the
selection of the algorithm step size, which when selected correctly guarantees convergence of
the system. The results presented show that after approximately 15 iterations the total

learning has plateaued at a low level. The total learning error being the sum of all errors, from
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each iteration, for that particular testpoint. Further iterations do reduce this further with ever

increasing iteration numbers.

When considering pattern recognition a popular solution exists in the form of Self-Organising
Maps, SOM, (Jain, Duin et al. 2000, Ridge, Skocaj et al. 2008). SOM'’s are a form of neural
network, also highly popular in data mining and exploring data, grouping similar aspects of the
data set together. These patterns can either be images, such as cuttermarks surface profiles,
or data set patterns, like those produced by either Fourier analysis of principal component
analysis. This type of technique would be able to form a link between data extraction

elements and decision making aspects of an integrated system architecture.

If however a model of the system is accessible ILC’s can still be used by combining the iterative
learning control with Internal Model Control, IMC, (Fan 2006). In this document the author
presents a method for combining the two different types of control, for the control of a linear
motor, stating that IMC component provides robust performance against unrepeatable
disturbances and the ILC portion reduces tracking errors in the early stages of learning.
However it is assumed that the internal model can be simplified by disregarding the non-
linearity of the system and also the friction. These assumptions are made as when studying a
pick and place machine, translator movements take place with high velocities and the large
accelerations. However these assumptions do not change the overall method of combining

the two model types to create the overall control architecture.

Model Reference Adaptive Control, MRAC, has been used to compensate for the hysteresis

effects present in piezo electric actuators, (Liu, Chang et al. 2010). This technique involves
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updating the parameters of an existing controller based on the actual output of the process.
The objective is to find an appropriate control input such that the system output follows the
desired input. This type of architecture presents potential when considering the rotary wood
planing process, when used in conjunction with a model concerned with vertical cutterhead
movement to overcome both cutterhead inaccuracies and out of balance forces of the
spindle. If the general MRAC principals are used together with other systems to generate

suitable control parameters a truly novel solution could be created.

Flexible manufacturing system, FMS, have been employed to improve efficiency in industry.
Loading problems, selecting a subset of jobs from the job pool and allocating these among the
available machines, has been proposed to be solved using a heuristic approach. The approach
developed by (Nagarjuna, Mahesh et al. 2006) attempted to minimise system unbalance,
processing time for the total number of jobs, whilst satisfying constraints such as available
machine capability. A set of rules were developed with subsequent choices only made
available dependant on previous outcomes. The approach also attempted to consider job
sequencing and operation allocations concurrently rather than using predetermined
sequencing rules such as shortest processing time. Although the heuristic approach was found
to be successful, limitations, such as a limited number of jigs and fixtures, pallets and
automated guided vehicles limited the overall success in this specific application. However
(Yu, Sarker 2003) report that using heuristic for searches can become computationally
inefficient as at time multiple searches may have to be re-run when only a small number have
changed from a previous search. However this can be overcome by directionally decomposing
the inter-cell, a machine cell here is treated as a machine itself, flows and incrementally
computing these. (Guschinskaya, Dolgui 2009) however conclude that when considering line

balancing scheduling different approaches should be employed for different sized problems. If
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there are less than 25 operations, then exact methods should be used, however if the number
of operations increases beyond approximately fifty, then heuristic approaches are advised.
Further research has investigated the use of differing heuristic approaches to cost reductions

in assembly lines, (Amen 2000, Amen 2001)

2.8 Research Gap

The research above has highlighted an area where previously little research has been
undertaken. This ‘gap’ is for an intelligent system monitoring the actual produced surface
profile in real time, altering the control parameters in accordance with an a-priori knowledge
base, APKN, set of information. Although the system would not have any direct knowledge
about which particular cuttermark was caused by any particular knife it would be possible
through a series of subtle parameter changes to isolate and then rectify a particular defect
cause, such as a proud knife or an imbalance in the rotating shaft assembly. Many of the
above systems require in depth knowledge of the cutting process and mechanical
measurements of cutting knife radii. This is not often available, and the proposed system of

subtle changes coupled to an intelligent system would overcome this problem.

2.8.1 Proposed New Architecture
It is proposed that the new system architecture have two ‘control loops’ working together in

real time to control the overall system performance. This would thereby allow them to work
at different speeds carrying out different tasks pertinent to their particular area of ‘expertise’.
It is also important to note that the feedback into the outer control loop is actual surface
profile date rather than spindle position data. This is a more advanced data stream as it is a
direct measure of the actual surface rather than a measure if spindle position mathematically

transposed to estimate the surface profile. This surface profile data requires then a further
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system block to attempt to categorise the surface defects between the data stream itself and

the ‘higher level reasoning’ block, as shown in Figure 2-14.

The tighter control loop is the faster loop with the system controller acting out a set of pre
designated rules. These rules would include the movement requirements for the cutterhead in
order to effectively remove the TIR in order to achieve an improved surface quality. The outer
control loop is able to then run at a much reduced iteration speed. This allows this loop to
gather data and then make a judgement as to the best course of action to generate an

improved surface.

Below is a schematic of the overall proposed intelligent system architecture.
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Product Production | Product
Requirements > Process [

Figure 2-14 - Proposed System Architecture
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The ‘Product Requirements’ block is akin to the product specification. This can be any type of
requirement ranging from dimensional requirements through to surface finish. The
‘Production Process’ block may be any type of process; although in this project we are
focussing of wood planing. With the ‘Process Measurement’ block any number and/or type of
measurements are made upon both the product and machine. These measurements are then
processed both by a ‘local’ process control system making ‘Process Adjustments’ and the
‘Higher Level Reasoning’ block. Within this block a more strategically focussed approach is
taken to guide the system to operating condition more favourable to the ‘Product
Requirements’. The ‘A-Priori Knowledge’ block feeds past data both to the ‘Higher Level
Reasoning’ block and the ‘Process Adjustments’ block in order to help develop changes in

parameter values through past experiences.

The proposed system combines an A-Priori knowledge base, APKN, with a higher level
reasoning ‘engine’ and an innovative control model to make suitable changes to the
production process to attain higher levels of both machine utilisation, or production, quality

and reliability to seek out a competitive edge.

The higher level reasoning is tightly linked to both the APKN and other process measurements
to determine production trends, but when a situation arises that has not been seen before, it
should make a judgement using any available data as to what is the best course of action. If
this solution is found to be inaccurate, parameters will then be altered until a satisfactory set

is found. This new knowledge is then stored for possible future use.
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3 Chapter 3 - Surface Waviness of Planed Wood

This chapter of the thesis gives a more in depth view of the principals of rotary wood planing
and the mathematical approximations used to predict the surface forms. Some surface defects
and their possible causes are also given as well as some of the specific technical language used

within the woodworking industry.

3.1 Circular Arcs Approximation
One method to approximate the surface form of the planed material is to use the circular arcs
simplification, as can be seen in Figure 3-2. Machining parameters used within the

woodworking industry make this approximation possible.

The knives of the cutterhead are rotating at speed v,, also known as the cutting speed, and
the timber is moving toward the cutterhead with speed vf, known as the feed speed, as
shown in Figure 1-5. It is convenient to establish a measure, which can describe the
kinematical relationship of the rotary machining process regardless of the actual cutting and
feed speeds. The ratio p is used to describe the rotary machining process.

Ve (3-1)

p=
Vr

This ratio p is typically within the range 50 — 300.
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/ Legend:
/ 7. cutting speed (@R)
;'} — vy feed speed
[ @ v, overall speed of knife tip,
/ relative to workpiece
R cutterhead radius
/ @ cutterhead rotational speed
p cuttermark length

Figure 3-1 - Rotary Machining Process Velocity Relationships - (Hynek 2004)

The length of the cuttermarks is primarily determined by the following parameters: feed
speed vy, cutterhead angular velocity w and number of knives N. The relationship between

these parameters and the cuttermark length is expressed by the following equation;

_Yr (3-2)
p_Na)

(Cutri 1991)

It should be noted that the length of the cuttermarks does not depend on the cutterhead
diameter R. The pitch of the cuttermarks, p, is the length that the timber travels between two

knives.
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Circular arcs approximation
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Actual surface waviness

Figure 3-2 - Circular Arcs Approximation — (Hynek 2004)

The waviness height of the idealised surface is described by equation ( 3-3 ), where R is the

cutterhead radius, (Elmas 2008).

(3-3)

Figure 3-2 also shoes the slight inaccuracy of the circular arc approximation, but the actual

waviness height can be expressed as follows

(3-4)

Where d; is the distance the cutterhead travels while the knife is cutting the length of

cuttermark p. This distance can be expressed as follows
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d fp Uf d (3-5)
= X
‘ o Vox (x)

Where v, is the horizontal component of the knife velocity v,. The knife tip velocity relative
to the work piece, as shown in Figure 3-1, is a vector sum of the cutting speed and the feed

speed.

Vo = Tp + f (36)

A simplification can be made by assuming the horizontal component of the knife tip velocity to
be constant, whereas clearly the velocity varies throughout each revolution, Figure 3-1. This
can be made as the angular displacement while the knife is machining a single cuttermark is

small. This simplification allows equation ( 3-6 ) to be simplified to.

(3-7)
Vo = Ve + V5
Combining equation ( 3-1 ), equation ( 3-5 ) and equation ( 3-7 ) gives;
p (3-8)

u+1
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The time that the cutterhead needs to travel distance d; can be expressed as the follows.

d; (3-9)
At

Vs

This time At, is important for improving wood surface form by modification of the machining
process, (Hynek 2004). The surface waviness can only be influenced during this time period.
Equation ( 3-9 ) can be rearranged to a more practical form by substituting equation ( 3-8 )

and equation ( 3-1).

_ b (3-10)
Ve +17f

At,

There is an error between the height of the actual surface, h,, and the waviness height of the

idealised surface, h.. This error can be described through ( 3-11).

hy, — h, (3-11)

The actual surface height h, is approximately 5% lower than the simplified circular
approximation height h, for typical values of y, (Hynek 2004). This low error justifies the use

of the simplification of approximating the surface to a series or circular arcs.
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3.2 Surface Defects and Their Appearance Forms on Machined

Timber
Spindle vibrations and machine tool inaccuracies, particularly cutting tool inaccuracies, can
also lead to surface defects, (EImas 2008). The work carried out by (EImas 2008) was the first
mechatronic system capable of providing surface defects on demand, in order to more fully
isolate and understand which parameters were producing the actual type of defect. In this
work both single and two knife finishes were simulated and experimentally demonstrated.
The work also included the influence of proud knives and cutterhead vibrations, particularly

vertical cutterhead movement.

3.2.1 The Effect of a Proud Knife on the Surface Form
Cutterhead inaccuracies have a significant impact on surface quality, (Jackson, Parkin et al.

2002), especially the Total Indicated Runout, TIR. TIR is the radial difference between the knife
with the largest radius and the knife with the smallest radius. Setting cutters up with typical
room equipment can result in a TIR of typically 50 um, (Hynek 2004). If however the cutters

are setup and then ground, the TIR can be improved to be within the range 5-10 um.

The single knife finish produces a surface form determined by the largest radius knife in the
cutterhead. This can result from poor tolerances when grinding the knives, or from poor
relocation of these knives within the cutterhead. It is not possible to produce cutting tools of
all exact proportions however so this type of inaccuracy is important in the study of rotary
wood planing. There will however be tolerances between the knives, where the smaller the
tolerance band the higher quality of the cutting edge. The TIR can be as much as 50 um for
knives set in a cutterhead using a setting gauge (Jackson, Parkin et al. 2002) . Using the
equations in Section 2, if we assume the cutterhead is rotating at 6000 rpm and has a feed
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rate of 12 m/min, the surface would have a pitch of 2 mm, which would be in the low quality

range as described by Figure 3-3, whereas if the TIR was the ideal of 0 m, the surface would

have a pitch of 1 mm, which would be in the high quality range.

2mm

Imm

Single Knife Finish

\__/

Figure 3-3 - The Effect of Single And Two Knife Finish On the Ideal Surface Form

One solution to minimise the TIR is to grind the knives whilst still in the cutterhead itself.
Cutters ground in the cutterhead and then relocated using ‘hydrogrip’ tooling typically results

with a TIR of 5 — 10 um (Hynek 2004), but these inaccuracies cannot be totally eliminated.
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Figure 3-4 shows the resultant surface finish from a cutterhead with two different radii knives.
The surface form contains shorter cuttermarks, produced by the smaller radii knife, and longer
cuttermarks, produced by the larger radii knife. The process of dressing the knives in the
cutterhead is also known as ‘jointing’, (Elmas 2008), with an aim to true the cutting edges and

to achieve a multi knife finish.

Proud knife, A

Cuttermark cut by knife A

Cuttermark cut by knife B

Shallow knife, B

Figure 3-4 - Effect of TIR on Surface Finish
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Figure 3-5 - Jointed Cutter with Joint Land

The process of jointing produces a joint land in the cutting edge, Figure 3-5. The difference in
radius of the individual cutters results in joint land width variation, which leads to significant
force variation and correspondingly poor surface roughness and waviness quality, (Jackson,

Parkin et al. 2002) .

3.2.2 The Effect of Cutterhead Vibration on the Surface Form
Cutterhead vibration also has an effect on the surface form. In high speed woodworking

machinery the cutterhead can have up to twenty knives. As shown through equation ( 3-2 )
the greater the number of knives the higher the feed rate for the same pitch, therefore

allowing a higher speed of production for the same surface waviness quality.

The requirement to have an ideal multi knife finish requires all of the knives to have the same
radius. To achieve this the knives are often jointed, but this causes the knives to have a zero
clearance back angle that rubs the timber surface, which can cause a sealing effect of the
timber leading to the timber not accepting many finish types, such as varnish, which is often
undesirable. This rubbing effect causes variations in the normal cutting force, which produce

cutter spindle deflection and hence variation in the cutter path, (Jackson, Parkin et al. 2002).

68



A particular example case may be a four knife cutter where all the cutters have been ground
to the same radii, is subject to a 1 per revolution displacement at the spindle rotation

frequency.

Resultant Surface Defect Caused By 1 per Revolution Vibration

Ideal Surface Form Without Spindle Vibration

Figure 3-6 - Effect of 1 per Revolution Vibration on the Surface Form
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Figure 3-6 shows that cutting knives B and D are unaffected by the vibration, whereas cutting
knife A is pulled out of the workpiece, leading to a high spot, whereas cutting knife C is pushed
into the workpiece, leading to a low spot equal in magnitude to the vibration magnitude. This
is shown for the case where the positive maximum vibration displacement aligns with cutter
A. The surface form depicted in Figure 3-6 is based on the circular arcs theory. When the
vibration surface form is compared to the vibration free surface form we can see that it is an

unacceptable surface quality.

3.3 Summary and Conclusions

This chapter has summarised a widely used approximation of surface form within the
woodworking industry, the circular arcs approximation. This approximation attempts to
predict the surface form of the machined timber surface, from the operating conditions. This
approximation is used throughout this thesis and the research covered by it, particularly when

choosing the operating conditions for the actual cutting tests carried out.

Also discussed within this chapter are the forms of common surface defects and some
potential causes of these defects. This highlights the importance of cutterhead position
control in order to achieve optimum surface finish given non-optimum operating conditions

such as cutterhead vibrations and run-out of the cutting knives.
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4 Methodology

This section will highlight the current drawbacks of the existing system and the proposed
approach to address these shortcomings. Flow diagrams are given showing both the overall
system and how the separate sub-systems interlink together, and the individual sub systems

themselves.

4.1 Summary of Current Drawbacks

The current systems employed within the wood industry, and to the current small scale planer
test rig, are all non-adaptive systems. Therefore, if during operation, the operating conditions
change, this could be due to one of multiple reasons such as the cutting tip losing its sharp
cutting edge and becoming more blunt or wearing away and the run-out of the knife changing,
or the desired pitch of the machined timber surface altering, the overall system is not capable,
in real-time, of overcoming this and requires a manual reset and tuning. This tuning requires
a-priori knowledge of the cutterhead, and operating conditions, in order to optimise the
control. Currently the best solution to this is to manually measure the run-out of the knives in
order to gain an understanding of the TIR, and a trial and error approach to parameter tuning

within the LQG controller.

There is also no existing software tool to analyse the surface profile directly, or indirectly, in
order to ascertain the cause and type of surface defect, nor to propose a resolution in order to
generate an improved machine timber surface. As the system deployed here by (Ogun 2012)
uses a set point tracker the resolution type is that of a modification to the reference path used

by the set point tracker.
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A final consideration here is that of the test rig itself. Due to the nature of this research
requiring actual cutting test rather than simply measuring the vibration of the cutterhead in
free air under different operating conditions, the test rig itself is unsuitable to carry out the

required tests.

A series of solutions have been proposed to overcome the drawbacks outlined in this section.
A flow chart outlining the proposed methodology is given below. Different methodologies are
implemented throughout the various sub sections and so this superficial methodology
flowchart is then supplemented with additional flowcharts outlining the methodology utilised

within each sub section of the work.

72



4.2 Overall Project Flow Diagram

The flowchart, Figure 4-1, gives a very brief order to the work carried out within this thesis. It
follows the system operation and demonstrates the flow of information within the completed

system.

Start

:

Literature Review

'

Model Based Tuning

:

Defect Measurement and

Classification

Y

Subtle Change Technique

!

Stop

Figure 4-1 - Overall Project Methodology
Flowchart
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4.2.1 Model Based Tuning Methodology Flow Diagram

Start

:

System ldentification

'

Adaptive Approach Design

:

Recording Real Data from Test Rig

Y

Testing and Evaluation of Adaptive
Approaches

:

Full Implementation of Optimal

System

:

Stop

Figure 4-2 - Model Based Tuning
Methodology Flowchart

Figure 4-2 shows the methodology flowchart for the model based tuning sub-system of the
overall project methodology flowchart, Figure 4-1. The model based tuning relies on real data
collected in a trial and error manner from the test rig. This data is then used to train a number
of different adaptive systems. These software solutions overcome the non-adaptive, non-real-
time drawback of the current solutions, by allowing for rapidly changing operating conditions

to be deployed throughout the machining process.
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4.2.2 Defect Measurement and Classification Methodology Flow Diagram

Start

:

Generate A-Priori Knowledge Base

from Simulated Data

'

Implementation of Principal

Component Analysis

:

Classification Software Tool Design

Y

Testing and Evaluation of Multiple
Software Tools

:

Full Implementation of Optimal

Software Tool

:

Stop

Figure 4-3 - Defect Measurement and
Classification Methodology Flowchart

Figure 4-3 shows the methodology flowchart for the defect measurement and
characterisation section of this work. This differs from the model based tuning in one major
characteristic, the data source. This data source, due to the size and timescale required to
collect real world data, is a simulated source. Although without this data no further work
would be possible, the main research effort here is the actual defect measurement and
classification, rather than the production of thousands of known defect samples. The output

of this section of work is a software tool capable of analysing a machined timber surface and
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outputting a defect cause and reference path capable of overcoming the defect, where

possible.
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4.2.3 Subtle Change Methodology Flow Diagram

Start

:

Optimise Heuristic Approach to

Subtle Change Technique

'

Development of Algorithm

:

Testing of Algorithm

Y

Test Approach of Actual Cutting
Samples

:

Evaluation of Technique

:

Stop

Figure 4-4 - Subtle Change Technique
Methodology Flowchart

Figure 4-4 shows the methodology flowchart for the subtle change approach created and
developed within this thesis. This approach again differs from that set out in Figure 4-2 and
Figure 4-3, as here there are both simulations and real world tests carried out. The simulation
work is used to more rapidly develop the algorithm, whereas the real world testing is used to

evaluate the system on the actual test rig.
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4.3 Summary

This section has described the different methodologies used within this thesis. The use of
completely real world data, completely simulated data and a blend of the both real world and
simulated data has enabled both rapid development of the core ideas and thorough
evaluation of the techniques on actual data recorded from the test rig itself. Further details of
the actual testing and evaluation are given in the thesis chapter designated for the particular
section, such as the evaluation metrics used or the specific output from each sub-section of

research and how these are used by subsequent ‘blocks’ within the overall system.
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5 Chapter 5 - Small Scale Planer Test Rig Layout and

Modifications

This theis is an extension to previous work carried out on the small scale wood planer machine

at Loughborough University. This chapter aims to introduce the existing test rig and

demonstrate the further capabilities added by this work. The original small scale planer rig

was designed by (Hynek 2004). The system was designed to utilise vertical and horizontal

cutterhead movement to improve the surface finish of the planed timber.

5.1 Piezo Electric Actuator

The actuation on the small scale planer is carried out by four stack type piezo electric

actuators. These types of actuators are constructed of n layers of piezoelectric elements,

which are connected mechanically in series, but electrically in parallel. The specification for all

four actuator is given in Table 5-1.

Table 5-1 - Piezo Electric Actuator Specification

hlax input woltags, 7 150 v
fictmtor stiffness, &, 14 M/
Zero load dsplacernent @ 1507, 4 izt
Blocked force, Fy 0. 56 K
fAcnator @paciance, o, 2.2 Ty
Cross-sectional area, o1 25 mm*
Lenzth, L 10.5 Tm

The piezoelectric material expands

proportionally to the applied voltage,

mathematical models are presented by (Hynek 2004).

detailed
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Further evidence of the requirement to utilise a closed loop system has been generated by,
(Ogun 2012). Figure 5-1, where the nonlinear behaviour of the actuators due to their
hysteresis characteristics lead to non-repeatable spindle response. However it is stated that a
closed loop system constantly driving the spindle to the desired position is capable of

overcoming these issues.
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Figure 5-1 - Piezo Hysteresis Curve, (Ogun 2012)

Further tests were carried out on the piezo actuators to ascertain the time response
characteristics. This is an important factor to take account of when considering the possible
rotational speed of the cutterhead and the triggering position of the actuators to allow the
cutterhead time to displace to the required position, Figure 5-2. It was found that the rise time
was independent of the displacement value (input voltage), at approximately 1ms. At a
rotational speed of 6000rpm the cutterhead will have rotated approximately 36° in this time
which is still acceptable when using a four knife cutterhead as the knives are equally spaced
around the cutterhead at increments of 90°, therefore the 36° offset is well within the

available 90°.
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However signal transmission lag of approximately 2ms was measured. This was the time taken

from an initial tigger from the computer for that signal to actuate the piezo and then for that

displacement to be measured by the computer.

2.3

1.5

Amplitude {ym )

0.3

Amplitude Cpm)

(&) 20% Step Input

had. . i

”'u VR

0.06 nnos

Time (zec)

() B0 Step Input

01

mmwwwm

T

.06 nnos

Time (zac)

01

Am plitude ¢ um )

Amoplitude {ym )

12

| T =« e |

(k) 40% Step Input

|
et
L]
0.0 nos A
Time (zec)

(180 Step Input

H.‘.ﬂ.'ﬂ FaTal oy

0.0 noa
Time (zec)

0.1

Figure 5-2 - Spindle Responses to Differing Step Input Voltages
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5.2 Eddy Current Probes

To measure the position of the spindle two non-contact eddy current probes are installed into
the spindle unit. These probes require an external driver unit to amplify the signal. A brief
outline specification can be found in Table 5-2. The output from the driver is proportional to
the distance between the spindle and the tip of the probe. The amplified signal from the
driver also minimises the influence of noise introduced onto the signal line from the probe to

the computer input.

Table 5-2 - Eddy Current Sensor/Driver Specification

Sensitivity & mVAun nominal
Linear range 0-2mm
Lineanty 1 % nomiral
Frequency range 0-10kH=z

5.3 Mechanical Design of the Small Scale Planer

The existing small scale planer test rig consists of a base frame on which a feed table and
smart spindle assembly are mounted. The smart spindle unit can be moved vertically in order
to control the depth of cut. The smart spindle unit can also be moved horizontally to affect the
surface finish but for this body of work this degree of movement is locked. The feed table has
a preloaded ball screw and high precision linear guides to ensure consistent cutting conditions

as the table passes across the cutterhead. This is shown in Figure 5-3.
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Figure 5-3 - Small Scale Planer, (Hynek 2004)

5.3.1 Smart Spindle Unit

The test rig has an overhung smart spindle unit, Figure 5-6. The spindle is supported by two
precision angular bearings at the front and rear of the housing, with the cutterhead overhung
from the front bearing. To displace the cutterhead vertically the entire front bearing assembly
is displaced. This simple arrangement allows a limited cutterhead displacement as only the
front bearing is displaced, but requires fewer actuators than displacing both the front and rear

bearings. This type of movement does however introduce cutterhead tilt, and therefore knife
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tilt, as shown in Figure 5-4. The amount of knife tilt needs to be understood as it will have an

effect on the machined surface quality.

¥s i'

Back bearing

Front bearing

Figure 5-4 - Overhung Spindle

The magnitude of knife tilt can be estimated through the geometric relationships of the
overhung spindle arrangement. The angle of knife tilt is equal to the angle of spindle tilt a.

This angle can be calculated as follows

= sin"! (y—b) (5-1)

Where;
l'is the length between the two bearings

Yy is the vertical displacement of the front bearing
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However the knife tilts influence on the machined timber is more meaningfully described by

the vertical displacement of the two edges of the knife, yi.

B (5-2)
+0

Yk

Where;
B is the width of the cutterhead
O is the overhang of the cutterhead from the font bearing

l'is the length between the two bearings
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In order to minimise the tilt of the knives, and therefore the negative effect upon the wood

surface, the value of y, should be minimised. With the overhung setup it is not possible to

achieve zero tilt, and it is reported, (Hynek 2004), that the ratio % should be less than 10%.

v

This ratio depends on the cuttehead width B and the overall spindle length | + O, as given in

equation  ( 5-2).

Figure 5-5 shows the relationship between the overall spindle length and the cutterhead

width at different 2X ratio values.

v
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Cutternead width B [mm]

200 250 300
Spindle length (+o0) [rmm]

Figure 5-5 - Ratio y,/y,, (Hynek 2004)

With practical considerations for a small scale planer test rig within the Loughborough

research department, the overhung spindle arrangement is only suitable for narrow

cutterheads. The current test rig employs a cutterhead that is 10mm in depth, and bearing
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span of 87mm and a spindle overhang of 47mm. The resulting % ratio is 7.46%. For a 10um

v

vertical displacement in the cutterhead, the value of y, is 0.746 um, which is an acceptably

small value, and should not have an appreciable negative effect on the surface quality.
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Figure 5-6 — Smart Spindle Unit Cut-through, (Hynek 2004)

Figure 5-6 shows a cross section of the spindle unit. The two high precision angular contact
ball bearings are arranged in a face to face configuration. The rear bearing is fitted to the
housing, whereas the front bearing is fitted to the front ring, which is retained axially by four
spacers, see Figure 5-7. The two bearings are preloaded by a pair of disc spring to remove any

axial float of the spindle.
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Figure 5-7 - Spindle Support

This arrangement provides a flexible support for the front bearing, which has a low stiffness
when the actuators are not fitted, circa 2 N/um in the radial direction. This low stiffness is an
advantage as it provides less resistance to the actuators, therefore the required force to move

the spindle is low.

5.3.2 Actuator Arrangement

Four piezoelectric actuators are arranged radially around the spindle, Figure 5-8. These
actuators are located both vertically and horizontally opposed to one another. When activated
with appropriate voltage inputs, the actuators control movement of the spindle in a plane

perpendicular to the axis of spindle rotation.
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Figure 5-8 - Smart Spindle Unit Arrangement

The chosen actuators specification is shown in Table 5-3.

Table 5-3 - Actuator Specification (same as Table 5-1)

Max input voltage v 150 v
Actuator stiffness Ky 14 N/pm
Zero load displacement @ 150V Yo 40 jm
Blocked force Fao 0.56 LN
Actuator capacitance Cy 23 uF
Cross-sectional area A 25 mm®
Length L 19.5 mm
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The analysis of the piezo actuator setup is shown schematically in Figure 5-9 below.

B
R

4— |nfinite stiffness pusher

Figure 5-9 - Actuator Arrangement

The piezo actuators are arranged in a push pull configuration. The actuators are modelled as
infinite stiffness pushers and a spring connected in series (k, = 14N/um). In parallel with the
actuator model is a further spring that represents the combined support stiffness of the
spacers (ks = 2N/um). Therefore the overall stiffness of the actuator is 16N/um. The use of two
actuators in this manner does increase the cost and complexity of the design as additional
power amplifiers are required but overcomes the fragility of the actuators when exposed to

tensile stress. The ratio between these two stiffness’s is calculated as follows

(5-3)

SalFsy
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The influence of the spacers therefore provides an increase to the displacement resistance felt
by the actuators. The influence depends on the ratio y as shown in Figure 5-10. The amplifier
voltage corresponds to the input to the piezo actuator. It is clear that as the ratio y increases
the response to a given voltage reduces. It is therefore desirable to have a low ratio y to

maximise the displacement capability of the actuators.
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Figure 5-10 - Displacement versus Voltage, (Hynek 2004)

The actuators themselves can only be stressed axially. Other types of forces, such as shearing
or torsion may cause damage to the actuators and should therefore be avoided. Methods to

avoid particular forces are available. Tension can be avoided through preloading of the
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actuator. Ball tips of flexures have been introduced to decouple the lateral and bending

forces, as seen in Figure 5-11.

Plug

Actuator casing /ﬁ/ | Ball

f "™~ End piece
AL ) |4
Piezoelectric stack —_ | Fine thread for
1™ L adjusting preload
/
/
Safety nut /’K Spindle unit housing
I N 7
Front ring —— o | -
\ ' T “— Spacer
Spindle — .|| [ N\[

Front bearing

Figure 5-11 - Actuator Mounting, (Hynek 2004)

As the system is used in a push-pull configuration the actuators are then preloaded using the
outer casing and locked in place with the safety nut. This preload does not alter the available
displacement, (Hynek 2004), rather it causes an initial offset in the spindle position. However,
as both the upper and lower actuators are preloaded this offset can be reduced to zero. It is
also possible to deliberately offset the spindle from the neutral position if desired. This offset

is shown graphically in Figure 5-12.
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Figure 5-12 - Effect of Preload, y=0, (Hynek 2004)

5.3.3 Sensor Arrangement

The principal employed within this research is to displace the cutterhead in the vertical axis in
order to improve the surface quality of the machined timber. This movement is to be part of a
closed loop control system and therefore the displacement must be measured. Two eddy
current probes and utilised to measure the displacement. These are located at 45° to the

piezo actuators due to space constraints, Figure 5-13.
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Figure 5-13 - Spindle Sensor Arrangement, (Hynek 2004)

In order to account for this rotation an arithmetic transformation must be carried out.

[xa] _ [cos @ — sin (p] [xs] (5-4)
v, Lsing coselly,

Where x, and y, are the spindle centre point deflections and x; and y; are the measurements

from the eddy current probes. @ is 45°.

94



V2 (5-5)
sin(45°) = cos(45°) = -

Inserting equation ( 5-5 ) into ( 5-4 ) yields

\/E (5-6a)
Ya = 7 (x5 +y5)

\/7 (5.6b)
Xq = 7 (xs - ys)

5.3.3.1 Spindle Deflection Test

However the cutterhead displacement cannot be easily directly measured, but the front ring
displacement is relatively easy to measure. Due to the overhang of the cutterhead outside the
front ring, the relative displacement of the front ring will be lower than that of the cutterhead
itself. Using the geometrical relationships shown in Figure 5-4, and the known dimension for
the overhang, 47mm, and the spindle length of 87mm, this ratio between measured
displacement at the front ring and the actual cutterhead displacement should be
approximately 1.54. To verify this assumption differing voltages were applied to the piezo
actuator and both the eddy current measurements and an independent measurement using a
digital dial gauge were taken. The experimental setup for verification is shown in Figure 5-14

and the results in Table 5-4.
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Figure 5-14 - Spindle Deflection Testing Setup

Table 5-4 - Spindle Displacement Results

Voltage (V) | Sensors Reading, y, (um) | Dial Gauge Reading, y, (um) | yu/Yv
40 5.30 7.00 1.32

75 10.00 13.00 1.30

76 10.05 13.00 1.29

107 14.30 18.00 1.26

124 16.50 20.00 1.21

-80 -10.70 -13.00 1.21

-83 -11.06 -14.00 1.27
-116 -15.44 -19.00 1.23
-117 -15.60 -19.00 1.22
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The results in Table 5-4 clearly do not match the geometric assumptions. The difference
between the average reading of 1.26 could be attributed to eddy current probe calibration
errors, their mountings and the material used in the test rig. These potential sources of error
could have led to an incorrect original calibration of the eddy current probes calibration

factor. As such the dial gage readings were used to recalibrate the system.

5.4 Small Scale Planer Modifications
The original test rig was primarily used for no load tests, testing different vibration control
algorithms and approaches. Although the test rig was satisfactory for these tests the further
work carried out here, primarily cutting tests, modifications were required. The primary
modifications necessary for this were to upgrade the motors, both for the cutterhead motor

and the timber feed motor.

5.4.1 Feed Table Length
In order to extend the capabilities of the small scale planer and enhance the quality of the

research undertaken, modifications to the rig have been undertaken. The first of these
modifications was to extend the length of the feed table and accompanying mechanisms. This
modification is to allow for future development of the system, and further integration with
the Wood Surface Measuring System, WSMS. The principal being that once complete, the
timber passing under the cutterhead will be long enough to allow for an uncompensated area
of timber to pass to the WSMS, measurements taken and then the compensation applied to
the system and the timber machined with the compensation. This will allow for a graphic

demonstration of the system in action, such that within the same piece of timber there will be
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both an area outside the required tolerance, and then once the compensation has been

applied an area within specification.

The extension of the feed table length has also necessitated extensions to both the linear rails
and the ball screw assembly. The feed motor has been positioned such that as the carriage is
drawn across the cutterhead, the ball screw is in tension, rather than compression. This
reduces the vibration in the ball screw, and therefore the amplitude of vibration put into the

carriage. This reduces the uncontrolled process disturbance input into the total system.

5.4.2 Cutterheads
A further modification was to produce a new set of cutterheads. The previous cutterheads

unfortunately were not suitable for experimentation as the difference in radii between knives
was far greater, circa 60um, than the available displacement of the cutterhead. There were
also inaccuracies with knife tilt, and knife twist. Three new cutterheads were wire cut, each
with different deliberate inaccuracies. These cutterheads were produced externally using
electro discharge machining, in particular a wire erosion machine. One cutterhead had a single
proud knife, the second cutterhead has two opposing proud knives, and the third has all
knives at different radii. This allows for different cuttermark patterns to be easily generated
and further more in depth testing of the system. Table 5-5 shows the measurements of the
three cutterheads as measured on the Alicona measurement system, Appendix B — Alicona

Infinate Focus Machine.

98



Table 5-5 - Cutterhead Knife Tip Radii Measurements

Knife 1 Knife 2 Knife 3 Knife 4
Cutterhead 1 57.0666 57.0654 57.0688 57.0646
Cutterhead 2 57.0637 57.0706 57.0681 57.0645
Cutterhead 3 57.0712 57.0677 57.0725 57.0671

5.4.3 Motor Upgrades
However, the most important upgrades to the small scale planer has been the replacement of

the two motor units. The previous system did not provide accurate speed control of the
cutterhead as the speed was controlled through a variac. This produced a constant no load
speed, such as 600rpm, but when load was applied, such as when cutting the timber, the
speed rapidly reduced leading to a stall situation on many occasions. In order to make a step
change in system performance, and bring the system closer to a real world wood planing
machine, the specification was changed demanding that the system be capable of running a

four knife cutterhead at a rotational speed of 6000rpm.

Data collected by, (Jackson 1986), shows that for birch timber the tangential force, for our
width of cutter and a depth of cut of 1mm, is 630N, and the normal force is 70N. This equates
to a resultant force of 634N. The radius of the cutterhead is a nominal 60mm, and the total
torque required will be 37.8 Nm = 40Nm. However the knives are not in constant contact with

the timber surface, rather the torque signature is far more discrete.
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Figure 5-15 - Example Torque Vs Time Graph at 6000rpm

The actual knife contact times are in the order of 0.5ms, (Jackson 1986). In order to average

the torque required at 6000rpm;

4Knives X 40Nm X 0.0005seconds x 100rps = 8Nm

To achieve this a new servo motor was selected and accompanying componentry redesigned
to accept it. Further motor specifications of this can be found in Appendix C — Purchased

Components.

As shown in section 3 the pitch of the wave produced on the timber surface is dependent on
the number of knives on the cutterhead, the rotational speed of the cutterhead and the feed
speed. Therefore with the requirement of the system to now operate at 6000rpm with a four
knife cutterhead, the feedspeed needs to be matched to the cutting speed. This required a
new motor to be selected, such that it could provide the required torque to accelerate the

workpiece carriage to the required speed in the available space and provide an accurate
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constant speed. Again a new servo motor was selected for this and further details can be

found in Appendix C — Purchased Component.

Both of the new motors are now run through industry standard SERAD motor controllers
controlled via serial link from developed C# software. Further details on the motor controllers

can be found in Appendix C — Purchased Component.

5.4.4 WSMS Integration
As a final change to the small scalar planing test rig, the WSMS has been integrated onto the

same platform as the cutting rig. This has allowed for dynamic measuring in real-time, rather
than having to remove the timber and take it to another measuring station. The WSMS
assembly has been designed such that it is a separate frame, and as such can be moved and
used with other test rigs/areas, but has been placed as close as possible to the cutterhead,

Figure 5-16.
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Figure 5-16 - Integration of WSMS to the Small Scalar Planing Machine
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5.5 New Small Scale Planer Test Rig

Figure 5-17 shows the updated small scale planer test rig. The key new components are shown
is their positions. For this image the guarding has been removed as well as the extraction

system used to remove the wooden chips and dust generated during the planing process.
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Figure 5-17 - Updated Small Scale Planer Test Rig
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5.6 Commissioning Testing
In order to commission the new motors simple tests were carried out. The motor controllers
allow for a specific speed demand to be placed upon the motor and once tuned the
controllers are designed to maintain that speed. The controllers can be run in other modes but

for this application a simple constant speed mode has been selected.

5.6.1 Motor Speed Tests
To test the cutterhead motor speed control the spindle unit has an independent speed

measuring device on the spindle, a quadrature encoder. This device is read independently of
the motor speed by the PC via a dedicated input line with a sample time of 150us. The system
was tested across the entire speed range, running in a no load situation, and the motor

controller was found to control the speed to a very high degree, circa 5rpm.

A similar test was carried out for the feed motor, both when disconnected to the ball screw
and when connected to the ball screw, and again similar results were recorded. However as a
further test the acceleration of the system needed to be tested. To do this the speed of the
system, with the carriage and ball screw connected to the motor, was recorded during a single
pass and plotted against time, Figure 5-18. During this test the speed is sampled at 200Hz as
beyond this speed the data processing failed, due to the speed of the data acquisition card
within the pc and the required processing time. Each sample required a total time of
approximately 0.005seconds to fully process, although this value was different for each type
of input. No independent measurements of friction of the assembly were made as it was
considered that these were insignificant when compared to the mass of the carriage and the

overall performance of the system was the important factor.
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Figure 5-18 - Speed-Time Graph for Feed Motor

Figure 5-18 shows that the system accelerated from stationary conditions in approximately
50ms to a speed of 3000rpm, which equates to a traverse speed of the table of 500mms™ and

an acceleration of 10000mms™. The distance that the system has to accelerate in before the

knives will make contact with the timber is 90mm. Using equations of motion

v? =u? + 2as (5-7)

s =12.5mm

This is clearly well within acceptable as the actual distance required is significantly less than

the available distance.
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5.6.2 Cutterhead Vibration Tests

In order to ascertain whether the new cutterheads were likely to cause large unwanted
vibrations another test was carried out. It should be noted that the cutterheads have tapped
holes around the diameter in order to deliberately bolt out of balance masses to achieve
deliberate out of balance forces when rotating at speed. The processed signals from the eddy
current probes were plotted against time with the cutterhead rotating at 3000rpm and the

signal sampled at 10KHz, Figure 5-19
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Figure 5-19 - Spindle Vibration Test at 3000rpm

The spindle vertical displacement at this speed, 3000rpm, is approximately 0.4um, which is
again satisfactory as the value is well within the limits of both the measurement system and
the repeatability of the apparatus. The test was repeated at different speeds both with and

without the cutterhead bolted to the spindle, Table 5-6.
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Table 5-6 - Spindle Vibration Amplitude due to Imbalance

Speed (rpm)

Displacement Amplitude,

Spindle only (um)

Displacement Amplitude,

Spindle and Cutterhead (pm)

600 0.31 0.31
1000 0.32 0.33
1500 0.35 0.36
2000 0.36 0.37
3000 0.38 0.39
4000 0.41 0.42
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6 Chapter 6 - Model Based Tuning

This chapter describes the new inner control architecture, Figure 1-9, employed with the small
scale planer and adaptive techniques used to select the various tuning parameters used within
the hybrid controller. The effect of the different parameters on system performance is also
shown in graphical form, and an overview of the capabilities of the adaptive techniques
employed with differing network sizes and shapes. Lastly the effects of different dataset sizes

is also investigated.

6.1 Inner Control Architecture

The inner ‘tighter’ control structure, driving the cutterhead to the required position to
overcome cutterhead inaccuracies and out of balance forces, is shown in Figure 6-1. This has
been designed by other members of this research group but is shown here for completeness

as well as brief explanation of its operation.

Feedfonward Fee dfonwand
JFrovn reference Fronm disturbanees

Mfeasured
disturbances

Feedforward —
loop
. Ot ot
Setpoint ¥ _; 3

Feedback

Figure 6-1- Inner Control System Using both Feedforward and Feedback Control (Ogun, Jackson et al. 2012, Ogun
2012)
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At the core of the control system is a Linear Quadratic Gaussian, LQG, tracking controller with
setpoint action. Although this type of controller design is normally used to drive the output of
the system to zero, within this application it has been modified for tracking a reference signal.
(ElImas 2008) proposed and implemented an LQG controller on the small scale planer to
operate as an active vibration controller. This LQG controller was operated in the more
conventional manner whereby the vertical position of the spindle was driven to a reference

path, the zero position.

Due to the digital nature of the control computer used within this research and the discrete
nature of both the eddy current sensors and the applied voltage to the piezo electric

actuators, state based models of the plant are obtained through system identification.

A time invariant system can be described through state based equations;

% (k) = Ax(k) + Bu(k) (6-1a)

y(k) = Ax(k) (6.1b)

Where:

X is the state vector [x3,X5,...X,]

y is the output vector [y, V,,...Vs]

u is the input vector [uz,uy,...u,)

A is the state matrix (n by n)

B is the output matrix (n by p)
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(YOUNG, WILLEMS 1972) describe an increase in performance if the control law also applies
both the nominal state law and the integral of the error between the reference and the actual
output. To implement this, the actual vertical position of the spindle, y(k), is compared to the
reference signal, y(k) and the error integrated. The output of this integration is in the

following form:

N N (6-2)
i) = ) y() =y = ) y(h) = Cx(B)
k=0 k=0
The augmented state vector X is given as follows:
x(k) (6-3)

The state equation for the augmented system is given as follows: (YOUNG, WILLEMS 1972):

2+ = [ (|20 +[o]uto (64a)
i B
y(k) =[C 0]x(k) (6.4b)
¢

An optimal control law that includes feedback of both the nominal state variables and the

added state variables is as follows:
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u(k) = —K2(k) = K [x(")] (655)

i(k)

The gain K is calculated such that the objective function, ( 6-6 ), is minimised. This objective

function is a compromise between tracking performance and control effort.

N (6-6)

J(O,N) = Z 2T (K). Q. (k) + uT (k). R. u(k)

k=0

Where:

%7 is the transpose of the augmented state vector

uT is the transpose of the input vector

Q is a square, symmetric matrix called the state weighing matrix

R is a square, symmetric matrix called the cost matrix

The augmented state feedback gain matrix K is calculated from:

K = R™1B™M, (67)

M is the solution to an algebraic the Riccati equation

0=ATMy + MyA — MyBR™1BTM, + Q (6-8)
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The final control law including the reference signal is as follows:

w0 =-I6 Kl [50] + Ko e
u(k) = —Kex(k) — Kii(k) + K,y () (6-10)

Where:

K, is the nominal state feedback gain

K; is the steady state error integral gain

K, is the reference signal feedforward gain

6.2 System Identification

The LQG tracker employed requires the system be represented in a linear time-invariant state
form. The state based form represents the relationships between inputs and outputs and the

state variables of the system as a set of first order or difference equations.

Previous work carried out by (ElImas 2008, Hynek 2004) both developed separate models of
the spindle unit using finite element analysis modelling, and a linear model of the actuator
systems, including the driver and the actuator. These two models were then combined to
form the state based model of the system. To overcome issues with unknown specifications,
such as accurate stiffness and capacitance of the actuators and driving amplifier output
impedance, (Ogun 2012) extended these principals and used system identification to generate

the state based system model, using MATLAB system identification toolbox.
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The principal of system identification is to generate the state based model from measured
data, without any prior knowledge of the actual system. This overcomes the issues of
unknown system characteristics, such as assembly stiffness, and any governing mathematical
relationships. This generates a ‘black box’ model of the system, which represents the system
only as far as the input output data. The actual mathematical representations inside this

model may not bare resemblance to the system modules themselves.

In order to generate a suitable model three main steps are carried out:

e Recording the system response to an input signal
e Estimation of the state input and output matrices of the model

e Evaluation of the estimated model

A general state space representation of a linear is system is as follows:

x(t) = A®)x(t) + B(t)u(t) (6-11a)

y(t) = C()x(t) + D(D)u(t) (6.11b)

System identification is used to estimate the values of A, B, C and D. These matrices can then

be used within the LQG controller as described in section 6.1.

6.3 Input-Output Data

In order to collect the input-output data a linear sine sweep is used. This allows the various
resonate frequencies of the structure to be tested. This input-output data provides
information about the natural frequencies and damping co-efficients of the assembly which

may also be useful when considering various machining aspects, such as cutting speeds.
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The frequency of the sine sweep has a maximum value of 1KHz due to limited bandwidth of
the piezo amplifiers. (Elmas 2008) carried out testing and determined the maximum frequency
of the amplifiers to be 1424Kz at 3Db. At higher frequencies the author reported large roll off.
The newly increased specification of the small scale planer requires a maximum cutting speed
of 6000rpm, which equates to 100Hz, with a four knife cutter the maximum required
frequency is equal to 400Hz which is well within the limits of the piezo amplifiers available

operating range.

(Ogun 2012) reported that a change of rate of frequency used of 0.5Khzs™ gave a reasonable
trade-off between accuracy and subjection of the actuators to potentially harmful levels of

vibration, so this rate of change of frequency has been used here also.

The output data was recorded using the eddy current probes mounted within the spindle unit,
Figure 5-13. These signals were recorded at a sampling frequency of 1KHz, as were the input
signals. Each test lasted six seconds, thereby repeating the vibration input three times. During
all tests the spindle unit was stationary, (Lauffer, Regelbrugge et al. 1998) reports that the
non-rotating cutterhead will not have a significant effect on the influence of the system

dynamics.

The effect of different masses of the cutterhead was also investigated. In order to introduce
out of balance forces the cutterheads were designed such that masses could be bolted around
the circumference of the cutterhead. These masses would then introduce sinusoidal forces as
the cutterhead rotates. In order to achieve the same displacement of the cutterhead at

differing speeds different masses are required, Figure 6-2.
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Figure 6-3- Time Domain Response - 106g Cutterhead
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Figure 6-5 - Time Domain Response - 293g Cutterhead

The above figures, Figure 6-3, Figure 6-4 and Figure 6-5, show the dramatic effect the differing

cutterhead masses have on the response to a similar sine sweep input, with all other

components remaining the same. These differing responses highlight the advantages of using
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the system identification technique over the previously employed finite element analysis
technique. If the system is modified it is a quick test re-run to estimate the state-space model
rather than the more laborious previously employed techniques. These changes are not
limited to the small scale planer itself but also the supporting hardware such as the piezo

amplifiers and actuators.

6.4 State Based Model Parameter Estimation

In order to estimate the state based model parameters used within the LQG controller, as
stated in section 6.2, the MATLAB System ldentification Toolbox is used. The toolbox uses the
prediction-error minimisation, PEM, algorithm to estimate the model matrices from the input
output data, using the following objective function:

N
=15 ke
t=1

(6-12)

Where:

e(t) is the difference between the measured output and the predicted output of the model

N is the number of samples

Mathworks, the provider of MATLAB, report that the accuracy of the estimated model
depends on the number of data samples and becomes more accurate with increased numbers
of data samples, therefore the increased number of data samples through sweeping the

system three times should give an increase in estimated model accuracy.
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Y (um)

However, the parameter with the largest effect on the estimated model accuracy is the order
of the model. The model order needs to be capable of fully capturing the dynamics of the
small scale planer. In order to ascertain the accuracy of the model the input data is split into
two, half being used to generate the model estimate and the second half being used to
validate this model. In order to validate the model, the second half of the input data is fed into

the estimated model and compared to the original output data.
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Figure 6-6- Measured and Predicted Outputs for Second Order Model
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Figure 6-8 - Measured and Predicted Outputs for Sixth Order Model
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Figure 6-8 shows the increased correlation between the measured data and the model
estimated output with an increase in model order. However the increase in accuracy is far
reduced when going from a model order of four to six rather than from two to four. Above a
model order of six the increase in estimated model performance is reduced even further and
becomes negligible. A fourth order model has been selected to balance the requirements of
system accuracy and computational requirements. With every increase in model order the
computational requirements increase significantly, so the advantages with minimal accuracy
improvements are offset by the dramatic increase in computing overhead required. If the
model order chosen is not sufficiently accurate, the synthesized model may radically fail to
describe the actual system behaviour, (Sjovall, Abrahamsson 2007). Within this
experimentation a computer with 2GB of RAM running a 2GHz Pentium processor was

successfully used with a fourth order model generated as described above.

6.5 LQG Controller Parameter Tuning

Since the LQG controller provides a trade-off between optimal tracking, Q, and the
minimisation of the control force, R, it is the ratio between these matrices that is important
rather than the actual values. However there are conditions for the existence of a solution to
the Riccati equation, the matrix Q must be symmetric and positive semi-definite where R must
be symmetric and positive definite. To satisfy both of the requirements the matrices can both

be said to be the result of a scalar multiplication with the identity matrix;

Q=0Q,xI (6-13)

R=R,xI
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This allows the value of R, to be fixed and the value of Q, to be tuned to achieve optimal
control. Within the controller there is also a feedback gain, ki, which has a very strong
influence on the system performance. A Simulink model of the setpoint tracker can be found

in Section 12.1.

The values of R;, Q, and ki can be tuned using an iterative gradient descent method each
time the system is powered up. In a factory situation this may be at the start of the day.
Gradient descent attempts to find the local minimum of the gradient of the objective function,
in order to find the solution. However this can take valuable time away from the process of
machining timber if using a variable learning rate, whereas using a fixed learning rate can yield

poor results. An intelligent system may be implemented here to yield a potential benefit.

This leads to the implementation of either a single or multiple intelligent systems, thereby
perhaps generating a form of validation of the result, where one system can validate the
other. This is not however totally infallible as if a certain set of conditions ‘corrupt’ all of the
intelligent systems involved the validation may be lost. However to generate these systems a
certain amount of a-priori knowledge needs to be generated in order to train and test the

systems, using the real plant.

6.6 System Tracking Performance

In order to understand the effect the different parameters have on the system tracking
performance at different operating conditions a number of system tests were carried out. The

following plots show the effect of altering a single controller parameter by plotting both the
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desired and actual vertical position of the cutterhead throughout a number of full rotations,
whilst not machining timber. The performance is a measure of the output signal accuracy to
that of the reference signal, where a larger distance between the two profiles corresponds to
a larger error and therefore a lower system performance. It is important to note that due to
the non-continuous cutting regime, due to the discrete nature of the cutting knives, the
performance of the system is a measure of the accuracy of the displacement only during the
cutting period for each knife. For the remaining duration of the revolution the position of the
cutting head is less important, although a large displacement may lead to errors for the

subsequent pulses.
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Figure 6-9 - Graph Showing Overshoot, Settling Time and Rise Time Examples

Figure 6-9 graphically shows the definition of the terms overshoot, settling time and rise time

used here. Overshoot being the level to which the controller overshoots the set point position,
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settling time being the time taken by the controller to settle at the set point and rise time to

time taken by the controller to reach the set point within 5% of the set point position.
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Figure 6-10 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 1000rpm, High Feedback Gain (K = 15)
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Figure 6-11 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 1000rpm, High Feedback Gain (K = 15)
Zoomed
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Figure 6-10 and Figure 6-11 show the effect of a high feed forward gain, ks = 15, on the system
tracking performance. It can be seen that there is a high level of overshoot of the actual
vertical spindle position relative to the reference position. However the system has a fast
response to the step input due to this high level of gain. The apparent lag of the system from
the step input is caused by the processing time of the computers and associated electronics.

This was measured at a constant 2ms.
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Figure 6-12 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 1000rpm, Low Feedback Gain (K¢ = 1)
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Figure 6-13 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 1000rpm, Low Feedback Gain (Ki = 1),
Zoomed

Figure 6-12 and Figure 6-13 show the effect of a low feed forward gain, ki = 1, on the system
tracking performance. It can be seen that the rise time is quite large and the vertical position

of the spindle does not reach the desired reference position.
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Figure 6-14 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 3000rpm, Poorly Tuned
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Figure 6-15 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 3000rpm, Poorly Tuned, Zoomed

Figure 6-14 and Figure 6-15 show the effect of a poorly tuned LQG controller on the vertical
position of the spindle. The tuning parameters deployed when obtaining this graph were a ks
of 9.5 and a Q value of 57000. It can be seen that the system overshoot is circa 1 micron but
that there is almost a negligible settling time. The settling time being very low is a positive
quality for this set of control parameters, however the overshoot is not. The overshoot,
although a very small actual value, when considering the effects this will have on the
machined timber surface, is too large and therefore this set of parameters cannot be

considered to produce an acceptable machine operation.
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Figure 6-17 - Measured vs Desired Cutterhead Positions, TIR 0.005m, 3000rpm, Tuned, Zoomed

By altering the ratio of Q to R and the feed forward gain the performance of the tracker can be
modified and improved, as shown in Figure 6-16 and Figure 6-17. The controller parameters
deployed to obtain this improved system tracking performance were a k¢ value of 9.0 and a Q

value of 59600.

127



6.6.1. An Adaptive Approach

Unfortunately the tuned values of both controller parameters, Q to R ratio and k¢, change
with both speed and required spindle displacement. A multi-input multi-output neural
network has been implemented to generate the required values of Q and ks for the LQG

controller to provide optimal tracking of the spindle to the reference path.

A set of input-output data is required to train the network. This data is generated through
experience of machine capability, in terms of actuation speeds and forces, whilst at the same
time producing a high quality surface finish. Using the internal model, generated though the
system identification toolbox, un-tuned versions of both Q, R and ks are tuned to achieve
optimal tracking performance. This data is then stored in the a-priori knowledge base. The

operating conditions are then changed and the process repeated.

6.6.2 Data Generation

In order to achieve optimal tracking of the reference signal, optimal tracking, when discussed
within this thesis, needs to be defined. The three attributes used here to ascertain the quality
of the tuned controller are the rise-time of the spindle, the overshoot of the spindle and the
settling time of the spindle to the input reference pulse signal. Arbitrary magnitudes, based on
experience with the rotary wood planing test rig have been selected. Table 6-1 states these

characteristics used here to designate optimal control.

128



It must be stated that in most cases not all of these characteristics were able to be
consistently achieved for every reference signal pulse on every revolution of the cutterhead.
These discrepancies between revolutions, or perhaps the inability to achieve a certain
attribute on any revolution of the cutterhead, may be real, or may be artificially created by
the resolution of the sampling time of the vertical measurements for the spindle
displacement. At higher speeds the sampling frequency was not increased, as this is not
possible with the current equipment, and so higher frequencies of the spindle displacement
may have been lost. This would be particularly relevant to the rise time of the cutterhead not

accurately being measured and being extended by potentially the sampling time period.

Table 6-1 - Optimal Control Characteristics

Rise Time <0.002 seconds
Settling Time <0.05 seconds
Overshoot <0.5um

Figure 6-18 shows a flowchart of how the training data was generated. This was a purely
manual technique and based heavily on user experience, in a similar fashion to tuning a PID
controller, (Astrom, Hagglund 2004). The data generated also has encoded within, although

not directly accessible, machine characteristics as well as operating conditions.

129




Start

.

Manually Select Tuning

Parameters Based on Experience

:

Update Controller with New Alter Tuning Parameters Based

Parameters on Previous Run and Experience

l [}

Operate Test Rig and Monitor

Output on Screen

Is Performance

Optimal?

Stop

Figure 6-18 - Manual Parameter Generation for Optimal Control
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6.6.3 Network Training

A single, multi-input multi-output neural network has been trained and implemented to
generate the LQG controller parameters. Four different networks were tested to ascertain
which network features would provide a more improved parameter generation performance.
There are two different size data sets that have been used to train two different size neural

networks.

The networks were all trained within the MATLAB neural network toolbox using a gradient
descent back propagation method. The gradient descent method updates the network
weights and biases in the direction in which the performance function decreases most rapidly,
the negative of the gradient. The performance function used to train all the networks was the
mean squared error. This has been selected as it is a commonly implemented performance
function and is the default function used within MATLAB, (Wilson, Martinez 2003, Nakama

2009). The mean squared error is calculated as follows;

N (6-14)
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Where:

e; is the error of the network

t; is the target output

a; is the network output
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The gradient descent methods works to minimise the performance function, mean squared

error. An iteration of this function can be written as;

Xk+1 = Xk — A Gk (6-15)

Where:

Xy, is a vector of current weights and biases

Jx is the current gradient

ay is the learning rate

The networks are trained until one of any of the below target is attained:

e The maximum number of training epochs is reached

e The maximum amount of time is exceeded

The performance is minimised to the goal

The performance gradient falls below a set target

6.7 Network Parameter Generation Performance

In order to ascertain the performance of each of the networks graphs have been created
showing the original training data and the network generated parameter value. Figure 6-19,
Figure 6-20, Figure 6-27 and Figure 6-28 show the performance of the smaller network with
twenty hidden neurons, trained with the smaller data set. Figure 6-23, Figure 6-24, Figure 6-31
Figure 6-32 show the performance of the same size network, twenty hidden neurons, but

trained with a larger data set, across the full operating range of the small scale planer both in
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terms of speed and TIR. Figure 6-21, Figure 6-22, Figure 6-29 Figure 6-30 show the

performance of a larger network, fifty hidden neurons, but trained with the exact same

smaller data set. Figure 6-25, Figure 6-26, Figure 6-33 Figure 6-34 show the performance of

the larger network, fifty hidden neurons, but this time trained with the larger data set.

Table 6-2 gives the split of graphs generating the Ksvalues.

Table 6-2 - K¢ Generation Network Figures

Smaller Training Set

Larger Training Set

(5 Entries) (21 Entries)
Smaller Network Size Figure 6-19 Figure 6-23
(20 Hidden Neurons) Figure 6-20 Figure 6-24
Larger Network Size Figure 6-21 Figure 6-25
(50 Hidden Neurons) Figure 6-22 Figure 6-26

Table 6-3 gives the split of graphs generating the Q values.

Table 6-3 - Q Generation Network Figures

Smaller Training Set

Larger Training Set

(5 Entries) (21 Entries)
Smaller Network Size Figure 6-27 Figure 6-31
(20 Hidden Neurons) Figure 6-28 Figure 6-32
Larger Network Size Figure 6-29 Figure 6-33
(50 Hidden Neurons) Figure 6-30 Figure 6-34

134




Table 6-4 - Different Network Sizes and Inputs

Smaller Training Set Larger Training Set
(5 Entries) (21 Entries)
Smaller Network Size
Network A Network C
(20 Hidden Neurons)
Larger Network Size
Network B Network D
(50 Hidden Neurons)

Table 6-4 gives the different networks an arbitrary designation showing how each network is

both providing a K;; value and a Q value.
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Figure 6-19 - Small Network (20 Hidden Nodes) K¢ Generation Performance using Smaller Data Set (5 Entries) for
TIR of 10um
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Figure 6-20 - Small Network (20 Hidden Nodes) K¢ Generation Performance using Smaller Data Set (5 Entries) for
TIR of 15um
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Figure 6-19 and Figure 6-20 show the smaller network, network A, 20 internal hidden nodes,
trained with the smaller data set, 5 different operating conditions each repeated 5 times,
performance when considering Ky generation across a range of operating speeds. It can be
seen that for both a TIR value of 10um and 15um the general trend is for a decreasing ks
value, and the network essentially follows this trend. The network performance for a TIR value
of 10um is quite good, the maximum error of 0.02 corresponds to a percentage error of the
full range of 3%, whereas when considering the maximum error for a TIR value of 15um the

maximum error of 0.07 corresponds to a full range error of 17%.

Figure 6-19 shows not only a lower maximum error but also a more consistent accuracy in
parameter generation than that of Figure 6-20 for the increase TIR value of 15um over 10um.
It is hypothesized at this time that the oscillation seen in Figure 6-20 is caused by the very
small training data set. However even with this small training data set the network is able to

generate potentially useful parameters.

137



Calculated Value of K

83

Comparison of KFF Values Across Speed Range for a TIR of 10um

8.2

I
—&— Network Computed Values
—8— Original Test Data

74
1000

2000 2500 3000 3500 4000 4500 5000

RPM

Figure 6-21 - Large Network (50 Hidden Nodes) K¢ Generation Performance using Smaller Data Set (5 Entries) for
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Figure 6-22 - Large Network (50 Hidden Nodes) K;; Generation Performance using Smaller Data Set (5 Entries) for

TIR of 15um
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Figure 6-21 and Figure 6-22 show the performance of the larger network, network B, 50
hidden neurons in the single hidden layer, when again trained with the smaller training data
set, 5 data entries. Figure 6-21 shows the performance on the network for a TIR value of 10um
and Figure 6-22 for a TIR value of 15um. Again the network fits the trend of decreasing ki

value as the rotational speed of the cutterhead increases.

For a TIR value of 10um the network has zero error and conforms to the training data set very
well, as shown in Figure 6-21, however the performance for a TIR value of 15um is
considerably lower when considering the maximum error. The maximum error of 1.8
corresponds to an error when considering the range in the training data of 450%. However
this anomaly only occurs in a single region of the parameter generation, circa 3000rpm of the
cutterhead, and the remaining areas of parameter generation are producing acceptable

results.

When comparing the results for the larger network and those for the smaller network it can
be said, that for these particular input-output data sets the larger network has a generally
higher performance that that of the smaller network, when trained with the very limited

training data set.
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Comparison of KFF Values Across Speed Range for a TIR of 10um
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Figure 6-23 - Small Network (20 Hidden Nodes) K¢ Generation Performance using Larger Data Set (21 Entries) for
TIR of 10um
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Figure 6-24 - Small Network (20 Hidden Nodes) Ki Generation Performance using Larger Data Set (21 Entries) for
TIR of 15um
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Figure 6-23 and Figure 6-24 show the network, network C, parameter generation performance
for a smaller network, 20 hidden neurons in the single hidden layer, when trained with a
larger, although still relatively small, training data set, 21 entries. Although for both TIR values,
10um and 15um, the general trend of the network matches that of the training data, the
performance of the network has decreased with the larger training data set, when compared

to the earlier results for the smaller training data set of 5 data entries.

For a TIR value of 10um the maximum error of 0.095 corresponds to a range error of 13.5%,
and for a TIR value of 15um the maximum error of 0.05 corresponds to a range error of 12.5%.
At this stage the oscillatory behaviour of the network, as shown in Figure 6-23 is not
understood, although it may be due to the network having 5 hidden neurons and as the input
data activates these more or less across the range the generation performance reduces, in a

similar manner to fuzzy logic and the activation of the different membership functions.
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Figure 6-25 - Large Network (50 Hidden Nodes) K¢ Generation Performance using Larger Data Set (21 Entries) for
TIR of 10um
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Figure 6-26 - Large Network (50 Hidden Nodes) K Generation Performance using Larger Data Set (21 Entries) for
TIR of 15pm
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Figure 6-25 and Figure 6-26 show the network, network D, performance for a larger network,
50 hidden neurons in the hidden layer, when trained with the larger training data set, 21
entries. Again the general trend of decreasing ki with increasing rotational cutterhead speed

is matched by the network output.

The maximum error for a TIR value of 10um of 0.05 corresponds to a full range error of 7%
and for a TIR value of 15um the maximum error of 0.065 corresponds to a full range error of
11%. These errors however appear to be located in specific regions of the operating window
and for the main the performance is considerably improved than these maximum figures

would suggest.

If these results are compared to all of the other network sizes and input data entry sizes, the
general network performance appears to be improved with an increase in hidden layer size

and training data entry volume.
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Figure 6-27 - Small Network (20 Hidden Nodes) Q Generation Performance using Smaller Data Set (5 Entries) for

TIR of 10um
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Figure 6-28 - Small Network (20 Hidden Nodes) Q Generation Performance using Smaller Data Set (5 Entries) for

TIR of 15um
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Figure 6-27 and Figure 6-28 show the network, network A, performance for the generation of
a suitable value of Q across a range of cutterhead rotational speeds. As the cutterhead
rotational speed increases the general trend is for the value of Q to increase also, and in
general the smaller network, 20 hidden neurons in the hidden layer, trained with the smaller

data set, 5 data entries, corresponds with this trend.

For a TIR value of 10pm the maximum error shown in Figure 6-27 of 0.1x 10 corresponds to a
range error of 2%. However this error is at the edge of the operating window and in the main
the system performance is superior to this value. Figure 6-28 shows that for a TIR value of
15pum the maximum error is 1.4x 10* which corresponds to a full range error of 26%. As
shown in Figure 6-28 although the trend of increasing Q value with increasing cutterhead
rotational speed is similar the curve shape is quite different as predicted by the network when
compared to the actual data. This is most likely caused by the network having limited training

data and attempting to generate both values for k¢ and Q.
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Figure 6-29 - Large Network (50 Hidden Nodes) Q Generation Performance using Smaller Data Set (5 Entries) for
TIR of 10pm
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Figure 6-30 - Large Network (50 Hidden Nodes) Q Generation Performance using Smaller Data Set (5 Entries) for
TIR of 15um

146



Figure 6-29 and Figure 6-30 show the performance of the larger network, network B, with 50
hidden neurons in the hidden layer, when generating suitable values of Q with the smaller
training set, 5 entries, for two different values of TIR. Again the trend of increasing Q value for
increasing rotational speed of the cutterhead is matched and for a TIR value of 10um the
maximum error of the network appears to be zero. In this case the network is matching the
training data. However with a larger TIR value, 15um, the network performance decreases

significantly. Here the maximum error of 3.4x 10* corresponds to a full range error of 71%.

Interestingly the error is again there for the larger TIR value of 15 um as for the smaller
network trained with the same training data, but rather than the network generating a
significantly lower value of Q, the network has generated a significantly larger value of Q. This
anomaly point is again located around a rotational speed of the cutterhead of 3000rpm. This

may be a coincidence but further research effort should be expended to investigate this.
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Figure 6-31 - Small Network (20 Hidden Nodes) Q Generation Performance using Larger Data Set (21 Entries) for

TIR of 10pm
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Figure 6-32 - Small Network (20 Hidden Nodes) Q Generation Performance using Larger Data Set (21 Entries) for

TIR of 15um
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Figure 6-31 and Figure 6-32 show the performance of the smaller network trained with the
larger dataset, network C. This network again matches the trend of Q value with increasing
rotational cutterhead speed, however does not appear to have the anomalous results around

the 3000 rpm region.

The maximum error in Q prediction for a TIR of 10um of 0.25x 10" corresponds to a full range
error of 5.3% and the maximum error for a TIR of 15um of 0.2x 10* corresponds to a full
range error of 4.2%. If the complete trace is considered though the network performance is
again considerably improved over the majority of the operating ranges. The majority of the
errors as seen in the previous plots appear to be localised around specific points rather than

an offset, although some are oscillating around the manually tuned values.
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Figure 6-33 - Large Network (50 Hidden Nodes) Q Generation Performance using Larger Data Set (21 Entries) for
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Figure 6-34 - Large Network (50 Hidden Nodes) Q Generation Performance using Larger Data Set (21 Entries) for

TIR of 15um
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Figure 6-33 and Figure 6-34 show the results for network D, the larger network trained with
the larger training data set. Here the errors are almost zero and the maximum error for a TIR

of 15um of 0.04x 10 corresponds to a full range error of 0.8%

The above figures show two general trends in network performance in generating the
parameters required by the LQG tracking controller to produce optimal path tracking. As, in
this case, a single network is being tasked with providing parameters for all operating ranges
of the small scale planer, such as the full speed range and TIR range, it is likely to be a more
complex task than if multiple networks were being tasked with providing a single parameter
each. The above figures show the trend that as the number of hidden neurons increases the
parameter generation performance increases, that is that the error between the original

training data and the network computed values reduces.

It is also a fair assessment that as the training data size increased the performance of the
network also increased. When comparing Figure 6-28 to Figure 6-32, the error with the larger
training data set was again significantly lower. This may be due to the extreme small size of
the training data and the manner in which the network is trained. During the training phase
the data is split up and half used for network training and half used for validation purposes.
However with such as small number of data points, the network training input resolution is

very low and may be causing these distortions in the network performance.

Although some trends, such as those shown in Figure 6-26 and Figure 6-34 are an
approximation to a linear response, others such as those in Figure 6-33 are very non-linear in

response to changing RPM. These results would tend to suggest that networks trained with
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larger data sets perform more admirably than those trained with smaller data set, and that for
this application a larger number of hidden neurons in the hidden layer allowed the network to
match more closely the original training data. For the small scale planer application the larger
sized network trained with the larger data set was successfully implemented throughout the

remainder of this work.

6.8 Summary and Conclusion

This chapter describes the techniques used to model the small scale planer test rig using
system identification techniques to develop mathematical models. The aim of the system
identification is the estimate the state space models of the small scale planer without any a-
priori knowledge of the system. The estimation of the state space models is made purely from
input output data collected from the small scale planer through the excitation of the piezo
actuators. A sine sweep is used with a frequency range of 0-1KHz with a step size of 0.5Hz. A
fourth order model has been used to represent the system, giving a reasonable trade-off

between accuracy of the model and the computational complexity of the model.

Other research carried out on the test rig has developed an LQG controller to track a desired
cutterhead path to overcome cutterhead inaccuracies and vibration of the spindle unit.
However the Q/R ratio and feed forward gains within the model require tuning dependant on
the rotational speed of the cutterhead and the run out of the cutterhead knives. A multi input,
multi output neural network has been created to generate the required parameter values to
achieve optimal tracking of the reference path. Four different networks were created with

differing sizes of hidden layer and trained database sizes. For this particular application it was
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found that a network with fifty hidden neurons and a training database size of sixty three total

entries performed adequately, and has been applied to the small scale planer successfully.

153



7 Chapter 7 - Defect Measurement and Classification

Techniques

Assuming full control of the vertical position of the cutterhead spindle assembly, the
subsequent element to the control system is the generation of the reference path signal. The
generation of the reference path requires the accurate measurement of the machined timber
surface, as well as a-priori knowledge concerning cutterhead defects and their appearance on
the timber surface. This a-priori knowledge can then be used to characterise the surface

defect pattern from the machined surface.

This chapter analyses briefly the Wood Surface Measurement System, WSMS, the subsequent
data produced and its transformation using the principal component analysis, PCA, technique.
PCA is also briefly discussed and the format of the data output. This output from the PCA is
then passed to a pattern characterisation system. Two different types of pattern
characterisation techniques are discussed and analysed. The defect cause is then passed to a

following algorithm to generate the reference path, this is discussed further in chapter 7.

As this work forms parts of a collaborative effort, some of the work reported here, used to put
the authors work into context, is mainly based on the efforts of other group members. Some
of this research effort may be an extension to the initial concepts of others, but in these cases

there will be a significant expansion and/or modification to that work.
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7.1 Measurement Techniques

In order for the defects on the machined timber surface to be correctly characterised, surface
geometric data needs to be gathered. Investigations have been carried out utilising the shape
from shading, SFS and photometric stereo, PS to gather this geometric data, (Yang 2006,
Jackson, Yang et al. 2007). (Yang 2006) implemented two image photometric stereo and single
image SFS. All images were however taken using static workpieces, overcoming the common

issues involved with position matching with moving workpieces.

(Ogun, Jackson et al. 2012) have implemented a system known as temporal multiplexing on
the WSMS at Loughborough University but rather than assuming a negligible offset in multiple
images through rapid picture capture, an encoder has been used on the moving surface to
determine the pixel offset between the images. This has then allowed accurate matching of

the images to reduce any distortion to the measured surface.

Other work carried out has focused on the photometric stereo method, and indeed has been
implemented within this work by other members of the research group. Therefore only the

two image photometric stereo method will be briefly explained within this body of work.

7.1.1 Wood Surface Measurement System Principals of Operation
The wood surface measurement system employed within this research utilises a two image

photometric stereo type approach to determine the surface features on the machined timber
surface. To apply the photometric stereo underlying algorithms it is assumed that the

machined surface exhibits diffuse behaviour. (Maristany, Lebow et al. 1993) investigated the
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properties of unfinished timber and reports that, due to both its heterogeneous and

anisotropic nature, unfinished timber exhibits approximately diffuse behaviour.

Normal to Surface
Reflected Light

Light Source
g /4

Figure 7-1 - Idealised Specular and Diffuse Reflection - A Lambertian Surface - (Jackson, Yang et al. 2007)

A Lambertian reflection is one that exhibits reflection as shown in Figure 7-1. The reflection
has a directional component combined with a uniform diffuse dome, and the surface is known

as a Lambertian surface. Reflection from a Lambertian surface is shown in Figure 7-2.
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Camera

Light Source

Figure 7-2 - Schematic of Lambertian Reflection

Where

o is the zenith, or angle, of the light source

Tis the azimuth, tilt angle, of the light source

According to Lamberts law, reflection at a surface point (x, y) is determined by

—p(x,y) costsina q(x,y)sint coso + cosa

i(x,y) =iop(x,y)

VP2 y) + ¢2(ay) +1 Jp2(ey) + ¢2(xy) +1

Where
i(x, y) is the intensity reflected at the point (x, y)

i is the incident intensity

(7-1)

p(x, y) is the surface albedo, a coefficient that represents the proportion of light reflected

from the point (x, y) with respect to the incident light
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p and g are the gradient of the surface at any local point in the x and y directions

Potential issues with this type of measurement surround the reflectivity of the surface due to
a variability in the albido of the wood. However (Lebow, Brunner et al. 1996) have developed
a technique using principal component analysis of the spectral reflectance curves to classify
different features of the wood structure, such as Loose knots, tight knots, earlywood,
latewood, pitch pockets and pitch streaks. With this ability these areas of the timber may be
excluded from the classification as the WSMS may return false positive results of surface

waviness or results that would skew the classification.

Due to the geometry of the machining process it is assumed that there is no variation in the
height of the cuttermarks along the y axis, g(x, y) = 0. The cutterheads have been wire cut with

the knife mounting faces parallel to the axis of revolution. This reduces equation ( 7-1) to;

—p(x) costsinog + cos o (7-2)

Jpi(x) +1

i(x) = iop(x)

For the experimental arrangement employed at Loughborough, as detailed in section 0, the
two light sources are arranged opposite each other and both along the waviness direction,

T, = 180° and T, = 0° This then simplifies the arrangement in Figure 7-2 to that in Figure 7-3.
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Camera

Figure 7-3 - Schematic of the two image photometric stereo method, (Jackson, Yang et al. 2007)

Where

Sis the surface normal, coincident with the Z axis and the optical axis of the camera

X is a point on the surface profile

n(x) is the normal to the point

L1 is the vector pointing from the point x to LS1

L2 is the vector pointing from the point x to LS2

01 and g, are the angles between the surface normal S and L1, and S and L2. Since these

angles are equal, g is used.

y, is the angle between the normal n(x) and L1

¥, is the angle between the normal n(x) and L2
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Substituting the light source angles, T, = 180° and T, = 0°, into equation ( 7-2 ) gives;

p(x)sino + coso (7-3a)

il(x) = iOlp(x) m

—p(x)sino + coso (7-4b)

i(x) = ig2p(x) ,—pz(x) 1

Where
i91=lg2, as LS1 and LS2 are identical in intensity

Dividing equation ( 7-3a )by equation ( 7-4b ) gives;

i) —hkx) 1 (7-5)
i (x) +iy(x) tano

p(x)

Equation ( 7-5 ) shows that two images are required to calculate the gradient of the surface
under investigation. (Yang 2006) describe the requirements for these images to be converted
to intensity profiles and implemented the equation shown below, ( 7-6 ), to calculate these
intensity profiles.

. Zm 9ij (7-6)
C = —

()
The intensity profiles c(j) for the two timber surface images are then substituted for i; and i,

in equation ( 7-5 ) to give p(x). After substituting the intensity profiles into equation ( 7-5 ), the

first derivative of the surface, the slope, is given by;
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ds (7-7)

p(x) = dx

In order to extract the height data, the gradient data has to be integrated. (Jackson, Yang et al.
2007) describe a global integration technique, frequency integration, which is considered to

be the most relevant technique for this application.

The Fourier transformation of equation ( 7-7 ) gives;

P(u) = 2miuS (u) (7-8)
_ PQw) (7-9)

S@) = 2miuS (u)

s(x) = F71(S(w) (7-10)
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7.2 Principal Component Analysis

The output from the WSMS system is a complete normalised surface profile of a section of the
machined timber. This normalised x-y plot of the surface contains a considerable amount of
data in the form of data points, typically 280 data points per 0.1mm. When considering large
a-priori knowledge bases containing numerous timber surface examples and the computing
required to analyse this, with particular considerations to the speed of solution, a compressed

form of data is required.

Principal component analysis, PCA, is used as a method to reduce the number of observed
variables by generating a smaller number of artificial ones. PCA, also known as the Karhunen-
Loéve transform, KLT, is a standard data reduction technique which extracts relevant data,
attempts to remove redundant data, thereby highlighting hidden features and relationships
that exists between observations, (Yang, Ren 2011). PCA is a technique for reducing the
dimensionality of the data. These lower dimensioned data sets are known as principal

components, (Abdi, Williams 2010).

Principal component analysis is a mathematical procedure that employs an orthogonal
transformation of the observed data set from a high dimensional space to a lower dimensional
space. The variances of the data lie on the principal components such that the first principal
component has the largest variance and subsequent principal components have reducing

variance.
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7.2.1 Principal Component Analysis Implementation

The surface profile, with respect to timber length |, s(l) is recorded using the WSMS as
previously discussed. The local maxima and minima are connected using a cubic spline
approximation, (Ogun 2012), to create the upper envelope, e,per(l), and lower envelope,
€wer(l). The PCA is employed to reduce the dimensionality of the envelopes. These two

envelopes, the upper and lower, are then said to be two variables of the same size xand y.

To produce data with a zero mean, each data point within the dataset has the mean of that

dataset subtracted from it giving;

v (7-11a)

5 (7-12b)

This mean centring process is required to ensure that the primary principal component does

not represent the mean of the dataset, (Miranda, Borgne et al. 2008).

Co-variance is a measure of the linear relationship between two random variables and is then
calculated for the data set. For this x,,, and y,, are combined, such that they form the columns

of the resultant matrix, giving a matrix X. As the data is two dimensional the co-variance

matrix will be a two by two matrix.
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n — —

X - X -7 (7-13)

cov(X,Y) = Z( : )_(1l )
i=1 n

Where

n = number of elements in X

The co-variance matrix is formed as below;

_ [Covxx COny] (7-14)
COVyy  COVy,,

It is evident that for an n dimensional data set the co-variance matrix will be an n by n sized

matrix.

Since the co-variance is square, eigenvectors and eigenvalues can be calculated for the matrix.
These eigenvectors are then re-arranged in order of decreasing eigenvalues, giving the

principal components in order of significance.

7.2.2 Use of Principal Components
The principal components represent the variation between the upper and lower envelopes of

the surface profile. Rather than working with full datasets comprising of x-y plots of the
surface profile, PCA allows a two by two matrix to represent the surface. Upon inspection of
the principal components, implemented on different ranges of surface defects, distinct

patterns start to emerge.
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To show the patterns in the principal components, a number of simulations have been carried
out where the surface profile is shown as well as the upper and lower envelopes. During these
simulations it is assumed that the knives are all accurately ground and there is zero unwanted
vibration, unless otherwise stipulated. The principal components are shown along with the
surface profile. The diagonals of the principal components are the same and so have been

omitted.

7.2.2.1 Four Knife Finish with Once Per Revolution Vibration

The simulated surface profile and upper and lower envelopes for a four knife finish with a
once per revolution vibration are shown below in Figure 7-5 and the principal components,
along with relevant cutting data, are shown in Table 7-1. For the below simulation the out of
balance mass was positioned such that it aligns with knife two, ¢ = 0, as per Figure 7-4. It is

arranged such that knife 1 is the first to come into contact with the timber surface.

Cutterhead Rotation

. Direction
Knife 2

Knife 1 Knife 3

Feed Direction

Knife 4

Figure 7-4 - Cutterhead Numbering Convention
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Figure 7-5 - Four knife finish with once per revolution vibration (¢ = 0)
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Here the red lines are the upper and lower splines fitted to the local minima and maxima of

the blue line, representing the machine timber surface.

Table 7-1 - Principal Components for four knife finish with once per revolution vibration

Cutting Speed Feed Speed Knife Radius Vibration Principal
(rev min™) (mms™) (mm) Amplitude (mm) Components
3000 300 50 0.003 0.5105, 0.8599
3000 400 60 0.006 0.5108, 0.8597
3000 500 70 0.008 0.5113, 0.8594
2800 450 65 0.005 0.5119, 0.8590
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In order to ascertain the robustness of the PCA further simulation has been carried out with

varying position of the out of balance mass.
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Figure 7-6 - Four knife finish with once per revolution vibration (¢ = 1t/2)
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Figure 7-7 - Four knife finish with once per revolution vibration (¢ = 1t/4)
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Figure 7-8 - Four knife finish with once per revolution vibration (¢ = 1t/6)
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Figure 7-9 - Four knife finish with once per revolution vibration (¢ = 1t/8)

Table 7-2 - Principal Components for four knife finish with once per revolution vibrations at varying out of

balance positions

Vibration Amplitude, peak to peak (mm)

o (radians)

Principal Components

0.005

/2

0.5050, 0.8631

0.005

/4

0.5252,0.8510

0.003

/6

0.5279, 0.8493

0.007

/7

0.5200, 0.8542
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Figure 7-6, Figure 7-7, Figure 7-8, Figure 7-9 clearly show that although the same defect cause
has been active, a once per revolution vibration, the surface form is quite different. This may
make classification based upon the surface form itself difficult to achieve as all of these
surface forms would need to be classified within the same group. However Table 7-2 shows
that the output of the principal component analysis technique does not change a great deal.
This has large added benefits as not only is the amount of data greatly reduced, to a two by
two matrix, but the values within the matrix remain reasonably constant, making classification

a simpler process.

However for this to be a universal application, as it cannot be used as a classification tool if
the compressed data does not show a wide enough difference between samples, further

simulation has been carried out to test PCA on a range of different defect types.
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7.2.2.2 Four Knife Finish with Twice Per Revolution Vibration

In a similar manner to the once per revolution vibration a four knife finish with twice per

revolution has been simulated, the envelopes generated and the principal component analysis

carried out. The vibration positions have been varied, again in a similar manner to the once

per revolution vibration, but always diametrically opposite across the cutterhead.

N LY/ VY LV Y
g ; U \\ }l U U U \ }; l& j
N 5 10 14 20 25
Timber Length (mm)
Figure 7-10 - Four knife finish with twice per revolution vibration
Table 7-3 - Principal components for a four knife finish with twice per revolution vibration
Cutting Speed Feed Speed Knife Radius Vibration Principal
(rev min™) (mms™) (mm) Amplitude Components
(mm), ¢ (rad)
3000 300 50 0.003,0, 0,1
3000 400 60 0.006, /2, 3m/2 0,1
3000 500 70 0.008, /4, 5m/2 0,1
2800 450 65 0.005, /8, 9m/2 0,1

Figure 7-10 shows the surface profile generated by the simulations. This profile is very

different to that produced with the once per revolution vibration, and this is reflected by the

principal components calculated for the differing cutting parameters, shown in Table 7-3.
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7.2.2.3 Extended Principal Component Analysis and Data Structure

The limited amount of data produced using the principal component analysis, as applied here,
is not sufficient when considering larger numbers of knives on the rotary cutterhead. (Ogun
2012) has simulated a ten knife cutterhead and found that the change of the principal
components was only very small, circa (0.02, 0.01). To generate more data the application of
the principal component analysis has been modified slightly. Rather than just an upper
envelope and a lower envelope and average of these two envelopes is also included. This
additional input to the principal component analysis generate a three by three matrix rather
than a two by two matrix. This additional data does indeed provide additional information

which can be used to aid in the classification process.

S0
=
o
T
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=
&
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n il 10 14 20 28
Timber Length {rmrm

Figure 7-11 - Extended principal component analysis to include a third input data stream, the average of the
upper and lower envelopes
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Table 7-4 - Extended PCA Results for four knife finish with once per revolution vibrations at varying out of
balance positions using simulated data, based on simulation data

Cutting Speed | Feed Speed | Knife Radius Vibration ® Principal

(rev min™) (mms™) (mm) Amplitude (mm) | (radians) Components

0.4308, 0.8048, 0.4082,

3000 300 50 0.003 n/2 0.7074, 0.5831, 0.4082,

0.5666, 0.1109, 0.8165

0.4318, 0.8043, 0.4082,

3000 400 60 0.006 n/4 0.7017, 0.5839, 0.4082,

0.5667,0.1102, 0.8165

0.4471, 0.7959, 0.4082,
3000 500 70 0.008 n/6 0.6904, 0.5973, 0.4082,

0.5687, 0.0993, 0.8165

0.4443, 0.7974, 0.4082,

2800 450 65 0.005 n/7 0.6925, 0.5948, 0.4082,

0.5684, 0.1013, 0.8165

Comparing the results in Table 7-2 and Table 7-4, for similar operating conditions, we can see
very similar trends produced for certain elements on the analysis. Of note is the final column
always being the same values. This is similar to the diagonals always remaining the same for

the original PCA.

Table 7-5 - Extended PCA Results for four knife finish with differing operating conditions

Cutting Speed | Feed Speed | Knife Radius Vibration ® Principal

(rev min™) (mms™) (mm) Amplitude (mm) | (radians) | Components

0.8944,0.4472,0,

3000 400 50 0 N/A 0o o0 1

0.4472,0.8944,0

0.006
0.0009, 0.9129, 0.4082,
3000 400 60 (tWice per T[/Z 0.8942, 0.1835, 0.4082,
. 0.4476, 0.3647, 0.8645
revolution)
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Table 7-5 shows the extended PCA results for two further operating conditions, the ideal, and
a twice per revolution vibration. These results are clearly different to the results for a once per
revolution vibration and the ideal has the same type of format as for the original PCA, with a
number of 0’s and 1’s. These results remain constant over all operating conditions while there

is a four knife finish.

7.3  A-Priori Knowledge Base

Recognising the potential of the principal component analysis technique to produce data
patterns with trends based on surface waveforms and hence some information concerning
defects, a synthetic a-priori knowledge base has been generated, similar in concept, although
different in realisation, to that described by (Khairy 1996).This database was generated using
algorithms based on the circular arc theory rather than recorded from real specimens as to
save time. The principal component analysis was applied to these synthetic surfaces as well as

the defect cause.

In order to overcome any defects on the machined timber surface, the first step taken within
this body of work is to attempt to ascertain the cause of the defect. The defects under
investigation are both out of balance forces and run out of the knives. These two types can
also be mixed together to generate a pseudo third type of defect cause. Once the defect cause

has been correctly and fully identified corrective action can then be implemented.

The intention is to implement a system capable of interrogating the output of the principal
component analysis and classify the defect into pre-defined real world categories. However to

categorise the defects into pre-defined categories there is a requirement to obtain an a-priori
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knowledge base in order to compare and contrast the measured surface to. This database
must cover a wide range of defects and operating parameters of the small scale planer test
rig. A range of pitches from 1mm to 5mm has been selected as 1mm is the minimum pitch
that the WSMS is capable of detecting and 5mm is a poor quality surface finish. This range of
pitches is covered using 1mm increments. At each pitch a total of four different proud knife
situations are simulated. Each knife has been simulated with a maximum run out of seven
micrometres, due to a limitation of the algorithm used to simulate the machined timber
surface. Vibration has also been added to the cutterhead with a maximum amplitude of two

micrometres at 45° increments.

These values were selected as they are all within the scope of the small scale planer test rig
and allowed the use of the existing simulation tool developed for this research. The dataset
was specified only for a four knife cutterhead as it was assumed that the number of knives on
the cutterhead would be known prior to machine operation and an appropriate dataset
selected and used, therefore it was not necessary to mix datasets with differing numbers of
knives on the cutterhead. The knives were assumed to be spread equidistantly around the
cutterhead, and during the initial testing and development phase, no noise has been added to
the surface profiles produced. The final a-priori knowledge base stores the three by three

matrices as row vectors and then a textual based cause for the defect.

7.4 Defect Classification Tools

With a wide range of data within the a-priori knowledge base covering a number of different

defects, the subsequent process is to classify the defects. The principal here being that
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patterns can be picked out from the principal component data in order to classify the defect

cause.

7.4.1 K-Nearest Neighbor
K-nearest neighbor, KNN, is a commonly used method for classification in pattern recognition.

KNN is sometimes known as a lazy learning algorithm as all of the computation is deferred
until the actual process of classification. Classification is based upon the entire training set.
This has both advantages, such as the ability to easily add new data to the data set without
any retraining time, and disadvantages such as the requirement to continually maintain the

dataset, and the actual classification phase can become quite computationally demanding.

KNN assumes that the data is in a feature space where each pattern data point is represented
as a point in n-dimensional space. In this case the data points are the modified output of the

PCA, a nine by one row vector.

7.4.1.1 Principals of K-Nearest Neighbor

K-nearest neighbor is a simple classification technique based on a majority rate of its
neighbours, where the object is classified based on its closest k neighbours. Unlike other
adaptive techniques there is no real training phase, just the storing of the a-priori knowledge
base which contains both data points and classifiers. During this research the distance metric

employed is the squared Euclidean distance.

Squared Euclidean distance has been chosen as it places progressively greater weight on
points that are further apart. Although not strictly a metric as it does not satisfy the triangle

inequality for a Euclidean geometry, however to compare (Wang, Zhang et al. 2005) have used
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the squared Euclidean distance transform, SEDT, directly upon image analysis tasks. One
potential failure of this type of algorithm, KNN, is that the number of samples of each type will
tend to dominate the classification of the test vector. However the synthetic A-Prior
Knowledge Base, APKB, generated has equal number of all defects under investigation, such

that no one type of defect will dominate the classification task.

At the time of classification the query vector distance is measured to all the other nodes
within the space. The nearest k nodes are then selected and the query node is classified to the

modal classification of these k nodes.

v

Figure 7-12 - K-nearest neighbor graphical example, k=3

Figure 7-12 gives an example to the classification technique itself. The query node, solid black,
is measured to all surrounding nodes. The three nearest nodes are selected and the query
node is classified based on the modal nearest nodes, (Lagui’a, Castro 2008) in this case the
solid blue classifier. This type of classification, although very simplistic, is logical, and could be

said to approximate the manner in which a human may attempt the problem.
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In order to assign some form of confidence to the classification, the distance metric has been
used further with some additional post processing, (Mitchell, Remmel et al. 2008). The
assumption here is that if the distance to a known set of samples is very low then there should
be a higher confidence in the classification than if the distance to the closest known data
points is large. To achieve this the distance to the nearest k nodes of each type is measured

and then compared to the other remaining known classifiers.

A further extension to the KNN technique has also been implemented. If k approaches the
total number of nodes of each classification, attempts to find the centre of each classification
area can be made, and the classification can be carried out based on the centre location of
each classification type distance to the query node, rather than the modal classification of the

nearest k nodes.

v

Figure 7-13 - Modified K-nearest neighbor approach

This approach does increase the level of computation required by a small amount, although

with the speed of modern desktop computers this speed difference is insignificant to the
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overall success of the classification technique. This adaption of the technique attempts to
overcome any outlier issues and is a more heuristic approach to the problem of classification,
utilising all of the available data rather than being restricted to a small slice of the total

available data.

7.4.2 Pattern Recognition Neural Network
A second technique has been implemented within this research. A pattern recognition neural

network has been implemented using the inbuilt MATLAB ‘patternnet’ function. The
patternnet function describes a feedforward neural network trained to classify inputs
according to target inputs. The feedforward structure of the network consists of three layers.
The first layer is connected to the input, and here has nine neurons as the output of the
principal component analysis is a three by three matrix. The centre layer consists of a number
of neurons, this value has been modified to realise the network potential, and the final layer
produces the network output. The number of neurons in the final layer is equal to the number
of classification cases. In an ideal situation only a single neuron in the output layer is activated
when the network is presented with a full set of input data. With all the other output neurons
output becoming zero and the activated neuron becoming one. However in reality this is not
the case and a number of the output neurons are semi-activated. Depending on the activation
level this can become a source of uncertainty. If for example a number of output neurons are
activated to a similar degree it becomes difficult to have full confidence in the classification

output presented by the network, shown schematically in Figure 7-14.
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Ideal Real Type

Output Output
1 0.55
0 0.45

Figure 7-14 - Simplified Patternnet Network showing both ideal and
real type outputs

7.4.3 Performance Differences between K-Nearest Neighbour and Pattern

Recognition Neural Network
Multiple size neural networks have been produced, the hidden layer size was varied, as well as

multiple types of k nearest neighbour algorithm, the value of k was altered as well as the

voting technique employed. In order to test the systems a selection of one hundred data

points were taken from the a-priori knowledge base and shown to the particular system. The

same data points were used in all cases. The classification was then carried out and the result

recorded.

The results are presented below in Table 7-6 and Table 7-7.

Table 7-6 - K Nearest Neighbour Classification Results

Majority Case Distance Weighted (1/d) Distance Weighted (1/d?)
k % Correct % Correct % Correct
1 63 62 64
3 76 79 81
5 94 96 95
Full Dataset 97 98 97

Two different distance weighting metrics were implemented as shown in Table 7-6. These

were selected as they are some of the most common used within the research community. Of
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high importance was the length of time taken to compute the classification when using the full
dataset size for the value of k. Even when using modern high speed computers the system
took up to an hour to compute the classification. This is clearly not a suitable solution when
trying to work in real time. This system may be operating within the slower outer loop, as
described in section 2.8.1, the classification will need to be computed in a number of seconds
rather than an extended duration, otherwise the quantity of wood passing through the

machine that may be outside the required specification could be immense.

Table 7-7 - Neural Network Classification Results

%
Number of Hidden Neurons | Correct
5 40
9 92
10 85
15 84
20 87

Of interest was the strength of classification with the neural network type solution. With the
number of hidden neurons set at five, activation levels of the different output neurons were
spread across all the output neurons rather than there being a modal output neuron. Whereas
as the number of hidden neurons was increased to nine, to match the input layer size, the
spread was reduced and the confidence in the classification increased. It was also noted that
the classification time of the K-nearest neighbour technique was measured in minutes, a
similar duration to the training time of the neural network type approach. However this is a
single hit when considering the neural network approach rather than a wait on each and every
classification operation with the K-nearest neighbour approach. This deficit for the K-nearest
neighbour is offset by the ease of implementing additional data to the dataset, when the

additional training requirements of the neural network is taken into account.
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7.5 A-Priori Data Considerations
When looking at more detail at the random data points used to test the different classification
approaches, a number of trends can be seen. These trends have a bearing on the classification

result and on the a-priori knowledge dataset used within the techniques themselves.

Where the test data node, the set of data to be classified, lies within the boundaries of a
classification area the classification is more easily carried out than when the test node lies at
the boundary between two or more different classification areas. This observation is perhaps
simplistic but can have an effect on this particular application. The final application of the
classification type needs to be brought into consideration. If the classification is to be used
solely for the purpose of actual knowledge about the defect cause then the classification itself
needs to be precise. However, as it is in this case, the classification is to be used by a

subsequent sub section, some inaccuracies or simplifications can be made.

Of crucial importance to this work is the observation that both defect conditions under
consideration here, proud knives and out of balance forces may be overcome with similar
actions, the vertical movement of the cutterhead. With this in mind the classification
requirements can be modified such that, rather than absolutely identifying the absolute
cause, which can lead to potential errors in classification where two cases can lead to the

same surface waveform;

1. Proud knife in position one and short knife in position three.

2. Out of balance mass located at knife one

To a classification of the corrective action;

1. Lift at position one and plunge at position three
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This type of technique reduces the possible number of classifications, but does reduce the
ability of the user to have a definite cause of the cutterhead inaccuracies. If this can be made
to generate separation of the datapoints between the different classification regions the

classification success may be improved, as shown in Table 7-8.

Table 7-8 - K-Nearest Neighbour Classification Success Based on Modified A-Priori Knowledge Base

Majority Case Distance Weighted (1/d) Distance Weighted (1/d?)
k % Correct % Correct % Correct
1 82 81 81
3 89 86 87
5 97 96 97
Full Dataset 99 100 99

It was again noted that errors occurred when the test node were on the border of the
classification region area. Within the dataset not all regions were possible to separate but the
reversed approach to the classification has made a significant improvement to the

performance of the system.

7.6 Conclusions
This chapter has briefly described the vision system employed within this research. The

principal component technique of data size reduction has also been explained, as has the data
shape and size produced by the technique. This data has been used as a form of a-priori
knowledge base for a number of different classification techniques successfully. Based on the
final use of the classification result, and using the important observation that for the rotary
wood planing process both defects under investigation are overcome using the similar actions,
the vertical movement of the cutterhead, a reversed method of interpreting the data has been

used to further improve the system performance.
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The following chapter describes how the classification results are utilised and the novel
approach employed to maintain a high quality surface finish on the machined timber surface

in real time.
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8 Chapter 8 - A New Approach, Subtle Changes

This chapter describes a new heuristic subtle change approach to control the reference signal
for the controller. The approach described uses a-priori knowledge about both the rotary
wood planing machine and the cutterhead geometry. A-priori knowledge regarding previous
experience of the cutting process is also used. If therefore this a-priori knowledge is not
known, or proven to be incorrect, this approach may fail to generate a correct reference
signal. However these requirements do not render the approach useless for other
applications. The approach can be modified to be applied to other machining and

manufacturing processes with suitable a-priori knowledge.

In this application, the geometry, in simple terms, of the cutterhead must be known. For the
test shown within this thesis the cutterhead has four cutting knives spaced equidistantly

around the circumference of the cutterhead, as shown in Figure 8-1.

Figure 8-1 - Example Cutterhead Geometry
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Where;

The exact radius of the cutterhead and knives need not be known accurately, as long as the
difference between the radii of the different knives is within the movement limit of the
actuation technique, in this case the piezo actuators. One goal of this technique is to
overcome the differing radii of the four cutter knives whilst producing a higher surface timber

finish.

8.1 Corrective Action Complication
This section will describe some of the complications associated with the application of

corrective action on the rotary wood planing machine.

Figure 8-2 - Example Timber Surface Cut with a Single Proud Knife on a Four Knife Cutterhead
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If presented with the surface profile in Figure 8-2, and with a-priori knowledge concerning the
number of knives on the cutterhead, it can be deduced that the surface profile is the result of
a single proud knife around the four-knife cutterhead. However, to apply the correct
corrective action to lift the proud knife such that an ideal surface profile is produced, a link
needs to be generated between particular knives to particular cuttermarks. Without this link
the definite solution allowing the correct corrective action to be applied cannot be found and

there is a 75% chance of applying the corrective action to an incorrect knife.

In some applications known datum points or fiducials are present which aid in positioning,
such as printed circuit board manufacture. These allow vision systems to take corrective
action for board positioning tolerance errors. This type of solution is not utilised for rotary
wood planing machines, as it would require the production of another, possibly unwanted,
surface feature, such as a notch, to identify and link the cuttermarks to particular cutting
knives. Using the test rig at Loughborough we could accurately locate the timber edge using
the rotary encoder within the motor, and the cutterhead using the rotary encoder in the
motor. Using these two positions it would be possible to create the link between the knives
and cuttermarks by counting the cuttermarks from the edge. This type of approach however is
not suitable to a production machine as it would require time consuming setups of the timber
which would reduce the amount of timber produced across a production time. Therefore a
more intelligent approach is sought in order to match the cuttermarks to particular knives

through a mix of a-priori knowledge and knowledge created in real time.

8.2 Generation of Further Data in Real Time
The approach described later in this chapter, section 8.4, relies upon the generation of further

data in real time mixed with a-priori knowledge concerning the cutterhead geometry. Using
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these two data streams allows the generation of suitable corrective action, in the form of a

reference path, and then applied to the controller to position the cutterhead.

Although the initial defect cause may not be fully identified, the positions of the knives around
the cutterhead does not alter during the cutter process. At the core of this approach is the
concept that making a subtle change to the reference path, and therefore to the cutterhead
rotation centre, will attempt to generate a known link between particular knives around the

cutterhead and specific cuttermarks on the timber surface.

However, altering the centre of rotation position of the cutterhead may potentially have a
negative effect on the machined timber surface, if not moved in line with the geometry of the
cutterhead. In order not to generate quantities of waste timber, these trial modifications of
the reference path need to be within the allowable tolerance of wave pitch, but remaining

large enough to be easily distinguishable from any run-out of the cutterhead.

8.3 Requirements for Subtle Change Approach

In this application, rotary wood planing, the overriding requirement, for the subtle change
approach to operate correctly, is that the system operates in a repetitive manner, both in the
depth and pitch of the cuttermarks on the timber surface, given a stable reference path to the

controller, Figure 8-3.
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Figure 8-3 - Required Repetitive Cuttermarks on Timber Surface

Figure 8-3 shows an example of this repetitive requirement. This is an example of a four knife
cutterhead with a single proud knife. The approach relies on the repetitive action of the
process in order to generate accurate additional information about the cutterhead in real
time. If, for example, the surface form in Figure 8-4 were cut into the timber surface,
attempting to identify the surface defect corrective action, through the generation of a
suitable reference path, and therefore cut a higher surface quality into the timber, becomes

far more difficult.
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Figure 8-4 - Non Repeating Surface Form

If this application is transposed to other rotary applications, such as metal grinding, this
requirement also holds true. However, the technique, in principal, can be applied to other
applications where this is no longer a requirement. This is discussed in more detail in section

8.6.

8.4 Principal of Subtle Change Technique

This section describes briefly the steps involved in this subtle change approach.

Step 1:- Carry out cutting operation with ‘zero reference path’. A zero reference path is a path

with zero amplitude such that it does not affect the cutterhead path.

Step 2:-Carry out surface waveform analysis and save result to memory with a note of

reference path.

Step 3:- Modification of reference path such that knife 1 is displaced a known level (+10um)
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Step 4:- Carry out new cutting operation with new reference path

Step 5:-Carry out surface waveform analysis and save result to memory with a note of

reference path

Step 6:- Can the change be identified? If yes, carry out appropriate modifications to reference
path to counter original defects, and carry out new cutting operation, carry out

surface waveform analysis and inspect new surface. If no go to step 7.

Step 7:- Modification of reference path such that the subsequent knife is displaced a known

level (+10um). Go to step 5.

A flow diagram of this new approach is shown in Figure 8-5.
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Figure 8-5 - Flow diagram of heuristic approach

The crux to this approach is that both knife run-out and out of balance forces on the
cutterhead or drivetrain, causing oscillation of the cutterhead, or external forces, are all

countered through the same correction action, vertical movement of the centre of rotation of
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the cutterhead. Section 6 described a system of defect classification and a modified system
outputting the type of action required to overcome the defect, without actually identifying the

actual defect cause, such as;

“Lift knife 1 & plunge knife 3”

Rather than

“Out of balance mass at knife 1” or “Proud knife 1 and shallow knife 3”

This simplification to the analysis of the surface waveform classification also simplifies the
subtle change technique, in that the full description of the cause of the defect needs to be
transposed to a corrective action, but this step is no longer required. It does however mean
that as an operator the full cause is no longer known, but a second classification technique,
operating in parallel may be used to inform the operator independently of the system used to

pass information to this approach.

This approach can be said to be iterative, depending on the geometry of the cutterhead. Steps
5 to 7 may be looped around a number of times, until the system can identify a link each knife
to a particular cuttermark. Once this link is made, the system is able to apply corrective action

to the cutterhead through the generation of a suitable reference signal.

8.4.1 Step 1 - Initial Cutting Test
This first simple step in the process is to perform a cutting test without any displacement of

the cutterhead via a modified reference path.
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8.4.2 Step 2 - Initial Surface Waveform Analysis

This step of the process allows a fuller understanding of the cutterhead, including, although
not distinguishable from, any vibration input into the cutterhead and/or system as a whole. A
note of the reference path is also made. In certain conditions, such as when iterating through
the scenario for a second time due to unknown heights of the cuttermarks, the initial cut may
be made with a previously generated reference path. In this scenario this reference path is

made known as the default unmodified reference path.

8.4.3 Step 3 - Modification of reference path

A modification is made to the reference path. This modification is to a single cutting knife
around the cutterhead, when compared to the default reference path. The position of the
modification is known, such that the knife number that is plunged deeper into the timber
surface is known. This will allow for a partial discreet match between the initial machined

surface and the secondary machined timber surface to be found

8.4.4 Step 4 - Second Cutting Test

A secondary cutting test is then carried out. This test uses the modified reference path, with a

single knife plunged deeper into the timber surface.
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8.4.5 Step 5 - Secondary Surface Waveform Analysis

The secondary timber surface is then analysed and the defect classified. The defect
classification when combined with the previous defect classification and the known changes

to the reference path, will potentially allow the link to be found.

8.4.6 Step 6 - Identification and Generation of Link

Step 6 is the key novelty to the approach. Although this approach is based on pattern
matching between two surface profiles, this implementation within this body of work is purely
a logical implementation. The inputs to this body of research, from the previous steps, are the

outputs from the defect classification.

‘Plunge Knife 1’

‘Lift Knife 2’

The approach, as implemented here, uses these output phrases to generate idealised

defective surface forms. Figure 8-6 gives an example of these idealised surface forms.

‘Plunge Knife 1’

‘Lift Knife 2’

Figure 8-6 - Example Idealised Surface Defects
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Using a series of case based arguments the logical heuristic approach will ascertain whether a
link between cutting knives and cuttermarks can be made. If this link can be made, the known
change to the reference path will be the cuttermark position that does not overlap between

the two surface profiles.

‘Plunge Knife 1’

Figure 8-7 - Example Initial Surface Form

Using the surface plots in Figure 8-7, the initial defect classification would have returned;

‘Plunge Knife 1’

It is key that the system will provide the same classification if any of the four cutting knives

require plunging.

‘Plunge Knife 1’

Figure 8-8 - Plunge Knife 1 Surface Defect Example

In order to generate the required link between specific cutting knives and their cuttermarks, a

single discreet position of overlap must be found.
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Figure 8-9 - Matched Idealised Surface Defects

In Figure 8-9 the only cuttermark that does not match between the original surface profile,
lower profile in figure, and the changed reference path profile, upper profile in figure, is the
cuttermark for the knife where the displacement was modified by the reference path, cutter 3
in the classification profile in Figure 8-9, although the actual knife modified by the reference
path was knife 1. There are no other positions where the upper profile can be matched to the

lower profile. This allows a definite link between cuttermarks and cutting knives to be created.

Once this link has been made, the original surface profile is re-evaluated. During this re-
evaluation however the relative surface heights are measured. Due to limitations with the
WSMS system, relative heights of the surface waves are given rather than absolute heights.
Once measured the heights are scaled such that the maximum displacement is 7um. This

value has been arbitrarily selected based on experience with the system.
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In Figure 8-9 the new reference path link would be calculated as follows;

e Matched knife through classification is knife 3, K.

e However the knife displacement modified through the modified reference path is
knife 1, Kmp

e Therefore actual knife numbers are K,ct = Kmc+(Kmc-Kmp)

e Therefore the knife that originally required plunging is 4+(3-1) = 6. Which due to a
four knife cutterhead the actual knife is the remainder when all complete revolutions

are removed, which in this case is 2

8.5 Potential Complications

This section of text describes some potential complications of the approach as it has been
implemented here. Some of these complications are brought on by limited information about
the timber surface, such as the depth of the cuttermarks, whereas other complications are
part of this new approach, such as the high dependency on the accuracy of both the measured

timber surface and the classification of the defects.

8.5.1 Measurement Dependency

At this stage of development this approach relies heavily on the surface measurements. The
surface measurements are key to the successful deployment of the technique and are used
both at the initial stage and throughout when matching cuttermarks to particular knives. If the
surface measurement technique, here the stereoscopic vision system but on other
applications contact methods may be more appropriate, fails to give reliable data, then the
algorithms underpinning the approach may not be able to generate a suitable reference path

to produce the desired timber surface finish.
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8.5.2 LostLinks

Once the system has overcome any cutterhead inaccuracies and/or out of balance forces and
the desired surface finish is produced, if a knife wears or the system changes, the entire
process of generating the link between knives and cuttermarks, through known subtle
changes, is required to repeat. At this stage of development it is not possible to instantly

isolate the cause behind the generation of the new defect.

8.5.3 Number of Knives Around the Cutterhead

A further complication is linked to the number of knives around the cutterhead. As the
number of knives increases the number of possible outcomes from a single subtle change
increases and the possibility of not generating the required link between cuttermarks and
knives may not be created. If the cutterhead has two knives and the original surface profile
indicates that knife A is required to be plunged, there is a 50% chance that the knife required
to be plunged is in position 1. If a reference path plunges knife 1 and the surface form is
improved then it holds that it was indeed knife 1 that needed to be plunged. If however the
surface waveform is not improved then it holds that the knife that requires plunging was

actually knife 2. Therefore a single change is able to generate the required link.

8.5.4 Missing Cuttermarks

The system currently uses the input from the defect classification. If however a cuttermark is
cut out by a subsequent knife, due to a large run-out on that particular knife, the defect
classification technique will not be able to classify the surface profile correctly, as one of the
cuttermarks will be missing. This is currently only a complication due to the classification a-

priori knowledge base method of organisation. In principal the pitch of the cuttermarks could
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be measured, which would highlight that one of the cuttermarks was significantly larger than
the others. The heuristic approach could then be implemented as usual. Once the link had
been created, there would then be a 50% chance selecting the correct knife to lift. There
would be no way, currently, of recognising, for example, if knife three had cut out knife four,
or if knife four had cut out knife 3. However in order to overcome this a further iteration can

be carried out in order to check if the first knife lifting selection is correct.
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8.5.5 Input Geometry
However if the cutterhead holds four knives, then the number of possible outcomes increases

to four, Figure 8-10

Figure 8-10 - Possible Surface Forms Produced By a Single Plunged Knife Reference Path

Figure 8-10 shows the outcome of a single knife plunge type reference path, given the single
shallow knife shown on the right hand side of the figure. Each of the outputs, A, B C and D,
represent a different reference path, each plunging a different knife. In this example all of the

four reference paths result in a link between cuttermarks and knives.

If output A is measured, it is clear that the reference path is plunging the incorrect knife as
the surface form is not an ideal profile. However, using the known geometry of the

cutterhead, the deepest cuttermark is opposite, on the cutterhead, the original shallow knife,
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which allows an accurate reference path can be created, where the correct knife is plunged

deeper into the timber.

If output B is measured, again it is clear that the original reference path is not plunging the
correct knife into the timber. Again, however, the surface form, when combined with the
known cutterhead geometry, is sufficient to create a new reference path to overcome the
cause of the surface defects, assuming the level of plunge is within the capabilities of the rig.
The knife that has been plunged into the timber is the knife preceding the knife that caused
the original shallow cuttermark. Therefore a modified reference path plunging the knife

following the original plunged knife should be used to improve the surface profile.

If output C is measured, an ideal surface profile, the most likely reason is that the original
subtle change to the reference path, is aimed at the correct knife. At this point the depth of

plunge of the knives needs to be altered to generate the most ideal surface form possible.

If output D is measured, the opposite situation to that as if output B is measured, in that the
reference path has not plunged the correct knife, but the knife plunged into the timber in this
case is the following knife, rather than the preceding knife in output B, to the knife which is

producing the shallow cuttermarks.

Therefore, for the input profile as that in Figure 8-10, all possible single knife subtle changes to
the reference path result in the required link between cuttermarks and particular knives.

However this is not always the case.
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Figure 8-11 - Further Possible Surface Forms Produced By a Single Plunged Knife Reference Path

Using the input surface profile from Figure 8-11 a differing scenario is played out.

If output A is measured, due to the repetitive nature of the rotary planing technique, a link
between the cuttermarks and articular knives cannot be made. Although at first glance it
would appear that it can be, Figure 8-12 shows the surface form based on output A. Based on
this surface profile, it is not possible to ascertain whether the knife plunged is the knife before
or after the original deep cutting knife. In this case a different subtle change is required to

generate the required link.
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Figure 8-12 — Timber Surface Based on Output A

If the surface profile measured is similar to output B, a similar situation to output A from
Figure 8-11 is reached. The new surface profile, when combined with the a-priori knowledge
of the cutterhead geometry, is able to generate the required link between cuttermarks and
particular knives. The change to the surface profile indicates that the knife opposite, when
using a four knife cutterhead, the original proud knife is now producing deep cuttermarks.

This allows a new reference path to be generated to lift the original proud knife.

If a surface profile similar to output c is measured, the actual full surface profile will be similar
to that in Figure 8-12, and the same reasoning as for a surface profile A holds true, and the

different subtle change to the reference path needs to be used to generate the required link.

If the surface profile measured is similar to output D, similar to the original surface form, then
the conclusion drawn is that the knife that has been plunged into the timber surface, was the

same knife as the originally proud knife. Assuming this conclusion then a modified reference
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path can be generated and implemented to lift this knife, and generate an improved timber

surface quality.

For these two different input surface forms, there are differing levels of success for the four,
based on a four knife cutterhead as in Figure 8-1, different possible subtle changes using the

reference path. In principal the maximum number of required subtle change is as follows;

c=n-—1 (81)

Where;

¢ = maximum number of subtle changes

n = number of knives

This equation assumes that all knives cuttermarks are clearly visible and subsequent knives
have not cut out any cuttermarks. If this is the case the current solution will not succeed in
generating the required link between particular knives and their cuttermark, as the

assumption is that all knives generate a particular cuttermark on the timber surface.

8.5.6 Knife Displacement Magnitude
A current complication of the approach concerns the actual knife displacements and their

effect on the approach. The WSMS does not give actual heights of the waves on the surface
form, rather it produces relative heights. Although the approach is able to overcome, after a
number of trials, the differing wave height complications, it does have to do this in an iterative

approach, rather than creating an ideal solution initially.
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Figure 8-13 - Knife Displacement Complication Example

Figure 8-13 gives an example of this type of complication. In this example a link exists
between particular knives and their cuttermarks already. If the knife creating the second
cuttermark was lifted by 10um and the knife cutting the fourth cuttermark was lifted S5um, the
output of this operation may be that shown. In this example the link that was initially created
between particular knives and their cuttermarks, has now been lost. This is indeed the case for
almost all operations of the principal on the cutting operation after the link has been sought.
In some cases, where for example three knives are at exactly the same radius, if the resultant
surface form shows a single proud or shallow knife, it holds that this cuttermark is still being
cut by the originally different radius knife. This loss of the link however can be overcome by
iterating through the deployment procedure a number of times, however on subsequent
iterations, rather than initially running with a zero magnitude reference path, the resultant
reference path from the previous iteration is used, and the subtle changes are mapped onto
this reference path. If however the measurement system was capable of producing absolute
waviness height, rather than relative height, this prolonged operation would contract down to
simply generating the link and then applying a reference path based totally on actual waviness

measurements.
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8.6 Alternative Applications for the Technique

An important aspect to this approach is the ability to implement it onto other applications. As
the approach has been developed on a rotary wood planing machine, the most obvious

alternative applications are those with a similar operation, such as surface grinding of metals.

8.6.1 Rotary Machining Applications
The current solution has been developed on a rotary wood planing machine, and in this case

the majority of work has been carried out using a four knife cutterhead. However, this
approach can be applied to other rotary machining processes, such as conventional milling of
materials, dependant on cutter geometry, and surface grinding. Figure 8-14 shows a
comparison between the four-knife cutterhead used within this research, and a generic

grinding wheel.

Figure 8-14 - Comparison Between Discrete and Non Discrete Cutting Positions, Left - Wood Planing Machine Four Knife
Cutterhead, Right - Surface Grinding Wheel

A major difference between the two ‘cutterheads’ is in the nature of the cutting surfaces. In
the wood planing cutterhead there are four discrete cutting surfaces, the knives, whereas the
entire circumference is the cutting surface in the grinding wheel. The current implementation

of this approach would not work due to the lack of discrete locations of the knives. However
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with some small modifications these issues may be overcome. As a potential solution to this
issue, the grinding wheel could be artificially split into sections and treated as having discrete

cutting surfaces and then using the approach as described in this chapter.

8.6.2 Further Applications
However, other non-rotary machining applications could have similar approaches

implemented, or aspects of this approach implemented to achieve separate goals. An example
of this would be the application of pushing a subtle change in order to generate further data
about the process, when combined with an a-priori knowledge base, in real time could be the
a robotic system picking parts from a specific parts from a bin of random of parts. In this case
the principal of generating additional information in real time is exploited, perhaps by the
robotic system disturbing the parts within the bin in order to allow further information,

perhaps regarding position and orientation, to be gained through the use of a vision system.

If the robotic system utilised a vision system to detect features on the parts within the bin.
These features could then form the input to a classification system using the a-priori data to
match these features to known parts. However if no parts can be successfully detected a
solution may be to change the image viewed by the vision system in order to generate new
data regarding the parts within the bin. In order to do this, the solution may involve disturbing

the bin of parts.

A further application of this type of technique could involve overcome drift within a system,
where sufficient changes are available to change specific system parameters. This drift may be
due to temperature changes or wear of components, but if only the output is easily
measurable, rather than all the components and individual sub operations. In this case, subtle

changes could be applied to individual processes and the changes to the final output
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measured. This type of application could involve almost any machining operation where there

are numerous system parameters.

A key requirement, due to the iterative nature of the approach, is that there is accurate
feedback, such that small changes to the system parameters can be measured. If these small
changes cannot be measured consistently then the system will not be able to accurately apply
changes to improve the output quality, through a combination of the additional short term

knowledge and the a-priori knowledge.
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9 Chapter 9 - The Connected Solution

This chapter describes how the different work packages carried out in this research fit
together and shows two different cutterhead examples, a two knife cutterhead and a four
knife cutterhead. Each step of the process is briefly described and any parameters generated

shown.

9.1 Two Knife Cutterhead

The first example is the simple case of a two knife cutterhead. Although this is a trivial case in
terms of the application of the correct compensation, but it shows the versatility of the

system to cope with multiple different cutterheads.

9.1.1 Cutting Parameters

The initial stage within this adaptive rotary timber machining process is the selection of the
cutting parameters. Often an important characteristic is the pitch of the waves on the timber
surface. In this two knife cutterhead example, due to a large TIR of 70um, measured with a
dial gauge rigidly mounted onto the cutting guard, the pitch was set a 5mm. With a lower
value for the pitch , the finish on the timber surface would become a single knife finish as the
proud knife would remove the cuttermarks created by the shorter cutting knife. To achieve
this desired pitch of 5mm, a cutting speed of 1200rpm was selected and a timber feedspeed

of 200mms™ were used.
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9.1.2 System Identification

The following step is to carry out the system identification, as per section 6.2. This generates a

state based model of the system which is used within the LQG controller designed by (Ogun

2012).

This state based model, combined with the cutting parameters are passed to the neural

network described in section 1. This network output the values of Q and Ks, which are also

passed to the LQG controller in order to achieve optimal reference path tracking.

9.1.3 Initial Cutting Test

An initial cutting test is then carried out. The result of which is shown in Figure 9-1. Here it can

be seen the effect of a non-optimised reference path.
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Figure 9-1 - 2 Knife Cutting Test without Compensation

A principal component analysis is then carried out and the results passed to the de

classification technique. The result of this classification is

fect
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‘Plunge Knife 1’

This is of course not surprising, and is actually the only response available. It may be that the
required technique is actually to plunge knife 2, but there is no link between the knives and

cuttermarks in order to distinguish between knife 1 and knife 2.

9.1.4 Heuristic Approach

Using a two knife cutterhead actually complicates the approach described in chapter 8. As
there are only two cutting knives, in order to make a suitable link between cutting knives and
cuttermarks, for this specific case only, the depth, or relative depth, of the cuttermarks alone
is used to isolate the change to the reference path. A known knife is plunged deeper into the
timber surface and this change will show in the relative heights of the cuttermarks. Once the
link has been found corrective action is applied through the reference path. Figure 9-2 shows
the final surface form once corrective action had been applied to the cutterhead. Knife 1 was
lifted 18um and knife two plunged 18um. Although this was not enough to counteract the TIR
of the cutterhead, it is the maximum displacement allowable by the piezoelectric actuators
and the arrangement employed in the small scalar planing machine. However the surface

profile is significantly improved over the initial surface profile.
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Figure 9-2 - 2 Knife Cutting Test with Compensation

9.2 Four Knife Cutterhead

The second example is that of a four knife cutterhead. The processes are the same as for the
two knife cutterhead, however the cutting parameters are different. During the four knife
cutting tests, due to an on-going upgrade of the WSMS system, to measure the timber

surface, an Alicona Infinate Focus Machine was used, see Appendix B for further details.

9.2.1 Cutting Parameters
In this four-knife cutterhead example the aim pitch is 2mm. To achieve this pitch a cutterhead
rotational speed of 4000rpm has been chosen, and a feedspeed of 533mms™ has been

calculated.
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9.2.2 Initial Cutting Test

Figure 9-3 is the resultant surface profile from the initial cutting test.

Surface Profile
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Figure 9-3 - Initial Cutting Test Surface Profile

9.2.3 Heuristic Approach

The surface profile shown in Figure 9-3, returned from the defect classification;

‘Plunge Knife 1, Plunge Knife 2, Lift Knife 3’

In order to gain an understanding of which knives around the cutterhead these are the
heuristic approach was implemented. The first change to the reference path simply plunges

and arbitrary knife, knife 3. The resultant surface profile is shown in Figure 9-4.
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Figure 9-4 - Surface Profile with Knife 3 plunged 14um

Using this surface profile, when combined with the original surface profile a link could be

made. The result from the defect classification was as follows;

‘Plunge Knife 1, Lift Knife 3’

At this point the link between cuttermarks and knives could be made. The final reference path

used became;

[0, -0.012, -0.002, 0.001]

As the timber surface was measured using an Alicona measuring device, rather than relative
surface heights, absolute heights are provided. This did reduce the complexity as rather than
iterating through the process in order to achieve optimal displacement levels, the levels were

able to be simply read from the plots.
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Figure 9-5 shows the final machined timber surface.
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Figure 9-5 - Final Machined Timber Surface

9.3 Surface Quality Assessment

In order to assess the surface quality of the timber surface, a simple standard deviation test is

carried out.

(9-1)

e

sp= || — E (S; — )2
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Where
N, is the number of cuttermarks
S is the desired waviness pitch

S; is the width of the i cuttermark

The aim of the technique is to achieve a lower standard deviation, indicating that the
cuttermarks are close to the desired pitch. A lower standard deviation indicates a higher

quality surface finish of the timber.
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Table 9-1- Standard Deviation Results

Surface Standard Deviation (mm)
Uncompensated four-knife cutterhead 1.26
Compensated four-knife cutterhead 0.25

The results shown in Table 9-1 show that the system has been able to generate a reference

path that significantly improves the surface quality of the machined timber surface.
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10 Chapter 10 - Conclusions and Recommendations

A novel new machining control architecture has been created in this thesis. This new
architecture, and the control strategies within the architecture, is capable of improving the

surface finish of machined timber. The particular successes in this thesis are given below.

10.1 Achievements from Aims

For clarification, the achievements have been split into sections according to the aims

previously set out in section 1.3.

10.1.1 Test Rig Upgrade
The existing small-scale planer test at Loughborough has been upgraded and expanded. The

improvements are listed below;

e Increased rotational speed range of cutterhead to a maximum of 6000rpm

e Increased feed speed capability to a maximum of 1333 mms™ allowing for a pitch of 1
mm at a cutterhead rotational speed of 6000rpm

e Fully integrated WSMS system to rotary wood planing machine, which allows for a
timber surface to be measured whilst still being machined further

e Increased slide length to allow real time changes to parameters

10.1.2 Real-Time Controller Adjustment
Investigations into the effect of altering certain controller parameters to suit the current

system operating conditions have been carried out. These have allowed for a wider range of

operating conditions to be attainable based on the LQG controller employed within this work.

e Modification of the Q/R ratio alters the characteristics of between the rise time and

the overshoot of the knife tip to a step change within the reference signal driving the
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cutterhead to the required vertical displacement to produce an increased surface
quality.

e The effect of modifying the feedback gain of the controller has also been investigated.

e The data recorded from both the modifications to the Q/R ratio and the feedback gain
has been used to create an a-priori knowledge base referencing the controller. This a-
priori knowledge base has been used to create a neural network capable of specifying
the parameters used within the controller that will produce the highest quality surface
finish on the timber surface. These values also change with TIR of the cutterhead and
the displacement caused by out of balance forces. This new network is capable of

accounting for these different displacement requirements.

10.1.3 Defect Classification Software Tool Development
Two different defect classification techniques have been developed, a pattern recognition

neural network and a K-nearest neighbors approach. Both techniques utilise an a-priori
knowledge base using the output from a principal component analysis in order to reduce the
data size. In order to increase the computation speed, rather than the inputs to these
techniques being a plot of the surface form, perhaps consisting of many thousands of data
points, a 3 by 3 matrix is used as the input. Both techniques performed successfully however
the K nearest neighbor technique was able to correctly classify, when tested, the defects more

accurately than the pattern recognition neural network.

However when the output was modified such that rather than outputting the cause of the
defects, to a corrective action, the classification success increased. Both systems had an
improved classification success when dealing with data sets towards the centre of spread for a
specific condition. Due to the spectrum of input data, and certain levels of overlapping data,

the success tended to drop at the edges of these groups.
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10.1.4 Real-Time Reference Path Modification
A novel new approach to controlling the wood planing machine has been developed. Due to

complications concerning the lack of information linking specific knives to their cuttermarks,
the application of corrective action is difficult. The heuristic approach developed within this
body of work is able to artificially force subtle changes to the timber surface. The subtle
changes are produced at specific positions around the cutterhead, specific knives, and then
using the surface form produced, combined with the original surface form, new information
regarding the cutterhead and the run-out, or displacement produced by out of balance forces,

can be attained.

This approach uses a logical heuristic approach, based on the knowledge and experience
gained by the author during this body of work. Using this approach the limitations of the
WSMS, the inability to measure the actual depth of the cuttermarks, can be overcome. A
drawback of this approach is that the new information regarding the specific run outs of
particular knives is potentially temporary knowledge. That is, due to the lack of absolute depth
knowledge when a link between knives and cuttermarks has been made, and a full corrective
reference path has been implemented, the link is lost and the approach has to iterate through

once again.

10.1.5 Overall Assessment
In order to maximise the potential of existing wood planing machines, expand the operating

scope of these machines and potentially increase the performance of other rotary machining
processes a new active machining approach has been developed. This approach uses periodic
real-time modification of the cutterhead trajectory to compensate for the cutterhead
inaccuracies and vibrations. The system employs eddy current displacement sensors and

piezoelectric actuators.
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Experimental results show that the overall approach, and new control strategies, as well as
the upgraded small planer test rig are capable of increasing the surface performance of the
machined timber surface. The new approach is also capable of overcoming unknown run out
values of a number of different cutterheads available to the research department. This new
approach has direct benefits over the traditional jointing technique in terms of lower
machining cost, increased performance and lower downtime of the machine due to the

redundancy of the jointing process.

10.2 Recommendations for Further Work
The work carried out within this thesis has highlighted a number of areas of future interest.
These areas of interest will benefit future development of this work but may also benefit

others areas of research.

10.2.1 Measurement System
The current surface measurement system produces a surface plot, but with relative surface

heights. Although this output form is suitable for defect classification, it does require the
approach discussed in chapter 8 to iterate around a number of times in an attempt to
overcome this inability. If the measurement system was capable of producing actual height
data, the overall performance of the complete approach would be improved with a lower time

to optimisation

10.2.2 Defect Characterisation

The approached employed to perform defect classification use the surface plot data, once a
principal component analysis has been performed, to classify the defect. This may be
continually employed during the cutting process, and the subsequent modification of control

parameters will maintain optimal tracking performance of the set point at all times, giving a
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significant improvement over previous research work carried out in this area, (Elmas
2008).However certain defects can produce similar or identical surface profiles. These
similarities in the data can lead to incorrect defect classifications. Further research in this area
may be the most profitable area to expend research effort in order to achieve an improved

overall system capability.

10.2.3 Heuristic Subtle Change Approach

The newly developed novel heuristic subtle change control technique employs a logical
approach to generate the links between specific knives and their cuttermarks. Currently this
approach has only been programmed to generate these links for a two or four knife
cutterhead in order to prove out the technique. This has led to a relatively large programming
overhead, which as the number of knives increases will become increasingly large. This may
lead to slower system as the technique is coded to overcome rotary planing machines with
high numbers of knives. Further research to reduce the overall code overhead may lead to a

more practical implementation of the principals
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Appendix A - Computational Models

12

12.1 Simulink Model for Setpoint Tracker Controller

[Opéimal Set-Point Tracking Controller for a VWood Planing Machine |

disterbanms

raferens puks mmmand

Feediomwaid input

L S

L

amplfer Input .

dizhebance input

amplifies sutput

w

¥

je=dforvand gsin -

loedbad input

™

L E___u-—
voliage

amplifies

B =

piszn aoiuabor
spindla modal

]

dislubanme signal

spindle position

integesl gsin

Inb=gml adizn

10

esimalz'acisal

raferarce command

231



13 Appendix B - Alicona Infinate Focus Machine

alicona

-

INFINITEF D1

The Alicona InfiniteFocus is a high resolution optical system (non-contact) for 3D surface form

and roughness measurement. The operating principle of InfiniteFocus is based on the

variation of focus technique (Focus-Variation). The Focus-Variation technique uses small

depth of focus of an optical system, combined with continuous vertical scanning, to generate

3D topographic model of the surface. The wood samples were measured using the following

parameters:

Objective Lens Magnification | 5x

Working distance 23.5mm

Field of View 2858um x 2175um
Vertical Resolution 410nm

The Alicona InfiniteFocus has a motorised X-Y table and seamless image stitching algorithm,

which allowed the desired sample length to be measured. It is also equipped with a module

for the calculation of area-based 2D surface profile measurement.
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alicona

CERTIFICATE

Optical 3D Measurement Device G4f
Serial Number: 017010809808

The measurement device was calibrated with a standardized, tested and certified calibration tool.
This guarantees the accurate, efficient and first class use of the device.
Calibration Tool:  Alicona 3D Tool . A

Serial Number: 002026304305

Date of Calibration: 5g

DATE OF CALIBRATION: 08.06.2010

alicana

imaging

Alicona Imaging GmbH
A - 8074 GRAMBACH, Teslastr. 8 /S/ 44 /d =
Tel.: +43 316/ 4000-700

Fax: +43 316 /4000-711 AT
Production Head of R&D
IFM Serial Number: 017010809808 13 ® Alicona
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14 Appendix C - Purchased Components

14.1 Table of Suppliers

Item Supplier
Codewheel Avnet

24V Power Supply OnecCall Farnell

Eddy Current Probe Monitran

Cutting Knife Tips NLS Tools

Motors and Drives Norwin Electronics
Steel Shim Repco Technology Itd
Components for guarding RS Components
Torque Wrench Screwfix Direct
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14.3 Component Data Sheets

HEDS-XXXX
Parameter Symbol Metal Codewheels
Storage T, -40°C to +100°C
Temperature
Operating T, -40°C to +100°C
Temperature
Humidity
Velocity 30,000 RPM
Shaft Axial Play +0.25 mm
(£0.010in)
Shaft Eccentricity +0.1 mm
Plus Radial Play (£0.004 in) TIR
Acceleration 250,000 Rad/Sec”
5.95
— la— (0.234)
MAX.
1.80 e
25.7 (1.01) {0.071)
/ DIA. MAX.
/ MOUNTING BOSS
SETSCREW 1270  4p1s L -I
INDEX PULSE (:’-Ii‘;g) (0.400) 7 J
REFERENCE ‘
MARKER

POSITION TYPICAL 3.58
(0.141)

Rpp = 11.00 mm (0.433 in.)

DIMENSIONS IN MM (INCHES)

gure 6. HEDS-5140 Codewheel Used with HEDS-9140.
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14 x 14 x 1.2mm 514-213

14 x 14 x 2mm 514-214
17 x 17 x 2mm 514-217 £5.80 £5.80
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8.3 HDMS82ES

HDM COMPACT SERVOMOTORS
Outline

i A 30
"J"—' Drawing.

- 17 — Technical
J.EU-.'-'. ’t_“ = ] Hib R Data.

I T \
9.2 .'7 A \.I v HDM82 HDM82
@ 4 HOLES @7 | “'-/ HDM82 Parameter
= o

= EQUI-SPACED —— &
N 100 PC DIA. =

T0.a7

Units E8-30S ES8-
38S E8-76S
Continuous Stall

82 FLANGE 2
Torque Nm 2.3 2.3
2.3 Continuous Stall
o Current A6.65.2
Dimension ‘A’ oo - 26
Frame without brake with brake gl Rated Torque - Nm 2.1
e = L L fheat 2.1 2.1 Rated Current =
HOMA2C 100 140 - b 14,008
HDME2E 118 158 M O 1309y A 6 47 2.3 Rated
HDM321 154 194 HAET BHG BDETAL Speed rpm 4500 4500
& = Fo)

3000

Notes
'~ Motors are tested on an aluminium heatsink with dimensions 255x255x6mm and with a temperature rise 'T
of 100K on the windings. The maximum temperature of the windings is therefore 140°C.
‘- Where no motor speed is specified, optimal performance may not be achieved on 560V DC link.
°- At 25°C.
‘- Inductance values based on nominal

cuMeét. Speed (300V DC link) rpm 8000 ----- 7800 ----- 3900
*- Mevat&poan 5669 RELim)z rmsrpm 7300
cupealk Stall Torque Peak Nm A 6.9 35 6.9 28 6.9 14

-Qontirexats Stall Torque (HR/HJ) is for
RedISfaACEP MRS With SEM's Higy 0.912.2 1.5 3.4 5.8

IncRRY AL HREPRRES oY 13.5
Voltage Gradient No Load V Volts 30 240 38 300 76 610
Max. Motor EMF Line — Line

Torque Constant Kts,s Nm/A°C 0.358F 0.458F40 0.98F
Number of Poles THERMAL minutes 4026 1.18 26 1.18 40 26
Insulation Class Max. °C/W 1.18

Ambient Temperature
Thermal Time Constant
Thermal Resistance

MECHANICAL Rotor Polar

Moment of Inertia Static 0.88
Friction Torque Cogging kgcm2N 0.88 0.04 0.880.04 0.04
Torque Motor Weight Motor m Nm 0.075 2.9 0.075 2.9 0.075
Weight with brake fitted kg kg TBA TBA 2.9 TBA
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7.3 HDM58EG6

HDM COMPACT SERVOMOTORS

2. A 20 Outline
T 2.5 " Drawing.
9 .
[T KEY - Technical
N Data.
EEE
SR
g 4 HOLES ©5.5
EQUI-SPACED Rated Torque "Nm 1.1
ON. 63 PCDIA. 1.1 1.1 Rated Current
58 FLANGE A 2.3 1.36 0.94 Rated
Speed rpm 4500 4500
- . o wn 4500
_ Dimension ‘A’ g & Max. Speed (300V DC
Frame without brake with brake o 3.000 link) rpm 7500 4300
HDM58A 88.5 123.5 o e S e 3000 Max. Speed
HDM58C 106.0 141.0 L 9.007 (560V DC link) rpm
HDM58E 123.5 158.5 8.097 8000 8000 5600
HDMS58G 141.0 176.0 Peak Stall Torque
SHAFT END DETAIL Nm 3.5 3.5 3.5
Peak Current A 13.1 7.55.2
HDM58 HDM58 HDM58
Parameter Units E6-40S E6-70S E6-100S - Motors
Continuous Stall Torque 1 Nm 1.15 1.15 1.15 are tested
Continuous Stall Current 1 A 2.5 1.4 0.98 glrlljr?l?nium

heatsink with dimensions 255x255x6mm and with a temperature rise 'T of 100K on the windings. The maximum temperature
of the windings is therefore 140°C.

°- Where no motor speed is specified, optimal performance may not be achieved on 560V DC link.

*- At 25°C.

*- Inductacne values are based on nominal current.

°- At rated values Torque = Kt x rms current.

*~Continuous Stall Torque (HR/HJ) is for use in comparisons with SEM’s HR and HJ servomotors only.

Resistance Line-Lines

. . :mH 5.26.1 16 18.5 33 38
Inductance Line-Linea
Voltage Gradient No Load V Volts 40 320 70 560 100 700
Max. Motor EMF Line — Line
Torque Constant Kts,s Nm/A 0.48 6 0.816 1.17 6
Number of Poles
THERMAL Insulation Class
Max. Ambient Temperature °C F 40 F 40 F 40
Thermal Time Constant minutes 30 1.6 30 1.6 30 1.6
Thermal Resistance °C/W
MECHANICAL Rotor Polar
Moment of Inertia Static 0.2 0.02 0.2
Friction Torque Cogging kgcm2 Nm 0'045' 0.2 0.02 0.02
Torque Motor Weight Motor Nm kg kg 1'4 TBA 0.0451.4 0.045
Weight with brake fitted ) TBA 1.4 TBA

Notes
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HDM58 PERMITTED RADIAL SHAFT LOADINGS
(If axial loads are to he applied, the equivalent radial loading must be
calculated as described on next page)

500 A

RADIAL SHAFT LOAD (N)

—o—500 RPM
| —=— 1000 RPM
100 4 —A—2000 RPM
] —e— 4000 RPM
—=— 6000 RPM

Gl —A—8000 RPM

—g— Fatigue limit

0 T T T T T T T T T T T T T T T T T T T
0 5 10 135 20

EXTERNAL OVERHANG TO APPLIED LOAD (mm)

Shaft Loading Information for SEM Standard Servomotors
General notes:-
1 All loadings are based upon An L10 bearing life expectancy of 30,000 hours.
2 Separate graphs are usually supplied to indicate maximum axial loads which are applicable. However, for mofors with
focked drive end bearings, a graph is used to Hiustrate the maximuim aliowed radial shaft loadings together with a
simplified calculation fo provide a compensated figure for when radial and axial loadings are to be applied in
combination.
3 It may occur, in certain circumstances, that loading outside the scope of the published information is deemed
necessary. In these cases it is desirable that SEM Ltd should be consulted and all relevant information made available,
in order that due consideration can be given to finding a safisfactory solution.
4 Should motors be reguired fo operate under abnormal conditions, such as excessive vibration or shock, this should
also be referred to SEM Lid as noted above.
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HDM58 COMBINATION OF AXIAL AND RADIAL LOADING

Calculated combined load must NOT EXCEED the Radial Shaft loadings as per Radial Loading Chart
Equivalent radial load (Pr) = 0.56Fr + Yfa Where Fr = Applied radial load
or = Fr (Whichever is the larger) Fa= Applied axial load (232N Max)
Yfa= Value taken from chart

YFa VALUEvs APPLIED AXIAL LOAD

400

350

300 /

250 A

200 /

YFa VALUE (N)

150

100 //

50

0 50 100 150 200
APPLIED AXIAL LOAD (N)

Shaft Loading Information for SEM Standard Servomotors
General notes:-
1 Al loadings are based tpon An L10 bearing life expectancy of 30,000 hours.
2 Separate graphs are usually supplied to indicate maximum axial loads which are applicable. However, for motors with
locked drive end bearings, a graph is used fo illustrate the maximum allowed radial shaft loadings together with a
simplified calculation to provide a compensated figure for when radial and axial loadings are to be applied in
combination.
3 It may occur, in certain circumstances, that loading outside the scope of the published information is deemed
necessary. In these cases it is desirable that SEM Ltd should be consulted and all relevant information made available,
in order that due consideration can be given fo finding a satisfactory solufion.
4 Should motors be required to operate under abnormal conditions, such as excessive vibration or shock, this should
also be referred to SEM Lid as noted above.
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IMD Series User Manual

Digital drive for brushless ac servomotors

Manufaohunes -

Cemd SA

271 moutes des oribes
Lol Tkt

Franm=

Phone: +33 22097 2714
Far +332&809727T04

weh www o serd T
emal: Infoifiserad fr

The manual covers the Installation
and use of the following drive typsa:

Mo
Moz
MO TS
MWDo

UK Dictribwior -

Miorain Elecronics Lid
Urits, Indusirisl Extabs
Shabon Road, Gamingay
Hr. Samdy, Bedfomdshine
512 2HE

Phone: 097ET B51<85
Fmr:  017ET B51623

WL WAL TN, Do
emalt: sak=s{Inorwin.co.uk

¥is remsrys e gt o meks oengss o @l o part ol e ecsciiosbon wiloud oo sohos
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122 Technical data

SupDly :

Auxilary suppdy -

Eupply Ther

Zraiching frequency

OHZ Bus woltage -

Eraking resisor -

Frobecton :

kioior feedback :

KMasher encoder input

Entoder amalation -

Dilagnostc display -

Communicabon -

230 o 4000 &L +10% thres piase

24 T =100, 044 fypdcal (0.7% max with all opbors. fitted [
ritegral

EET EHx sine—wave P

00 b GEOY
Inftegral
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=adity fo add an extermal resksbor
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pr- 10 e pioeyEr
&0 & EEW 10
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Mbodior feedback Tauk
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T segmeni LED
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Digial inpats
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15 Appendix D - Technical Drawings
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Some Effects of Database Corruption in System Prediction
Performance

Matthew R. Chamberlain, Michael R. Jackson, Robert M. Parkin

Mechatronics Research Centre, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University,
Loughborough UK

Corresponding: - m.r.chamberlain@Iboro.ac.uk

Abstract — Many types of intelligent adaptive systems use
vast databases of a-priori knowledge during training
phases. These systems are then reliant on both the accuracy
of this data and on the breadth of the data. It is assumed
whilst training that the data encompasses the total
operating window for the system in enough detail to
generate an accurate ‘black box’ model of the plant under
control. It may be that under certain unforeseen operating
conditions, or in a scenario where there is little prior
knowledge, the system may be forced to operate outside the
scope of the original a-priori knowledge. Lastly the data
gathered into the a-priori source may have been
unintentionally corrupted. This paper aims to examine some
of these effects upon two common adaptive intelligent tools,
neural networks and an adaptive neuro-fuzzy inference
system, ANFIS, network.

Keywords — A-priori, neural network, ANFIS, data
corruption, PID, motor control.

1 INTRODUCTION

One common control tool employed in motor control is
the PID controller.[1][2] This is a widely known and used
controller. The system uses three different gains,
proportional, integral and derivative, and the weighted
sum of these three gains is used to modify the system
output in order to minimise the error.

Set Point

Feedback Error

Figure 1 - PID Controller Schematic

In this paper the controller output is modelled by both a
neural network and an ANFIS network. Ultimately all
three gains could be controlled using an adaptive
intelligent tool such as these but in order to simplify the
results shown here, only the proportional gain effects are
shown.

It is common to assess the performance of a PID
controller through three separate conditions, rise time,
settle time and overshoot.[3] Depending on the plant
under control of the controller the importance of each of
these characteristics is modified. For example in a
situation where accuracy is of higher importance than
speed, the controller gains could be modified to reduce
the overshoot whilst at the same time having a
detrimental effect on the settling time. Within this paper
the results displayed highlight the maximum overshoot of
the plant. It is therefore appropriate to consider this a
case where the plant, a motor in this case, is situated in a
condition where accuracy is the key important factor,
outweighing speed.

It is reasonable to accept that if the adaptive technique
can predict the performance of the DC motor, with
respect to overshoot, that it can be used to control it.
Overshoot and settle time are graphically shown in
Figure 2. Within this paper overshoot is defined as the
maximum speed above the set point speed and settle time
is defined as the time from the initial step input to the
time that the motor speed has settled to within a constant
band about the set point level. Either a user, or an
algorithm, is able to define the output system
performance requirement, and the adaptive technique is
then able to generate a set of parameters to achieve the
desired overall characteristics, thereby using the
predictive ability of the adaptive technique to effectively
control the overall mechanical system.
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Figure 2 - Graphical Definition of Overshoot and Settling Time

The plant under investigation is a simple DC motor,
modelled within MATLAB, and as mentioned above the
results highlight the effect of changing the P gain on the
system overshoot performance. This paper investigates
the effect of differing training data corruption types,
noise and anomaly data errors, on the system prediction
performance of the DC motor characteristics. Also under
investigation is the performance of two different neural
network systems when operating outside the a-priori
knowledge training database. This condition may be
crucial when a machine operating window is expanded
through some different technique and the input-output
data is now not available as these conditions were not
originally foreseen, or in cases where there is simply not
a full a-priori knowledge base covering all operating
conditions, such as in the development of new
technologies.

2 NETWORKS

This paper focuses on two types of adaptive techniques,
neural networks and ANFIS networks. These have been
selected due to their popularity and implementation in
both research and industrial applications.[4], [5],[6].
Other methods that have been classified as intelligent
and/or adaptive such of genetic algorithms; probabilistic
reasoning and Bayes theorem are not considered within
the scope of this paper, [7].

A neural network is a network made up of interconnected
neurons in layers. Much work has been undertaken to
investigate these networks, [8], and it is generally
accepted that increasing the number of neurons within the
hidden layers is a law of diminishing returns, and that
often a satisfactory result can be obtained with a
relatively low number of neurons [9]. Considerable
research effort has been expended on neural network
implementation into real world problems, with particular
effort spent on preserving previous training iterations to
prevent the system from overtraining to a particular set of

restricted data, rather than training to the underlying
control problem. [10] .

An ANFIS model is similar to a neural network with a
number of membership functions and rules with
adjustable parameters. These parameters are chosen to
tailor the membership functions to the a-priori knowledge
to best represent the data. This tuning is often carried out
using back propagation, sometimes in conjunction with a
least squares method, to generate a fuzzy inference
system, FIS. The inputs to the network are then mapped
through input membership functions and associated
parameters, and then through output membership
functions.

The fuzzy nature of the ANFIS, where a single input may
adhere to multiple membership functions, potentially
allows the system to better handle uncertainty by
attaching degrees of certainty to the answer, [11]. This
paper also investigates whether this ability aids the
ANFIS network to overcome data corruption, and to be
able to effectively decipher the underlying correlation
between the input-output data.

3 SYSTEM TRAINING

Whilst creating both the ANFIS and neural networks data
sets are required, sometimes referred to as a-priori
knowledge. These data sets should cover the entire
operating scope of the system, such that a full “picture’
can be produced. The data should also have a high
enough resolution such that there are no large gaps in the
data set. This allows the effect of any error in the training
data to be reduced. This data is commonly split into two
separate data sets, often referred to as training data and
validation data. The training data is then used to train the
network and the validation data used to validate the
performance of the network.

Two different types of training data error are considered.
Noise errors, where the amplitude of the signals within
the training database is corrupted through the addition of
a random signal, this may be a positive or negative
signal, and anomaly errors; these are large single point
errors. Noise errors can enter into signals from a wide
range of conditions. These can be from pure pickup along
the length of any signal cabling, to degradation of
electrical components. Anomaly errors are more
commonly caused by signal conditioning elements
clipping the amplitudes of signals or a mismatch in
sampling frequencies.

However, in cases where there is limited data there may
not be enough data to reduce the effects of these types of
data corruptions. If this is the case it is important to know



the effect these corruptions will have on the eventual
system performance. Therefore to investigate this, a
number of test cases have been created, using ideal and
corrupted data in a controlled scenario. This has allowed
the effect of specific types of data corruption to be
isolated and investigated without any other possible
effects having occurred.

A simple MATLAB Simulink model of a DC motor has
been created to provide a set of input-output data to train
the different network types. The proportional gain of the
PID controller was altered from a value of 1 to 1200 and
the maximum speed overshoot, in revolutions per minute,
for each condition recorded. The data sets consisted of a
single data point for each condition, and this is referred to
as the ideal/original data set. (Error in the following
graphs is defined as the network predicted response
subtracted from the ideal/original response.)

This ideal/original data set was then corrupted through
differing levels of anomaly and noise error. These levels
were set at 5%, 10% and 50%, where a 50% error level
denotes a noise signal of up to 50% of the original output
amplitude in the data set and 50% of the data points
having been corrupted with an anomaly data error. The
anomaly value was set to a high peak value, which
although with any amount of database inspection could
be filtered out; it has been left to assess its effects on the
network performance.

4 DATABASE CORRUPTION EFFECTS
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Figure 3 - Replication of Ideal Data

Figure 3 shows that both an ANFIS model and a neural
network are more than adequate in modelling a DC motor
overshoot performance. It can be seen that both the
neural network and the ANFIS systems have almost no

appreciable error. These error levels are shown in more
detail in Figure 4.
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Figure 4 - Ideal Data Replication Error

Figure 4 shows that at a very low proportional gain both
systems have some level of prediction error but that the
actual level is still very low, as shown in Figure 4, in the
order of 1%. It is of note that the ANFIS prediction
appears to oscillate around a zero error level whereas the
neural network is of an order of magnitude more
accurate. These figures are provided as a control to
compare to subsequent corrupted database figures.

If the training database for both the ANFIS system and
neural network system is now corrupted with a noise type
error of 5% amplitude differences, start to become
apparent between the two different system performances,
as shown in Figure 5.
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Figure 5 - Replication Errors with 5% Noise Errors

At this 5% noise error level the neural network
performance appears to be more affected than the ANFIS
type network. One likely cause for the increased
performance of the ANFIS network is the key makeup of
the ANFIS network, the fuzzy nature of the system
overcoming to a certain degree the noisy nature of the
training data.
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Figure 6 - Replication Errors with 5% Anomaly Data



Figure 6 shows the error of both systems when using the
anomaly data set to train the systems. It can be seen that
the results are similar, if more extreme, than with the
noise data. Again the ANFIS system has a much higher
system performance than that of the neural network. The
peak error value of 0.38 at a proportional gain of 390,
when compared to the real peak value of 0.5 is an error
percentage of 76% and even with this low level of data
corruption the neural network based system is not
performing to any level of acceptable accuracy.

Interestingly if Figure 6, the outputs of the neural
network and ANFIS systems, is compared to Figure 7 the
output of the systems, there is a correlation between the
neural network predicted overshoot and the volume of
anomaly data stacked on that particular side of the ideal
data line.
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Figure 7 - 5% Training Data Set

This trend is to be expected to some degree as it is the
network mapping more accurately the input data,
however in this case this is actually a negative outcome
as this more accurate mapping, is being driven away from
the real system response by the database corruption.

As the level of database corruption is increased the
prediction error with respect to noise error does not
dramatically increase, see Figure 8. This shows that as
the noise level is increased there is no real increase in
prediction error for either the neutral network based
system, or the ANFIS based system. Again however the
ANFIS system outperforms the neural network based one
by an order of magnitude.
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Figure 8 - Replication Errors with 50% Noise Errors

Conversely, when considering the performance of the
systems trained with anomaly data the picture is rather
different. Again the ANFIS system has overcome the
errors and performs adequatly, as can be seen in Figure 9.
This figure shows that although the ANFIS prediction
performance continues at a high level the performance of
the neural network has dramatically reduced. The peak

value of an error of 2.1, at the proportional gain of 600, is
400% of the maximum real value. This figure graphically
shows the difference in performance of the neural
network and ANFIS techniques and the advantages of the
ANFIS system when considering both noise and anomoly
type error corruptions of the the a-priori knowledge base.
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Figure 9 - Replication Errors with 50% Anomaly Errors

When considering any system there must be a scope of
operation. The training data must cover this entire scope
such that the system used to control the plant has
‘experience’ of all possible operating conditions. Two
different neural networks have been trained using the
same a-priori knowledge base as training data, the
ideal/original data. Both networks have the same simple
three layer structure, with a single neuron in both the
input and output layers. The first network however has
two hidden neurons in the hidden layer whereas the
second network has five hidden neurons. The hidden
layer populous were selected arbitrarily but were kept
low to reduce training times. The training data scope was
reduced for both networks to a proportional gain of 700,
beyond this point neither network had any a-priori
knowledge.
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Figure 10 - Out of Scope Performance

As seen in Figure 10, the results correlate well with the
previous work carried out by [9] as both networks have
low actual number of hidden neurons and a high system
prediction performance over the entire scope of the
training data, which is to be expected. However once
beyond the training data scope the performance of the
different networks begins to diverge. This divergence
accelerates further beyond the edge of the training data.
Interestingly the network with 5 hidden neurons appears
to model the real world behaviour more accurately
beyond the edge of the training data than the network
with 2 hidden neurons.

Although the training data should encompass the total
operating conditions, it is a crucial acknowledgement that



the networks will give responses to unsupported input
conditions. This may have implications where the
operating scope of the machine using a neural network is
expanded but the underlying neural network controlling
the machine is not retrained for the expanded scope. The
network would still give a prediction for the out of scope
conditions which could be incorrect, leading the machine
to potentially produce waste.

5 CONCLUSIONS

In this paper two common network types have been
investigated for robustness against two training database
corruption types, noise and anomaly type. The main
focus of the work has been systems with sparse training
databases as those with both full and deep a-priori
knowledge will most likely overcome these types of
corruptions more significantly. ANFIS networks appear
to be able to overcome the difficulties of database
corruptions more adequately, including up to 50%
corruption rates as described in section 4, whereas the
non-fuzzy architecture of the pure neural network is not
able to overcome these types of errors with to the same
level.

Two neural networks have also been forced to work
beyond the scope of their training data, and the evidence
suggests that networks with a higher number of hidden
neurons in the hidden intermediate layers have a lower
prediction, and thereby ability to control, error level,
although this condition should be avoided if possible as
the error level rapidly increases once operating
conditions are outside the a-priori knowledge base.

Further work is focused on involving different corruption
types, including mixed type of corruption and alternative
adaptive techniques.
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