8,536 research outputs found

    Implementation of Impulse Noise Reduction Method to Color Images using Fuzzy Logic

    Get PDF
    Image Processing is a technique to enhance raw images received from cameras/sensors placed on satellites, space probes and aircrafts or pictures taken in normal day-to-day life for various applications. Impulse noise reduction method is one of the critical techniques to reduce the noise in color images. In this paper the impulse noise reduction method for color images by using Fuzzy Logic is implemented. Generally Grayscale algorithm is used to filter the impulse noise in corrupted color images by separate the each color component or using a vector-based approach where each pixel is considered as a single vector. In this paper the concepts of Fuzzy logic has been used in order to distinguish between noise and image characters and filter only the corrupted pixels while preserving the color and the edge sharpness. Due to this a good noise reduction performance is achieved. The main difference between this method and other classical noise reduction methods is that the color information is taken into account to develop a better impulse noise detection a noise reduction that filters only the corrupted pixels while preserving the color and the edge sharpness. The Fuzzy based impulse noise reduction method is implemented on set of selected images and the obtained results are presented

    Fuzzy averaging filter for impulse noise reduction in colour images with a correction step

    Full text link
    [EN] In this paper we propose a fuzzy detection and reduction method for impulse noise in colour images. Detection is based on the fuzzyfication of a well-known statistic called ROD. The noise degrees obtained are used to reduce impulses by employing a fuzzy averaging between the input colour vector and a robust estimate of noise-free colour vector within the input neighbourhood. Fuzzy averaging has some advantages in terms of both noise reduction and detail preservation in front of detect and replace approaches because of threshold based decisions of the latter. However, robustness of the former is lower. We solve this problem by including a correction mechanism that checks the fuzzy noise degree of the output and replaces it with a robust colour vector either when noise has not been properly reduced or when a colour artefact has been introduced. We carry out a thorough study of the method parameter setting and give a convenient and robust setting. Experimental results show that our approach is very robust in front of four different types of impulse noise.The authors are very grateful to the reviewers for their valuable suggestions. Valentin Gregori and Samuel Morillas acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant MTM 2015-64373-P (MINECO/FEDER, UE). Bernardino Roig and Almanzor Sapena acknowledges the support of Generalitat Valencians under grant AICO/2017/059.Gregori Gregori, V.; Morillas, S.; Roig, B.; Sapena Piera, A. (2018). Fuzzy averaging filter for impulse noise reduction in colour images with a correction step. Journal of Visual Communication and Image Representation. 55:518-528. https://doi.org/10.1016/j.jvcir.2018.06.025S5185285

    A Noise Density-Based Fuzzy Approach for Detecting and Removing Random Impulse Noise in Color Images

    Get PDF
    This paper introduces a new approach aimed at restoring images corrupted by random valued impulse noise. The adopted methodology leverages fuzzy logic and encompasses three primary stages: estimation of noise density, detection of fuzzy noise, and reduction of fuzzy noise. Within the fuzzy noise detection phase, a fuzzy set labeled as "Noise-Free" is formulated through the utilization of the rank-ordered mean of absolute differences and the estimated noise density. This set serves to discern whether a given pixel should be classified as noisy or noise-free. Utilizing the fuzzy logic in the proposed method collaborates to determine the ultimate fuzzy weight assigned to each pixel, thereby facilitating the restoration of corrupted image pixels. Empirical results based on peak signal-to-noise ratio, mean square error, and visual assessment demonstrate the effectiveness of the proposed technique in suppressing noise, preserving fine details, and surpassing the performance of several established filtering methods
    • …
    corecore