5,642 research outputs found

    Multiorder neurons for evolutionary higher-order clustering and growth

    Get PDF
    This letter proposes to use multiorder neurons for clustering irregularly shaped data arrangements. Multiorder neurons are an evolutionary extension of the use of higher-order neurons in clustering. Higher-order neurons parametrically model complex neuron shapes by replacing the classic synaptic weight by higher-order tensors. The multiorder neuron goes one step further and eliminates two problems associated with higher-order neurons. First, it uses evolutionary algorithms to select the best neuron order for a given problem. Second, it obtains more information about the underlying data distribution by identifying the correct order for a given cluster of patterns. Empirically we observed that when the correlation of clusters found with ground truth information is used in measuring clustering accuracy, the proposed evolutionary multiorder neurons method can be shown to outperform other related clustering methods. The simulation results from the Iris, Wine, and Glass data sets show significant improvement when compared to the results obtained using self-organizing maps and higher-order neurons. The letter also proposes an intuitive model by which multiorder neurons can be grown, thereby determining the number of clusters in data

    Methods for fast and reliable clustering

    Get PDF

    Multivariate Approaches to Classification in Extragalactic Astronomy

    Get PDF
    Clustering objects into synthetic groups is a natural activity of any science. Astrophysics is not an exception and is now facing a deluge of data. For galaxies, the one-century old Hubble classification and the Hubble tuning fork are still largely in use, together with numerous mono-or bivariate classifications most often made by eye. However, a classification must be driven by the data, and sophisticated multivariate statistical tools are used more and more often. In this paper we review these different approaches in order to situate them in the general context of unsupervised and supervised learning. We insist on the astrophysical outcomes of these studies to show that multivariate analyses provide an obvious path toward a renewal of our classification of galaxies and are invaluable tools to investigate the physics and evolution of galaxies.Comment: Open Access paper. http://www.frontiersin.org/milky\_way\_and\_galaxies/10.3389/fspas.2015.00003/abstract\>. \<10.3389/fspas.2015.00003 \&g

    Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures

    Get PDF

    Gene-Based Clustering Algorithms: Comparison Between Denclue, Fuzzy-C, and BIRCH

    Get PDF
    The current study seeks to compare 3 clustering algorithms that can be used in gene-based bioinformatics research to understand disease networks, protein-protein interaction networks, and gene expression data. Denclue, Fuzzy-C, and Balanced Iterative and Clustering using Hierarchies (BIRCH) were the 3 gene-based clustering algorithms selected. These algorithms were explored in relation to the subfield of bioinformatics that analyzes omics data, which include but are not limited to genomics, proteomics, metagenomics, transcriptomics, and metabolomics data. The objective was to compare the efficacy of the 3 algorithms and determine their strength and drawbacks. Result of the review showed that unlike Denclue and Fuzzy-C which are more efficient in handling noisy data, BIRCH can handle data set with outliers and have a better time complexity
    • …
    corecore