23 research outputs found

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    An erasure-resilient and compute-efficient coding scheme for storage applications

    Get PDF
    Driven by rapid technological advancements, the amount of data that is created, captured, communicated, and stored worldwide has grown exponentially over the past decades. Along with this development it has become critical for many disciplines of science and business to being able to gather and analyze large amounts of data. The sheer volume of the data often exceeds the capabilities of classical storage systems, with the result that current large-scale storage systems are highly distributed and are comprised of a high number of individual storage components. As with any other electronic device, the reliability of storage hardware is governed by certain probability distributions, which in turn are influenced by the physical processes utilized to store the information. The traditional way to deal with the inherent unreliability of combined storage systems is to replicate the data several times. Another popular approach to achieve failure tolerance is to calculate the block-wise parity in one or more dimensions. With better understanding of the different failure modes of storage components, it has become evident that sophisticated high-level error detection and correction techniques are indispensable for the ever-growing distributed systems. The utilization of powerful cyclic error-correcting codes, however, comes with a high computational penalty, since the required operations over finite fields do not map very well onto current commodity processors. This thesis introduces a versatile coding scheme with fully adjustable fault-tolerance that is tailored specifically to modern processor architectures. To reduce stress on the memory subsystem the conventional table-based algorithm for multiplication over finite fields has been replaced with a polynomial version. This arithmetically intense algorithm is better suited to the wide SIMD units of the currently available general purpose processors, but also displays significant benefits when used with modern many-core accelerator devices (for instance the popular general purpose graphics processing units). A CPU implementation using SSE and a GPU version using CUDA are presented. The performance of the multiplication depends on the distribution of the polynomial coefficients in the finite field elements. This property has been used to create suitable matrices that generate a linear systematic erasure-correcting code which shows a significantly increased multiplication performance for the relevant matrix elements. Several approaches to obtain the optimized generator matrices are elaborated and their implications are discussed. A Monte-Carlo-based construction method allows it to influence the specific shape of the generator matrices and thus to adapt them to special storage and archiving workloads. Extensive benchmarks on CPU and GPU demonstrate the superior performance and the future application scenarios of this novel erasure-resilient coding scheme

    Soft Error Resistant Design of the AES Cipher Using SRAM-based FPGA

    Get PDF
    This thesis presents a new architecture for the reliable implementation of the symmetric-key algorithm Advanced Encryption Standard (AES) in Field Programmable Gate Arrays (FPGAs). Since FPGAs are prone to soft errors caused by radiation, and AES is highly sensitive to errors, reliable architectures are of significant concern. Energetic particles hitting a device can flip bits in FPGA SRAM cells controlling all aspects of the implementation. Unlike previous research, heterogeneous error detection techniques based on properties of the circuit and functionality are used to provide adequate reliability at the lowest possible cost. The use of dual ported block memory for SubBytes, duplication for the control circuitry, and a new enhanced parity technique for MixColumns is proposed. Previous parity techniques cover single errors in datapath registers, however, soft errors can occur in the control circuitry as well as in SRAM cells forming the combinational logic and routing. In this research, propagation of single errors is investigated in the routed netlist. Weaknesses of the previous parity techniques are identified. Architectural redesign at the register-transfer level is introduced to resolve undetected single errors in both the routing and the combinational logic. Reliability of the AES implementation is not only a critical issue in large scale FPGA-based systems but also at both higher altitudes and in space applications where there are a larger number of energetic particles. Thus, this research is important for providing efficient soft error resistant design in many current and future secure applications

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    マルチレベル並列化とアプリケーション指向データレイアウトを用いるハードウェアアクセラレータの設計と実装

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 稲葉 雅幸, 東京大学教授 須田 礼仁, 東京大学教授 五十嵐 健夫, 東京大学教授 山西 健司, 東京大学准教授 稲葉 真理, 東京大学講師 中山 英樹University of Tokyo(東京大学

    NASA Tech Briefs, June 1994

    Get PDF
    Topics covered include: Microelectronics; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Report

    The 1992 Research/Technology report

    Get PDF
    The 1992 Research & Technology report is organized so that a broad cross section of the community can readily use it. A short introductory paragraph begins each article and will prove to be an invaluable reference tool for the layperson. The approximately 200 articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Lewis technology programs

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design
    corecore