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ABSTRACT

In this thesis, we describe the design and implementation of high-performance hard-
ware accelerators and propose a design methodology. In software programming, archi-
tecture of the processor, functions of operating system, and optimization of compiler
support acceleration. However, in hardware design, there is no support as there is in
software programming; thus, hardware engineers must optimize designs on their own.
Engineers have greater flexibility when designing hardware; however, a design method-
ology for high-performance accelerators has not been established. We have established a
design methodology through the design and implementation of accelerators using field-
programmable gate arrays (FPGAs). To explain the proposed methodology, we select
three accelerators and describe three targeted studies.

The first application is improving the throughput performance of TCP communication
in long-distance fat-pipe networks (LFNs). It is known that TCP communication on
LFNs is difficult, and obtaining good performance in parallel TCP communication is
more difficult than with single TCP. To address this problem, we propose a hardware
solution that balances streams. We implement the merging stream harmonizer (MSH) on
MaSTER-1, our programmable network testbed. We can utilize 99.6% of 10-Gbps LAN
PHY bandwidth in pseudo LFNs and 87.0% of 9.2-Gbps WAN PHY bandwidth in real
LFNs. Note that different sections of LFNs have various bandwidths, and packet loss
often occurs when the total input bandwidth is greater than that of the output. Using
MaSTER-1, we analyzed the buffer effects of such switches and the relationship between
round-trip time (RTT) and buffer size.

The second study involved the computer Go game. A Monte Carlo tree search method
that involves Monte Carlo simulations has been developed to find the best next move
in the Go game. The method increases the strength of the Computer-Go program.
The effectiveness of this method depends on the number of simulations. Unfortunately,
FPGA-based acceleration was difficult because, in this context, resource consumption
tends to be high. FPGA-based acceleration was feasible for a 9 x 9 grid board; however,
it was not feasible for a 19 x 19 grid board. We propose a triple line-based playout
for Go (TLPG) hardware algorithm. By reproducing global information redundantly,
the TLPG algorithm generates simulations using only local operations, which helps in
realizing compact hardware logic implementations. We implemented TLPG in MaSTER-
1. The results indicate that the TLPG algorithm can perform 40,649 playouts per second
for a 9 x 9 grid board and 4,668 playouts per second for a 19 x 19 grid board.

The third study involved skyline computation, which is a method to extract inter-
esting entries from a large population with multiple attributes. When the population
changes dynamically, calculating a sequence of skyline sets is referred to as continuous
skyline computation. Previous methods that employ divide and conquer and geometric
algorithms are not robust in higher dimensional space. We propose the balanced jointed
rooted tree (BJR-tree), which can represent a dominance relation as an arc. In addition,
tree traversal at a deep position can be delayed to reduce unnecessary calculations. We
also propose the low-latency skyline computation accelerator (LSCA) as a hardware algo-
rithm. The LSCA parallelizes dominance relation calculations and evaluates postponed
calculations during idle states. We implemented the LSCA on an FPGA and evaluated
our software and hardware implementations. BJR-tree is approximately up to 70 times
faster than LookOut on synthetic datasets. In addition, the LSCA is approximately 2.5
to 4.4 and 1.7 to 35 times faster than an Intel CPU running software implementations
on synthetic and real-world datasets, respectively.

The proposed methodology, established through our studies including the above three,
indicates the design flow for multi-level parallelization and application-oriented data lay-
out. Note that our perspective relative to hardware design is not considered in current
behavioral synthesis technology. In another three calculations, we compared the perfor-
mance of a circuit generated automatically using a behavioral synthesis tool and a circuit
designed based on the proposed methodology. The results show that the design based on
the proposed methodology is more efficient than the behavior-based design. We expect
that the proposed design methodology will provide a guideline for hardware designers and
will be incorporated into behavioral synthesis in the future. Thus, the proposed design
methodology is expected to contribute to an effective and efficient accelerator design.
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Chapter 1

Introduction

1.1 Research Background

Recently, it has been observed that computer research and development focuses
on high performance and low power consumption. CPU performance has im-
proved by increasing the clock frequency and by introducing multi-core technolo-
gies based on the progress of semiconductor technology and microarchitecture
design. However, recently, performance saturation has been observed. High-
performance computing targets a wide range of applications, such as scientific
computation, artificial intelligence (AI), machine learning, big data, and high-
speed computer networks. These applications require significant computational
resources to increase the accuracy of their results and increase the size of prob-
lems. From the above consideration, methods to accelerate large-scale computa-
tions are neccesary to overcome the saturation of CPU performance.

CPU architecture is designed in a manner so as to achieve high performance
for a wide range of applications. Therefore, CPUs are not the most suitable so-
lution for specific applications. CPUs are required to run multiple applications
simultaneously under the management of operating systems. Then, several CPUs
have functions for context switching at the hardware level. Therefore, accelerators
to reduce the execution time and power consumption of specific large-scale appli-
cations have been extensively studied, e.g., accelerators that employ graphic pro-
cessing units (GPUs), field-programmable gate array (FPGAs), and application-
specific integrated circuits (ASICs). These four computing approaches, i.e., CPU
and GPU-, FPGA-, and ASIC-based accelerators, are shown in Figure 1.1. Note
that each approach has different characteristics. The use of CPUs is the most
versatile and flexible approach. Originally, GPUs are hardware-based acceler-
ators that targeted graphics processing; however, GPU architecture has been
generalized to include software programming environments. Thus, GPUs can be
employed to speed up several calculations at a low cost. GPUs have software pro-
grammability and make up the second most flexible approach. An FPGA is an
LSI whose internal circuits can be reconfigured dynamically. FPGAs that have
hardware programmability constitute the second most efficient approach. Fur-
ther, ASICs target specific applications. ASICs have the lowest programmability;
however, they are the most efficient. Accelerators that employ GPUs, FPGAs,
and ASICs have been studied, and various commercial accelerators to obtain
high-performance computing systems for an extensive range of applications have
been developed.

In ASICs, execution circuits, data paths, and the memory structure are op-
timized for specific target applications. However, such hardware optimization
incurs high development costs and requires significant time. The clock frequency
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Figure 1.1: Computing approaches; general-purpose CPUs, and GPU-, FPGA-,
and ASIC-based accelerators

of ASICs can be increased because of optimizations in chip manufacturing pro-
cesses; thus, such devices can provide the highest efficiency and performance.
However, ASICs have several disadvantages: unfortunate design errors result in
disastrous development delays, and when target algorithms change or improve,
ASIC chips, which are expensive to manufacture, become obsolete, and modify-
ing the design of manufactured chips is costly. ASICs are designed for specific
applications, and it is assumed that the ongoing demand for such chips will be
sufficient to ensure profitability. Given the time require to design and manufac-
ture ASICs, the development cycles of competitive devices, such as CPUs, must
also be considered, i.e., a newly released ASIC may be inferior in performance to
current or next-generation CPUs. Thus, ideally, accelerators should have short
development periods. As alternative approaches, software-programmable GPUs
and hardware-programmable FPGAs can be employed to compensate against the
disadvantages of ASICs.

Originally, ASICs were used to increase the speed of 3D graphics process-
ing. As graphics processing requirements become increasingly diversified, more
flexible devices were developed. While data paths and the memory hierarchy
were maintained specialized for the graphics processing, execution circuits were
generalized and software programmability is introduced. For example, a shader
with programmable color rendering circuits is referred to as a programmable
shader. In addition to graphics processing, GPUs can achieve high computa-
tional performance for various operations, e.g., matrix operations. Technology
to employ GPUs for purposes other than graphics processing is referred to as
general-purpose computing on GPUs (GPGPUs). Initially, GPUs were used for
scientific computations; they are now used in a wide range of fields, such as fi-
nance, deep learning, climate simulation, multimedia, and entertainment. More
than 40% of the 48 systems with accelerators that were ranked within the Top 100
in the Top500 List employ GPUs [128]. Typically, the GPU architecture includes
many floating-point and integer arithmetic units. Registers, a scheduler, and
cache memory are associated with each group of several arithmetic and floating-



point units. Unlike CPUs, GPUs do not have an operating system, and GPU
computations are initiated by requests from a host server. The GPU usage has
increased dramatically because of the demands of deep learning. In 2017, in re-
sponse to the emerging deep learning requirements, NVIDIA announced the Volta
microarchitecture. The Volta microarchitecture includes Tensor Cores, which are
circuit elements dedicated to perform 4 x 4 matrix multiplication and addition.
Typically, GPUs have large memory bandwidths and are useful for applications
wherein the data paths, memory hierarchy, and specialized execution units of the
GPU are suitable. However, there are also applications wherein GPUs are not
useful, e.g., tree search that includes many conditional branches. It is difficult to
optimize power consumption for each algorithm in a GPU, and their performance
and efficiency are limited.

In FPGAs, both logic and wiring can be reconfigured. Originally, FPGAs were
based on programmable logic devices (PLD). Motorola’s XC157, which appeared
in 1968 [58], had 12 gates and could be configured only once. Lattice Semiconduc-
tor’s generic array logic (GAL), which was developed in the 1980s, had memory
for the configuration and it was reconfigurable. In 1985, Xilinx released its first
FPGA device, i.e., the XC2064, which had 800 gates [104]. Initially, FPGAs
were primarily used to realize easy firmware updating of hardware requiring real-
time processing, such as the control units of instruments for computer networks
and experiments in physics. Since the 2000s, owing to developments in semi-
conductor technology and development environments, FPGAs have been used as
acceleration devices to replace ASICs in commercial products and research in-
struments. Currently, attention is focused on the use of the FPGAs in Al. As
mentioned previously, ASIC hardware designs are not changeable, and the scope
of software programmability tends to be narrow in the process of pursuing high
performance. For example, a software programming framework CUDA is devel-
oped by NVIDIA for GPGPUs; however, engineers cannot change GPU hardware
designs. On the other hand, FPGAs are programmable at a hardware logic level,
and it differs from CPUs, GPUs, and ASICs. Therefore, FPGA designers can
freely determine the scope of software programmability. In addition, the FPGA
logic circuits can be modified on the fly. The FPGA approach has two primary
advantages, i.e., specialization for individual application, which is also achiev-
able by ASICs, and hardware-level programmability, which is not achievable by
ASICs. FPGAs have several disadvantages. Although recent FPGA devices have
high-speed transceivers, the I/O bandwidth for external devices is inferior to that
of an ASIC. In addition, for the same circuit, the clock frequency and degree of
gate integration are lower than those of ASICs.

The CPU pursues flexibility through a general-purpose hardware design and
software programmability, and the GPU demonstrates high performance locally
for graphics and Al processing, including matrix operations. However, domains
where GPUs are effective are limited. Since the ASIC is designed based on
the execution unit, data paths, and memory hierarchy optimized for a target
application, it achieves the highest performance and efficiency. Similarly, FPGAs
can be optimized for target applications. For example, data types are fixed in
CPUs and GPUs; however, data types can be adjusted to the required bit width
in ASICs and FPGAs. Furthermore, only ASIC- and FPGA-based approaches
can exploit application-oriented circuit designs.

Figure 1.2 shows the design difficulties relative to software- and FPGA-based
approaches. In the software-based approach, the hardware design is fixed, and
the operating system is often off-the-shelf. Note that software programmers pri-
marily design applications and libraries. On the other hand, in FPGA-based
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Figure 1.2: Design difficulties for developers. In the software-based approach,
software programmers can design only userland programs and libraries easily.
It is impossible for the programmers to design the hardware architecture and
optimize it for the target application. On the other hand, hardware designers
can easily design all components other than FPGA chip and hardware primitives
including the hard-macros. The hardware designer may create a software program

that communicates with the FPGA device. Its difficulty depends on the design
of the FPGA device, but it is often a simple program for controlling the FPGA.

accelerators, only the logical block arrangement of the FPGA and the circuit
of the built-in hard macro are fixed. Hardware engineers can freely select the
architectural design of the hardware, which includes the data paths connecting
execution units and memory hierarchy configurations. In addition, hardware en-
gineers determine the design of the software controller for FPGAs. Thus, the
design of FPGA-based accelerators is more flexible than software programming.
In this thesis, we discuss a methodology for balanced design with high degrees of
freedom through selected three studies.

The microarchitecture of a computer system comprises components for in-
struction interpretation, execution, and interconnection (Figure 1.3). Note that
architecture designers must pursue high performance in all components. Many
engineers have researched and developed microarchitecture designs, and a num-
ber of thoughtful designs have been proposed for each of the three components.
The performance of general-purpose processors has been improved by increasing
the clock frequency because of the progress of semiconductor technology and by
improving the microarchitecture. We can give examples for the instruction in-
terpretation component, such as the superscalar architecture [124], the branch
prediction algorithm [90, 65], out-of-order execution [127], multi-core architec-
ture, and simultaneous multi-threading [56]. We can also provide examples for
the interconnection component, such as the three-dimensional torus interconnect
in Cray T3D [70] and the Tofu six-dimensional torus interconnects in the RIKEN
K computer [1]. Finally, we can give two examples for the execution component,
i.e., high-throughput floating-point units [129, 132] and a high-throughput ma-
trix operation unit with a combination of the recursive Strassen algorithm [114]
and a specialized small matrix operation circuit (e.g., the NVIDIA Tensor Core).
The execution component has been solely improved for general-purpose compu-
tations to maintain processor versatility. However, a design methodology for the
execution component specialized for specific applications has not been discussed
systematically; therefore, engineers tend to design the execution component for



each application with significant cost and time.
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Figure 1.3: Three microarchitecture components of the computation unit. The
instruction interpretation component is a circuit for interpreting programmable
software code loaded from memory to the device and controlling execution com-
ponents. The execution component is a circuit for computing target calculations.
The interconnection component consists of data paths that connect cores and
interfaces to other computation units.

1.2 Research Overview

We have developed a series of FPGA-based accelerators. When designing those
accelerators, we found important keys for high-performance accelerators, and we
have established a design methodology based on these points. We select and
describe the following typical three studies and accelerators that are suitable for
explaining the proposed design methodology: (1) high-throughput TCP com-
munication with parallel streams in computer networks, (2) speedup of playout
generation for a computer Go algorithm, and (3) acceleration of continuous sky-
line computations.

We discuss accelerators for high-speed data processing in computer networks
in Chapter 3. When realizing network data processing at wire-speed throughput
using a software approach, we often face a lack of computing power with the
CPUs that are available at the same age. Furthermore, new network functions
are proposed and implemented to improve the performance and network func-
tionality, and they are evaluated ‘on-site’. Some functions will be maintained,
but the others will be obsolete. New functions must be implemented in network
equipment in a short period. When vendors manufacture specialized ASICs, they
cannot quickly release new versions of chips and earn high profits. Note that the
CPU and ASIC approaches do not work effectively in the domain of high-speed
computer networks. Thus, historically, FPGAs have been installed in network
instruments, such as the switching facilities of a network service provider and
network interfaces in edge servers. Recently, the 1/O function of FPGAs has
been enhanced, and FPGA devices have implemented high-speed transceivers.
As a result, we can handle the wire-speed network streams of state-of-the-art
standards directly within an FPGA. The FPGA-based approach has become a
central method in network device development. The TCP is a data transfer pro-
tocol that guarantees data arrive at the target destination without loss. The
TCP is currently used as a standard protocol on the Internet; however, with
the widespread use of long-distance fat-pipe networks (LFNs), we have not been



able to realize high-throughput data transfer in TCP communication. It is well
known that throughput performance decreases because of instantaneous increases
in Internet traffic for a short period, and this is referred to as the burst traffic
problem.

Thus, we addressed the burst traffic problem in LFNs. Since the RTT of
LFNs is large, the burst problem becomes more serious. Note that improving the
TCP and its congestion control algorithm are insufficient to solve this problem.
We must analyze the behavior of network streams and directly control the pack-
ets. For example, the time available to handle a single 64-byte packet in 10-Gbps
networks is no more than approximately 50 nanoseconds, which means that it is
difficult to analyze and control streams using software-based approaches. More-
over, no current hardware can control streams at these speeds. Therefore, we
developed the MaSTER-1 FPGA-based network testbed and analyzed network
streams in various networks. We can produce our testbed at low cost in short
development time using FPGAs. By capturing and analyzing network streams
in real-world networks, we can observe interesting situations that cannot be re-
produced in a pseudo network environment simplified and realized by a network
simulator. Analysis with dedicated testbeds having high-throughput data trans-
mission capability is key to perform high-speed communication. We propose the
MSH packet control mechanism in Chapter 3. We introduced the MSH to the
networks and evaluated the performance improvement of TCP communication.

We also discuss high-speed Monte Carlo simulation for a computer game Al
in Chapter 4. Accelerators have been actively utilized in computer game Al. For
example, IBM’s Deep Blue, which defeated the Chess world champion, Garry
Kasparov, in 1997, had 512 very-large-scale integration (VLSI) accelerators spe-
cialized in Chess [24]. Google’s Deep Mind AlphaGo, which won the top world
Go game player in 2016, employed four tensor processing units (TPU), which are
ASICs specialized to perform neural network computations. Application-oriented
hardware-based accelerators are highly effective in the field of computer game Al.
With Go, the introduction of the Monte Carlo tree search method [35] in 2008
improved the strength of computer Go players. In Monte Carlo tree search, rather
than constructing an evaluation function for the state of the game board, random
moves are repeated until the game ends (this is referred to as a playout). Since
playout generation requires very large computing resources and gameplay has a
time limit, we must speed up this computation.

With Reversi and Chess, the games are compatible with 64-bit processors be-
cause the size of their game boards is small (64 squares). However, Go’s board
has 361 squares, and playout generation comprises complicated bit operations
to judge stone death based on the rules of the game. In addition, the compu-
tations contain practically no floating-point operations. Thus, it is difficult to
accelerate playout generation with GPUs. However, since the bit width can be
fitted to the game board size and a circuit can be optimized for the rules of
Go, hardware-based approaches, such as FPGAs and ASICs, are very suitable
for playout generation. We used FPGAs to construct an acceleration system at
low cost and short development time. FPGAs are not suitable for tree searches
because the tree search requires many random memory accesses and conditional
branches; thus, it is not a good approach to implement the entire Monte Carlo
Go Al on an FPGA. This weakness is solved by dividing the Monte Carlo tree
search into simple tree search and playout generation tasks and by executing each
task in the software and FPGA hardware, respectively. However, it is difficult to
design a high-performance circuit for playout generation due to Go’s rules. We
describe our hardware design for playout generation in Chapter 4.



We discuss high-speed continuous skyline computation relative to accelerators
in Chapter 5. A skyline of a set of multi-dimensional vectors is a subset of multi-
dimensional vectors such that no vector having a smaller value than themselves
exists in any dimension. Intuitively, entries superior to a skyline entry in all
dimensions do not exist in the set. Computing a skyline in d-dimensional space is
the same as finding the Pareto optimal solutions of a multi-objective optimization
problem of d functions. Skyline is both similar to and different from the convex
hull, and generally, time complexity of skyline computation is less than that
of the convex hull. However, as the number of dimensions increases, the time
required for the skyline computation increases significantly. Recently, incremental
skyline computation for dynamically changing the vector sets has been focused.
The computation is referred to as continuous skyline computation. In real-time
applications, it is necessary to compute the skyline of a changing set immediately.
Therefore, acceleration of continuous skyline computation is more important than
that of the static skyline computation.

We propose the BJR-tree, a software algorithm for high-speed continuous
skyline computation. The design and implementation of an efficient online algo-
rithm for a time-varying entry set are the keys to low-latency query processing
in continuous skyline computations. In the BJR-tree algorithm, vector entries
are managed by a unique tree structure to delay calculations of entries that have
less potential to join the skyline in the future. Then, we propose the LSCA, a
BJR-tree-based hardware algorithm, and implement it in an FPGA. We describe
our hardware design for continuous skyline computations in Chapter 5.

FPGAs can be employed to develop application-specific accelerators that can
perform highly parallelized computations based on low-latency and real-time op-
erations. Differing from software programming languages, in the hardware de-
scription language (HDL), the structure of register transfer level (RTL) circuits,
including execution units, data paths, and the memory hierarchy, is described
directly. Recently, a behavioral synthesis technology for converting the “behav-
ior” of algorithms, described using a high-level language, into a “structure” of
the circuits, described using an HDL, has been developed. However, converting
the imperative descriptions of a target function to logical structures is difficult,
and generation of a high-performance HDL code for acceleration has not been
achieved.

We reviewed the implementations of our FPGA-based accelerators and estab-
lished a design methodology in Chapter 6. We describe a design flow to represent
abstract algorithms as a logic circuit. The core concepts of the proposed design
methodology are multi-level parallelization and an application-oriented data lay-
out. We describe principles applicable to logic design of steps of the design flow.
Additionally, to demonstrate how the proposed methodology can be employed
with two core concepts, we describe the detailed hardware algorithm of accelera-
tors implemented in our three typical studies, which are mentioned in the previous
chapters. We compare the performance of behavior-based and HDL-based design
approaches to evaluate the effectiveness of HDL-based approach using our design
methodology.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we describe
processors and accelerators and review the research background of accelerators
in high-performance computing. We introduce large-scale GPU-, FPGA-, and
ASIC-based acceleration systems as existing notable studies. In addition, we re-



view fundamental parallelism concept and available memory hierarchy, which are
central elements in acceleration. In Chapters 3, 4, and 5, we describe our three
studies in detail. In Chapter 3, we describe the performance improvement of
parallel TCP communication in LFNs. In Chapter 4, we address the acceleration
of the Monte Carlo tree search algorithm in a computer Go player AI, and in
Chapter 5, we focus on the acceleration of continuous skyline computations. In
each study, our approach is based on an efficient architecture and an algorithm
for an FPGA-based accelerator. In Chapter 6, we describe the proposed design
methodology for realizing high-performance FPGA-based accelerators. We clarify
the difficulties associated with hardware design and briefly review previous hard-
ware design methods. Then, we describe the proposed design methodology and
demonstrate its application. We consider additional applications and compare a
hardware design based on the proposed methodology and a behavior-based hard-
ware design relative to the performance of the applications. Source codes for the
behavior-based design are described in Appendix A. Additionally, we clarify the
issues to be addressed in future hardware designs. Conclusions and suggestions
for future work are in Chapter 7.



Chapter 2

FPGA-based Acceleration

2.1 Background

Currently, research and development are focused on developing high-performance
computing and reducing power consumption requirements. High-performance
computing targets a wide range of domains, such as scientific computation, ar-
tificial intelligence, machine learning, big data, and computer networks, which
require vast computational resources to increase computational accuracy and
scale. In addition, other domains, such as financial transactions, require very low-
latency query processing. Traditionally, the performance of a general-purpose
computer has depended on the central processing unit (CPU), and CPU per-
formance has been improved by increasing the clock frequency and introducing
multi-core and multi-thread technologies. However, CPUs are designed to ensure
performance in general-purpose applications and are not optimized for specific
applications.

Various accelerators, e.g., GPUs, FPGAs, and ASICs, have been proposed
to reduce the execution time and power consumption of specific large-scale com-
putations. Note that CPUs have greater generality and flexibility than GPUs,
FPGAs, and ASICs. On the other hand, ASICs demonstrate higher performance
capability and efficiency than CPUs, GPUs, and FPGAs.

GPUs were originally designed for image processing as a simple computer
component. However, application programming interfaces (APIs) such as the
NVIDIA CUDA has made it possible for end users to run their software on GPUs,
and many GPU products specifically intended for high-performance computing
are available from various vendors. Similar to CPUs, end users cannot modify
GPU hardware logic; however, both CPUs and GPUs can be programmed at a
software level. A GPU can be considered a processor dedicated to the code with
API. GPUs are used to accelerate the performance of supercomputers. GPUs can
realize high performance and efficiency on applications that consist of matrix op-
erations and on calculations in which similar operations can be highly parallelized.
However, GPUs are not suitable for computations that involve complicated con-
ditional branches. ASICs differ from CPUs and GPUs in that they are dedicated
large-scale integration (LSI) chips designed for specific applications in considera-
tion of performance and power consumption. However, developing ASICs requires
significant time, and to be profitable, chips must be mass-produced. Changing
ASIC designs at an advanced production stage incurs additional cost. FPGAs are
programmable LSIs. As mentioned previously, CPU, GPU, and ASIC hardware
designs are fixed for the programmers and the end users; however, FPGAs can be
programmed at a hardware logic level. Unlike ASICs, we can modify hardware
logic circuits on FPGAs on the fly. The FPGA approach has two advantages.



One is specialization for applications, which is achieved by ASICs, and the other
is hardware-level programmability, which is not achieved by ASICs.

With CPUs, software programmers have greater flexibility because they are
general-purpose devices that can be programmed to target a wide range of appli-
cations. On the other hand, the ASIC approach attempts to improve performance
and efficiency using specialized and unmodifiable hardware devices. Although the
CPU approach is superior in terms of cost, its performance is limited. Recently,
methods that employ GPU-, FPGA-, and ASIC-based accelerators have become
common in large-scale cluster computing systems.

2.2 Field-Programmable Gate Array

FPGAs are reconfigurable logic devices, i.e., the logic circuits in an FPGA are pro-
grammable. The FPGA architecture (Figure 2.1) includes basic Logical Blocks
(LBs) that realize combinational and sequential circuits. Routing channels are
interconnection resources that connect LBs, and the connection relationships are
configured using Switching Blocks (SBs). User configuration data specify truth
tables in LBs and routing information in SBs. Similar to other LSI devices, FP-
GAs have external I/O pins that connect internal routing resources via I/O Blocks
(IOBs). Users can configure I/O pins to conform to the electrical requirements
of the various devices connected to an FPGA.

Currently, Look Up Table (LUT) method is used for realizing LBs in many
types of FPGAs. In addition to LBs, FPGAs employ Digital Signal Processors
(DSPs), Random Access Memory (RAM), Serializers/Deserializers (SerDes), De-
layed Locked Loops (DLLs), Phase Locked Loops (PLLs), and other circuit blocks
that realize I/O interfaces for various protocols, such as Ethernet. The DSP block
consists of a floating-point adder and multiplier. Using DSPs has advantages rel-
ative to resource consumption and logic delay time compared to using LBs to
implement floating-point units. Note that specialized circuit blocks are referred
to as hard-macros. In FPGAs, hard-macros perform various functions, such as
Ethernet Media Access Control (MAC)/Physical Coding Sublayer (PCS), exter-
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Figure 2.1: FPGA architecture
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nal DRAM control, PCI Express interfaces, and analog/digital (A/D) converters.
The corresponding hard-macro blocks are instantiated when a circuit includes
specialized functional blocks, and routing resources are automatically assigned
based on the circuit design. The placement of logical block instances and routing
information are referred to as the FPGA firmware. After downloading firmware
to an FPGA device, the internal circuits are determined, and the FPGA initiates
the designed operation. Many FPGA boards implement non-volatile flash mem-
ory connected to configuration pins of the FPGA. When the FPGA and board are
powered up, the firmware in flash memory is downloaded automatically. FPGA
functions can be changed during operation by downloading different firmware.

FPGAs were initially developed in the 1970s as a simple reconfigurable de-
vice. In the 2010s, 20-nanometer semiconductor-technology-based FPGAs with
50 million ASIC gates became available. Currently, the major FPGA device
manufacturers are Xilinx, Intel, Lattice, and Microsemi. Recently, Xilinx and
Intel have deployed System-on-Chip (SoC) FPGA devices integrated with em-
bedded processors, such as ARM CPUs. In addition, highly integrated FPGAs
that utilize three-dimensional stacking technology are currently being developed,
and the resource capacity of FPGAs is increasing. Thus, FPGAs are expected to
be employed more extensively in the future.

Compared to CPU-, GPU-, and ASIC-based approaches, the advantages of
the FPGA approach are as follows.

1. Low-latency interface

In CPUs, data I/O is managed by hardware, the operating system, and
software. Some devices connected to a CPU require driver software, and I/O
throughput and latency strongly depend on the quality of the device driver.
In addition, relative to the I/O of the interface between a CPU and GPU,
the CPU and operating system manage PCI Express data transmission,
which can incur performance bottlenecks. On the other hand, data I/O is
managed by the userland logic on FPGAs, and logic latency depends on
the user’s design. In other words, the FPGA I/O interface is not influenced
by vendor software, such as device drivers.

2. Real-time processing

In CPUs, the operating system manages process scheduling and resource
sharing. If competing resource demands occur, a time-critical process may
be halted. It is well known that operating system context switching and
interruptions cause fatal delays for real-time applications, and these delays
cannot be controlled by software programmers. An operating system is not
essential in an FPGA because processes are executed in real time and are
performed as designed.

3. Parallelization

In a non-superscalar processor, only one instruction can be processed per
single clock cycle on a single core. The number of CPU cores and threads
is predetermined; therefore, the degree of parallelism that can be achieved
through software design is limited. On the other hand, hardware designers
can implement circuits with high degrees of parallelism if sufficient logic
resources are available. Thus, FPGAs outperform CPUs operating at higher
clock frequencies.

4. Flexible data structure
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In CPUs and GPUs, the bit widths of internal registers, instructions, and
alignments are predetermined. For example, in a 64-bit processor, even if
the range of values handled in computations is limited, the circuits will be
driven for 64-bit processing. Note that the bit width can vary in FPGAs.
In other words, circuit bit width can be determined relative to the scale
of the target application. Therefore, the FPGA approach can achieve high
power efficiency.

5. Low development cost and fast development speed

Differing from FPGA hardware development, ASIC development must in-
clude a chip manufacturing phase. Thus, if the chip is not mass-produced,
the FPGA approach can reduce development costs and time. Furthermore,
FPGA circuits can be changed easily; thus, the FPGA approach reduces
the cost of specification and requirement changes. Note that FPGAs are
typically used for the evaluation of prototype design in the development of
the ASIC.

The disadvantages of the FPGA approach are as follows:

1. Low operating frequency

In FPGAs, the resources of the LBs and routing wires are prearranged and
fixed before the configuration. FPGA firmware consists of instantiation
information relative to prearranged resources. FPGA circuits tend to have
longer logical gate and wiring delays than ASIC circuits where placement
and routing are optimized for specific applications. Therefore, the clock
frequency of an FPGA is typically less than that of CPUs and ASICs.

2. Limited logic resources

In a given FPGA device, the number of available LBs is fixed; thus, circuits
must be designed in consideration of the capacity of the given FPGA device.
With the same semiconductor technology and chip size, the number of gates
on an FPGA tends to be less than that of an ASIC.

3. Power consumption

The circuits of an ASIC are optimized to reduce power consumption. How-
ever, with FPGAs, circuit power consumption strongly depends on opti-
mizations determined by synthesis tools.

Note that the first and second disadvantages are critical issues that directly
affect FPGA-based acceleration.

2.3 Related Work

2.3.1 High-performance Computing Accelerators

Acceleration technologies using GPUs, FPGAs, and ASICs are well established,
and many accelerators, all of which attempt to achieve high performance and high
efficiency, have been studied and developed for various research and commercial
fields.

GPUs are commonly used in computing systems to speed up applications,
such as finance, deep learning, climate simulation, multimedia, and entertain-
ment applications. As mentioned previously, GPUs are effective for matrix cal-
culations, particularly dense matrix calculations. However, the GPU approach is
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not suitable for tree searches that include many conditional branches. Therefore,
the range of application domains for which GPU-based acceleration is effective is
limited.

Recently, many FPGA-based accelerators have been developed. For exam-
ple, Microsoft’s Catapult [102] and BrainWave [32] are FPGA-based accelerators
for search engines and the deep learning, respectively. The BrainWave system
includes Intel Arria 10 FPGAs or Intel Stratix 10 FPGAs, which implement exe-
cution units for deep neural networks (DNNs). Users can run a Long Short-Term
Memory network, which is a type of Recurrent Neural Network, using the Brain-
Wave system. The Baidu XPU [96], which is an FPGA-based accelerator for
DNNs, can also be utilized for search engine services. IBM and Xilinx [13] have
developed a system that uses a POWERS processor and FPGA chips to accelerate
Memcached, which is an open-source distributed memory caching system, used to
speed up database access. IBM and Xilinx have developed an FPGA-based imple-
mentation of Memcached. In addition, Netcope has released a network interface
card that implements an FPGA for network traffic monitoring [101]. This prod-
uct provides packet capturing capability at 100 gigabits per second and can be
used for various other network applications. In addition, the GRAPE project has
developed cluster systems, e.g., GRAPE-8 [88], that use FPGAs and ASICs for
large-scale simulation of the N-body problem. A GRAPE-8 computation board
includes two GRAPE-8 ASICs and a single FPGA that controls the PCI Express
interface between the computation board and a host. Intel’s Nervana Neural
Network Processor [93] and Google’s Tensor Processing Unit [66] employ ASICs
dedicated to machine learning. In the FPGA and ASIC approaches, hardware
designers can employ application-specific execution units and data structures.
Therefore, FPGA- and ASIC-based accelerators are active in various application
domains.

2.3.2 FPGA-based Accelerators

A CPU and two FPGA-based accelerator implementations are shown in Figure
2.2. In the CPU implementation (top), a general multi-core processor consists of
a control unit (CU), registers, arithmetic and logical units (ALUs), and floating-
point units (FPUs). The CU interprets software read from external memory.
As shown in Figure 2.2, FPGA-based accelerators can be roughly divided into
two types, i.e., models (B) and (C). In a type (B) FPGA-based accelerator,
computations for which hardware acceleration is effective are implemented as
an execution unit with RTL coding. The type (B) accelerator has a hard or
soft processor core. Here, the FPGA receives input data for computations and
program to operate the processor. Note that the program is coded based on the
instruction set specification of the processor core. Note that the type (B) model
is similar to the GPU-based approach. However, it differs from a GPU-based
accelerator in that the dedicated hardware-based execution unit is not limited
to matrix operations. FPGA designers can develop application-specific execution
units. Here a hard processor core, e.g., the ARM processor, is a built-in processor
and is implemented on the FPGA in advance. The hard processor core uses a
prescribed instruction set, and the I/O bandwidth of the processor is fixed. On
the other hand, a soft processor core is implemented using LB resources. Thus,
engineers can design application-specific instruction sets and I/O circuits. Note
that the type (C) accelerator does not have a CU, and only logical resources
are used for execution units. In addition, the type (C) accelerator does not
instantiate a processor core. The FPGA only receives input data required for
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Figure 2.2: CPU (A) and FPGA (B, C) models. CPU (A) and FPGA (B) have
CUs that interpret software programs. FPGA (C) only has an application-specific
execution unit.

computations. Note that the execution unit tends to be complicated because
it includes control circuits; thus, development costs increase. However, overall
performance and efficiency tend to improve compared to the type (B) accelerator.
Note that, for both types of accelerators, it is important to identify and accelerate
costly computations that influence performance.

To date, many FPGA-based accelerators have been studied. For example,
the Convey HC-1 [20], shown in Figure 2.3, is a cluster system that uses 14
Xilinx Virtex-5 FPGAs. This system targets a wide range of applications, such
as oil, gas, finance, and scientific computations. The unique feature of this system
is the cache-coherent shared virtual memory that can be accessed by both the
host processor and the FPGAs. Note that the FPGAs interact with a large
amount of data in this shared memory. The vendor claims that this system can
achieve high performance for applications that require large memory bandwidth.
However, finding applications in which the host and FPGAs share a large amount
of data and FPGA-based acceleration works effectively was difficult. In Figure
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2.3, four FPGAs (far right) accelerate computation. The other FPGAs function
as interfaces to the CPU and memory. The utilization efficiency of the FPGA
is low because the ratio of the circuit size occupied by the execution unit is low.
Note that this system is a type (C) accelerator (Figure 2.2).

FPGAs for FPGAs for
host interface  memory controller

Intel processor <:> Chipset <:>%<:>D |:| |:| D<::>|:| |:|
(Xeon) P I I A
FPGAs for
application engine

DIMMs

Figure 2.3: Convey HC-1 system diagram

Pico Computing’s SC5 [59] is a cluster system that uses 48 Xilinx Kintex-7 FP-
GAs (Figure 2.4). The system aims code-breaking and can break a code encrypted
using the 56-bit Data Encryption Standard (DES) in 20 hours and the cipher used
in Wi-Fi Protected Access (WPA) in 50 seconds. Code-breaking is suitable for
FPGA-based acceleration because this application employs ciphertext-block-level
parallelism. In addition, in these applications, a very small amount of data is
transferred from/to the FPGA devices. A small amount of data is only trans-
ferred at the beginning and end of the calculation, and no data are transferred
during calculation. In other words, this system cannot achieve high performance
in applications that do not have simple data parallelism and include heavy mem-
ory access. Note that this system is also a type (C) accelerator (Figure 2.2).

Backplane card  FPGA module

Coooood
Coooooo
COooooo
o Ooooon

Figure 2.4: System diagram of Pico Computing’s SC5
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Intel processor <:>
(Xeon)

Baidu’s XPU [96], which is a type (B) accelerator (Figure 2.2), uses a single
Xilinx Ultrascale VU 9P FPGA (Figure 2.5). An accelerator implemented using
the XPU platform is referred to as a Software Defined Accelerator (SDA). Here,
the SDA includes 256 small processing cores and customized application-specific
logic circuits. The processor developed by Baidu is a software processor core.
Many processor cores are arranged on the FPGA such that the I/O bandwidth
of processors does not become a performance bottleneck. In five benchmark
applications, i.e., three simple arithmetic computations and two computer vision
computations, the performance results of this system were comparable to or worse
than that of the Intel Xeon E5 processor. One reason for the low performance
is that the FPGA memory bandwidth was insufficient. Another reason is that
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the internal clock frequency of the FPGA is 600 MHz, which is low as the clock
frequency of the CU.

DDR4 memory
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FPGA

<:> <:> Customized
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<5

To Host

Figure 2.5: Baidu XPU system diagram

The Microsoft Catapult [102] is a cluster system that uses 48 Intel Stratix
V D5 FPGAs. Figure 2.6 shows a system diagram of the Microsoft Catapult.
The entire system occupies the space of a single server rack, and this system was
originally developed for Internet Search Engine query processing (i.e., Microsoft
Bing); however, it can also be used for other applications, including machine
learning and scientific calculations. In this system, only two FPGA chips can be
mounted per single rack unit. Compared to the physical size of this system, the
number of FPGA chips is small; thus, its integration density is low.
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| DDR3 controller |

iy

/AN Customized
logic

iy

| Inter-FPGA router |

| QdeJIduI ISOH |

\
6x8 Torus at 20 Gbps \

Figure 2.6: Microsoft Catapult system diagram

2.3.3 Design Guidelines

Until now, guidelines for designing hardware including FPGAs have been dis-
cussed in many publications. The circuit design guidelines for hardware engineers
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described in [89, 131, 135] are basic and can be automated using modern logical
synthesis tools. Design guidelines described in [2] only include entry-level advice
relative to logic delay reduction. Other studies [46, 130] describe how to write
a recommended HDL code; however, they did not consider hardware algorithm
design. The design guidelines described in another study [111] focus on coding
rules for efficient development. Other design guidelines described in [140, 72, 133]
target high-level languages for behavioral synthesis; thus, applying these guide-
lines to the HDL-based approach is difficult. A methodology described in [79] is
specialized in Network on Chip, and does not target the circuit design of algo-
rithm of other fields. Other studies [86, 12] describe methodologies specialized
in the design for dynamic reconfiguration. Methodologies described in [29, 91]
target the design for small-scale control circuits and industrial control systems,
and they do not take into consideration performance. [126] is designed to improve
tolerance to differential power analysis, and [17] focuses on design methodology
for enhancing error tolerance. A methodology described in [136] is aimed at re-
ducing power consumption, but our study is aimed at improving performance. As
just described, design methodologies for high-performance hardware logic have
not been established.

2.4 Computational Parallelisms

Computations include those that can and cannot be executed in parallel. Par-
allelizable computations are classified into three types of parallelism relative to
how calculations are executed in parallel.

The first type of parallelism is data parallelism, where each element in a
structured data, such as array data, is processed in the same manner. Generally,
processing units arranged in parallel (corresponding to cores or threads) employ
the same mechanism and receive different data. We take matrix multiplication as
an example of computation with data parallelism. Matrix multiplication includes
calculations of a scalar product of a row component and a column component of
two matrices. The scalar product calculations are parallelizable, and the calcu-
lations for each matrix element are the same.

The second type of parallelism is task parallelism, where multiple processes
with no dependency relationships are executed in parallel. Note that, in this case,
the data inputs to the processing units arranged in parallel are not always the
same. In addition, the internal logic circuits in the processing unit are not always
the same. We take the Monte Carlo method as an example of computations
with task parallelism. In the Monte Carlo method, an approximated value is
computed by repeating calculations with random numbers. Here, each input
datum is generated by a random number generator and has a different content.
Since the calculations have no co-dependencies, they can be parallelized.

The third type of parallelism is pipeline parallelism. Pipeline parallelism
means that a process can be parallelized by dividing a large process sequence into
multiple steps. Here, a divided state is called a pipeline stage, and the stages are
connected via memory called pipeline registers. The intermediate computational
results in each state are stored in subsequently connected pipeline registers, and
the next stage loads and uses data stored in the registers. In pipelined logic
circuits, when a given calculation is executed in a stage, the next calculation
can be executed in the preceding stage. In non-pipelined logic circuits, the next
calculation cannot begin unless the previous calculation has completed. As a
result, pipelining increases the degree of parallelism and the utilization efficiency
of the logic unit.
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Figure 2.7 shows an example timing chart of instruction processing of general
processors. Here, timing charts (A) and (B) are for non-pipelined and pipelined
processors, respectively. The processing sequence is divided into five stages. Gen-
erally, pipelining increases logic delay summation of all stages slightly because
of pipeline register insertions. On the other hand, due to pipelining, the logic
delay of a single clock cycle becomes approximately one-fifth times and we can
increase the clock frequency at most about five times by pipelining. Therefore,
the number of calculations per unit time (computational throughput) becomes at
most five times. The maximum clock frequency is determined by the logic delay
time of the longest path (i.e., the critical path). The clock frequency is the great-
est when a process is divided equally in the delay time. More unbalanced the
logic delay lengths of five stages are, the smaller the clock frequency will be. Note
that pipeline registers should be inserted at appropriate positions to maximize
pipeline throughput.

Instruction time
w0 CDEDW]
Not pipelined 2 |F|D|E|M|W|
3 Lelp[e[m[w]
v [F[p[E[M[w]
® @ [olelvlv]
Pipelined 3 [FlplE[mM|wW]
4 [FlplE[m[w]
s [elple[m[w]

Figure 2.7: Timing chart of general processors: (A) non-pipelined and (B)
pipelined architecture

These three parallelism mechanisms have been discussed individually; how-
ever, domain-specific operations should be parallelized simultaneously at multiple
levels to design an efficient FPGA-based accelerator.

2.5 Memory Hierarchy

In various architecture, the major cause of performance limitation is a lack of
memory bandwidth, and memory bandwidth bottlenecks prevent acceleration.
Note that the memory hierarchy determines the upper bound of an architecture’s
performance.

There are four types of memory associated with a CPU, i.e., registers, caches,
main memory, and storage devices. Registers and caches are on-chip memory
devices inside the CPU, and main memory uses external volatile memory devices
mounted on the motherboard. Hard disk drives and solid-state drives (SSDs)
are examples of non-volatile external storage devices that are also connected to
the motherboard. Note that registers and caches have a small capacity but offer
low access latency. On the other hand, the access latency of external storages
is large; however, they provide a large capacity. When software engineers write
code that runs on the CPU, they cannot directly control which data are stored
in cache, i.e., cache replacement policies are predetermined in the CPU design
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phase. Note that data layouts are not optimized for individual applications in
the CPU approach.

The memory environment of a GPU is more complicated than that of a CPU.
A GPU board has on-chip memory blocks (i.e., registers and shared memory), and
off-chip memory devices (i.e., local memory, constant memory, global memory,
and texture memory). Note that software programmers can control the data
layout in the CUDA framework. In other words, the computing performance of
the GPU approach strongly depends on the programmers’ data layout for this
memory hierarchy.

In addition, with FPGAs, the data layout affects performance significantly,
and there are multiple types of memory blocks and devices for FPGAs. Early
FPGA devices comprised only LUTs and Flip-Flops. Note that Flip-Flops are
also called registers. There was no choice but to store data in registers or exter-
nal memory devices in early FPGAs. In addition, there was a large gap relative
to capacity and access latency between a register and an external memory, and
this gap caused a performance bottleneck in FPGA-based accelerators. Built-in
memory blocks are installed on FPGAs to resolve this gap problem in the FPGA
memory hierarchy. Current FPGA devices provide two types of built-in memory
blocks, i.e., Block RAM (BRAM) and Distributed RAM. Block RAM is a hard-
macro, and the dedicated hardware logic for Block RAM is prearranged on the
FPGA device. A truth table of combinational circuits realized by the LUT is
configured into Synchronous RAM (SRAM) in the LUT. An FPGA designer can
use this small RAM as a general memory block, and this scheme is called dis-
tributed RAM. Distributed RAM is often used as Read-only Memory for a table
of fixed coefficients in mathematical calculations. Note that the available Block
RAM resources increase with increased resources on FPGAs. We can reduce the
logical block consumption using Block RAM rather than distributed RAM. As
long as the wiring delay is less than the clock period, we can use as much Block
RAM as desired. External memory, such as SRAM, Dynamic RAM (DRAM),
and Reduced Latency DRAM (RLDRAM), are directly connected to the FPGA,
and the I/O pins of the FPGA can be driven with appropriate electrical char-
acteristics for each memory device. When we use external storage, such as an
SSD, we implement a storage controller on the FPGA. Many intellectual prop-
erties (IPs) for popular interfaces and controllers, such as DRAM, have already
been provided by FPGA vendors and third-party companies. Memory blocks
and devices have various capacities, e.g., the capacity of off-chip memory devices
is approximately 10 to 100 gigabits. The capacity of registers on an FPGA is
limited to approximately 100 kilobits because of feasible logic and wiring arrange-
ments. With distributed RAM, the limitation is approximately 1 to 10 megabits,
and with Block RAM, the limitation is approximately 10 to 100 megabits. For
each application, FPGA designers must consider effective memory partitioning
(how to use memory) and data layout (which data are stored in which memory)
solutions.
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Chapter 3

Performance Improvement of Parallel TCP
Streams on Long-distance Fat-pipe Networks

3.1 Introduction

With the rapid progress of network technology such as optical fiber and network
switches, high speed networks are spreading all over the world. Difficulties about
TCP communication on LFNs are well known. But combination of various im-
provement such as congestion control algorithms, pacing technologies and various
techniques for reducing CPU loads almost perfectly solved these problems of sin-
gle TCP stream communication on 10Gbps LFN. On the other hand, it is still
difficult to get good performance while using parallel TCP streams. Parallel TCP
streams are commonly used in the field of high performance applications espe-
cially for data transfer between clusters. Each stream tends to behave differently,
even if all settings and environments are same, and some streams suffer self-made
congestion.

This chapter shows how to make parallel streams balanced with each other,
which results in the improvement of total system performance. First, we show the
problem. Then we introduce the hardware MaSTER-1, a programmable testbed
with five FPGAs and five 10GbE port to handle parallel streams. We implement
merging stream harmonizer (MSH) on MaSTER-1, which merges input streams
into a sequence of packet by a specified policy with packet level granularity.
By using MSH, parallel TCP streams from end-node hosts of the cluster can
be controlled without modification of the end-nodes. We evaluate MSH using
four parallel TCP streams on LFN, both pseudo-LFN environment with network
emulator and Japan-US real LEN. We can utilize 99.6% of 10Gbps LAN PHY
bandwidth on pseudo LFNs and 87.0% of 9.2Gbps WAN PHY bandwidth on real
LFNs.

On LFN, it is often observed that some sections have smaller bandwidth
than other sections, which we call “path-bottleneck”. On LFN, especially on
the inter-continent LFN, this path-bottleneck often occupies very long section,
such as over-sea network, which often has less bandwidth because under-sea fiber
construction is more difficult. The path-bottleneck is critical, even when the
difference of bandwidth is rather small, such as WAN-PHY LAN-PHY difference
which is less than 10 %, and packet losses seem to occur mainly on the switches
on the entrance of the path-bottleneck, whose input bandwidth is larger than
that of output. We call such switch “path-bottleneck switch”. To avoid packet
losses on the path-bottleneck switch, we applied pacing at the sender host to
slowdown the throughput less than path-bottleneck [142]. On the other hand, it
is also observed that if the path is not so long, packet loss rarely occurs even in
the situation that we cannot utilize the flow control mechanism of the switch to
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temporally stop the stream and control bandwidth.

This study focuses on the effect of the buffer of the path-bottleneck switch.
Our goal is to find the method to avoid unnecessary packet losses caused by in-
sufficient amount of buffers at the path-bottleneck switch on the network path.
For this purpose, this study clarifies the relation between RTT, maximum band-
width of the network, necessary buffer size of the path-bottleneck switch and
TCP congestion control algorithm. Previously, the necessary size of the buffer
at path-bottleneck switch is assumed to be proportional to the size of inflight
data. However, our measured data shows different relation between them, e.g.
low bandwidth TCP stream requires larger buffer size. To analyze the effect of
the buffer on the path bottleneck switch, we use the MaSTER-1. And, we make
MaSTER-1 take a role of the path-bottleneck switch. We analyze the relation-
ship between buffer size and round-trip time (RTT), with several TCP congestion
control algorithms. In this chapter, we briefly introduce TCP congestion control.
Then, using this MaSTER-1, we show experimental result of the effect of the
buffer of the path-bottleneck switch on LFN, analyzing the relationship between
RTT and buffer size, with several TCP congestion control algorithms. We show
that if path-bottleneck switch has huge size of buffer, we can avoid packet losses
to some extent.

In Section 3.2, we overview the feature of LFN and parallel TCP streams and
their problems. In Section 3.3, we introduce our network testbed MaSTER-1. In
Section 3.4, we explain the MSH. In Section 3.5, we show experiments and show
the results of the parallel TCP communications. In Section 3.6, we describe
the relationship between TCP window size and RTT, and show the problem. In
Section 3.7, we show experimental result of path-bottleneck switch. In Section
3.8, we discuss the results of experiments. In Section 3.9, we discuss related work.
In Section 3.10, we conclude and describe our future work.

3.2 Parallel TCP Streams on LFN

3.2.1 Bursty Behavior of TCP

TCP/IP is a standard protocol for reliable data transfer. For reliability, TCP
uses ACK; a sender keeps data for re-transmission until ACK returns. Data,
which is sent but not ACKed, is called “in-flight” data, and its maximum size is
called “window size”. Data transfer rate of TCP is roughly window size/RTT.
But, microscopically, streams behave differently. Using a packet logger, traffic
analysis precise enhancement engine (TAPEE) [143], we observe streams with
the packet level granularity. Figure 3.1 shows an example of single stream TCP
data transfer on pseudo-LFN of 500ms RTT. First, a sender host transmits data
to the network with the speed of network interface, that is 10Gbps, until the size
of cwnd data is transferred, and then it almost stops transmission till next RTT
starts. This bursty behavior causes unnecessary packet losses that result in bad
performance. Pacing of the stream at a sender host is effective for a single stream
(142, 67].

3.2.2 Parallel TCP Streams

When we use parallel streams, the situation becomes more complicated and diffi-
cult. Figure 3.2 and 3.3 shows the throughputs of two streams and four streams
on 500ms pseudo LFN, respectively. In Figure 3.2, stream1 gets larger throughput
from the first beginning, and after packet losses, stream2 fails to gain through-
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put. In Figure 3.3, stream1 fails to get throughput, and after packet losses occur,
stream2 uses about half of bandwidth, and other three streams fail. Figure 3.4
shows the period from 234 sec to 236 sec of Figure 3.3. We can observe that
similar packet patterns of 4 streams repeat in every RTT. Total throughput is
almost 10Gbps and packet losses of stream1 are just going to occur. Thus, paral-
lel streams have two more additional difficulties compared to single stream. (1)
Performance of each stream may differ to each other although the conditions of
these streams are exactly same. Even though network bandwidth is fully utilized,
this unbalance may decrease system total performance because the worst stream
tends to become a bottleneck of performance in many applications. (2) Bursts of
each stream are piled, as the result, self-made congestion may occur more easily,
and even if the network is not congested, packet losses may easily occur.

We used Chelsio S310E-SR 10GbE NIC [34] which prepares two functions
of controlling data transmission rate. One is IPG control to limit maximum
transmission rate of the NIC. IPG control is precise and effective, but it can be
applied only for the stream faster than 9Gbps. The other is “pktsched”, which is
not so precise but can be applied to any transmission rate. Using these functions,
the parallel TCP streams can be controlled individually.

Figure 3.5 and Figure 3.6 show the throughput of 4 parallel TCP streams
communication with sender’s NIC packet pacing in the network that has 500ms
RTT. Figure 3.5 is the case that NICs pace the throughput to 1.0Gbps per host.
Figure 3.6 is the case that NICs pace the throughput to 2.0Gbps per host. When
we pace each stream to 1.0Gbps, data transfer goes without packet losses, but,
when we set to 1.5Gbps and 2.0Gbps, packet losses occur. Both in Figure 3.5
and Figure 3.6, throughputs are balanced and equalized, but, because of the
periodical microscopic burst, when we set the throughput of each stream to more
than 1.5Gbps, packet losses occur, caused by the pile of microscopic burst. Hence,
we want to control throughput in finer grain, which hardware support is necessary.

3.3 MaSTER-1

3.3.1 Overview

We try to make the parallel TCP communication stable by placing a hardware at
the merge point of the streams. We have to prepare a hardware which can buffer
the streams, enable us to observe the phenomena in it, and handle the multiple
TCP streams quickly. For handling the one 10GbE stream, the one packet must
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be operated within 7.3usec. This cannot be achieved by software in any way. It
is clear that the solution by not software but hardware is needed.

We developed MaSTER-1 for what we want to experiment with (Figure 3.7).
The MaSTER-1 is a hardware testbed for wire-rate parallel TCP streams pro-
cessing. We can implement our mechanism on the MaSTER-1 and experiment
the parallel TCP communication. The MaSTER-1 has three features for general-
purpose properties; 10GbE port, large size buffer, and programmability.

1. Five 10GbE port

The MaSTER-1 has five 10GbE ports physically, and they are connected
to the neighbor hosts or switches with optical fibers. Each port can receive
and send the packets at a wire rate.
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Figure 3.7: Network testbed MaSTER-1

2. Large Buffers

The MaSTER-1 has Large buffers for storing received packets temporary
for each port. Because this hardware will be placed in the merging point
of streams, there is a possibility that it keeps large amount of data before
it merges the streams.

3. Programmability

The MaSTER-1 will be able to be used for various applications by recon-
figuring the programmable chips. Programmable chips can be used for for-
warding packets from one port to another port and the various experiments
will be conducted. Those applications are described in the section of future
work. And these chips are needed to operate at high frequency because
they must handle the streams at packet-level and pace packets precisely.
We used an FPGA which is one of the programmable chips.

On the cost front, a high-capacity programmable chip which can handle mul-
tiple streams by itself must have many logic elements and 1O interfaces and it
is expensive. Instead, we used programmable chips with intermediate capacity
and distribute the tasks of packets handling over them. Because the ports have
identical specifications, we can design a hardware and produce firmware for chips
easily.

3.3.2 Hardware Design

Figure 3.8 shows a block diagram of MaSTER-1. The MaSTER-1 has five
10GBASE-SRLR ports. They are fully inter-connected with eight 3.25GHz high-
speed one-way signal transmission lines. With 8b10b encoding, the aggregate
two-way bandwidth is 10Gbps per pair of ports. Figure 3.9 shows the compo-
nents of each port. They consist of XFP module [33], AMCC S19237 Serdes,
Intel IXF18103 10 Gigabit Ethernet LAN or WAN PHY Chip, 266MHz DDR2
SDRAM, and FPGA (Xilinx Virtex-5 XC5VFX70T [141]). The interface between
XFP module and S19237 is 10GHz differential high Speed CML signals, that of
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Figure 3.9: Block diagram of one port in MaSTER-1

519237 and IXF18103 is XSBI, and that of FPGA and IXF18013 is SPI-4 Phase
2 [139]. Either connection has more than 10Gbps bandwidth and avoids becom-
ing a bottleneck. The FPGA is connected to 537TMB DDR2 SDRAM, which has
enough bandwidth (34Gbps) to read and write at 10Gbps simultaneously. It is
useful for implementing FIFO buffers for packet pacing, delay emulation and so
on. Traffic flow in the MaSTER-1 is as follows. When a packet is received by one
port, it is processed by XFP module, S19237, IXF18103, FPGA in that order.
Then the packets are forwarded to a FPGA in the other ports. And the packets
go to another 10GbE port in that reverse order. The packets are processed by
FPGAs twice, before and after merging. This flow is indicated by the arrows in
Figure 3.8 and 3.9.

The size of memories is estimated as follows. We want to process TCP
streams. In the TCP protocol, the data that has been sent but not yet ac-
knowledged is called in-flight data. Sender must not send data with a sequence
number higher than the sum of highest acknowledged sequence number and the
minimum of the congestion window and receiver window size [87]. This conges-
tion window control mechanism shows that the buffer size of each port should
be bigger than the in-flight data size of a host. When the throughput of a port
is b bps and RTT is ¢, sec, the size of in-flight data is approximately bt, bit. If
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b= 2.5G and t, = 0.5, the size of memories is needed to be larger than 1.25 x 10°
bits. The MaSTER-1 has enough capacity.
MaSTER-1 has one USB 2.0 interface connected to a CPLD (Xilinx CoolRunner-

IT XC2C512). The CPLD is connected to five FPGAs and several chips. User can
communicate with FPGAs and other chips by control host through the CPLD.
They can be done hot reset and initialized their parameters. By reading and
writing registers of FPGAs, user can configure functions of the packet pacing
rate and so on. These components are implemented in a board, which can be
mounted in a 19-inch rack chassis.

3.4 MSH: Merging Stream Harmonizer

We want to merge parallel TCP streams fairly without packet losses, eliminate
bursts and regulate the throughput of streams. We propose merging stream har-
monizer (MSH) which merges multiple streams and balances among them. To re-
alize this mechanism, we use the network testbed MaSTER-1. We can implement
our mechanism on the MaSTER-1 and performance experiments on the parallel
TCP communication. MSH buffers the streams which come into the MaSTER-1,
the packets of multiple streams are selected by round-robin algorithm and go out
from MaSTER-1 with the specified transmission rate. MSH is substituted for
the switch which merges multiple streams. General Layer-2 switches have many
functions that include traffic controlling (stream merger and distribution). We
focus on the multiple streams merging and the switching capacity. We realize the
functions of merging and scheduling on MaSTER-1.
We implement the packet forwarding circuit of MSH on FPGAs in the MaSTER-

1. In MSH packets are processed by FPGAs twice, uplink FPGA and downlink
FPGA. Figure 3.10 and Figure 3.11 show the logic diagram of uplink port FPGA
and downlink port FPGA, respectively. The parallel streams must be processed
at wire rate speed from input port to output port. Traffic flow in the MSH is as
follows. When packets are received by each downlink port XFP module (opti-
cal port), they are stored to the main FIFO memory through the SPI Interface
(SPI IF). The packets are immediately loaded from the memory and forwarded
to the uplink port FPGA through a GTX Interface as shown in Figure 3.11. The
main FIFO is implemented by using the components of DDR2 SDRAMs and Xil-
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Figure 3.11: MSH downlink logic diagram in MaSTER-1

inx’s IP core [97]. The GTX Interface (GTX IF) is implemented by using GTX
Transceivers, which are the resource elements of the Virtex-5. Four downlink
FPGAs forward their packets to their corresponding queues in uplink FPGA as
shown in Figure 3.10. The uplink FPGA loads packets from these queues, merges
them by “Scheduler” to fix the order of the packets in the scheduling policy of
round-robin. Thus, Scheduler loads a packet from the queues in order of queuel,
2, 3,4, 1,2, 3,... And it proceeds pacing by “Throughput Controller”, then, for-
wards them to the IXF18103 (Intel 10Gigabit Ethernet PHY Chip) through the
SPI Interface towards the uplink port XFP. The “Flow Controller” monitors the
usage of the queues, and if the queues are going to overflow, it sends the signals
expeditiously to the downlink port through GTX Interface. When the flow con-
troller in the downlink FPGA receives this pressing signal, it stops reading data
from the main FIFO that consists of DDR2 SDRAM.

3.5 Performance Evaluation on Pseudo and Real LFNs

We arrange both pseudo and real LENs. We transfer data over the network with
parallel TCP streams and observe the throughput. We evaluate the effect for the
throughput stability of parallel TCP streams by using our mechanism on LFNs.
We compare the case when the MSH is used for merging as an intermediate node
in the network and when the MSH is not used and traditional 10 Gigabit Ethernet
switch is used as ever.

3.5.1 Experimental Environment

We use an Anue H-Series Network Emulator [4] to emulate the LEN. It is set-
tled in the network path in place of real LFNs and inserts delay (up to about
800ms) to both directions. We can configure delay time independently of each
direction. Real LFNs have many features, long-distance (large delay), intermedi-
ate switches, path bottlenecks and cross traffics, etc. To observe the pure effects
of the network delay, we use this network emulator. We use eight servers for
experiments of data transmission. Four sender hosts and four receiver hosts have
identical specification of the hardware and operating system as shown in Figure
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3.12. They consist of two Intel Dual-Core Xeon 5160 (3.00GHz, 4MB L2 cache
processors, Supermicro X7DB8, DDR2 SDRAM (total 4GB), Chelsio Commu-
nications S310E-SR 10 Gigabit Ethernet network interface card (PCI Express
Genl x8) and Linux 2.6.18 Kernel. We adopt BIC-TCP as a TCP congestion
control algorithm. We run Iperf 2.0.2 [61] simultaneously at sender hosts. Table
3.1 shows the parameter of Iperf.

We use TAPEE to observe the streams. TAPEE is settled at the point where
we want to observe the packets. TAPEE receives the bidirectional streams which
are copied by an optical tap and forwards only the headers of them with TAPEE’s
precise time stamp to logging hosts. Using this instrument, we can perform a
precise measurement of the streams’ throughput. We use Fujitsu XG800 switches
[44] for two purposes. One is to compare with the MSH. We make them merge the
streams and evaluate the throughput stability of them. The other is to distribute
the streams from one 10GbE to four 10GbE and to merge ACK packets. The load
of these tasks is lighter than that of merging DATA packets and the traditional
switches have enough potential to do them.

~—

Table 3.1: The Parameter of Iperf

Senders -¢ rec_host -1 1 -t 600 -1 192k -w 600M -M 9150
Receivers || -s -i 1 -w 600M -1 192k

3.5.2 Experimental Results in Emulated LFN

Using Anue network emulator, we use pseudo LEN whose RTT is 500ms. A pair of
sender and receiver generates one stream and total 2 or 4 streams are established.
We settle MSH instead of sender edge switch, which merges the packet in the
round-robin manner at MSH. Figure 3.13 and Figure 3.14 show the throughput
of two streams and four streams, respectively. The streams are equalized and no
packet loss occurs. After 400 sec in Figure 3.14, total throughput of four streams
is 9.88Gbps, which is 99.6% of TCP payload bandwidth in LAN PHY network.
Figure 3.15 and Figure 3.16 show the magnified 2 seconds of Figure 3.14; 412 to
414 sec, and 420 to 422 sec. Around 412 sec, total throughput reaches to the
maximum, but, at this point, we can still see periodical pattern on the graph.
But, after 6 sec, after 420 sec, the bandwidth is shared equally to four streams,
and the throughput of each stream is very stable.

We observe one of streams precisely to analyze how MSH works. As shown in
Figure 3.17, we put two logging tools TAPEE; we settle one at the point between
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Figure 3.13: Throughputs of 2 streams on pseudo LFNs with MSH (RTT 500ms)
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Figure 3.14: Throughputs of 4 streams on pseudo LFENs with MSH (RTT 500ms)

one port of MaSTER-1 and a sender host, and at the point between uplink
port of MaSTER-1 and network emulator. We compare these two points packet
loggings, just before MSH and just after MSH. Figure 3.18 and Figure 3.19 shows
the change of packet behavior caused by MSH, which are drawn by two TAPEESs
simultaneously. One TAPEE (Figure 3.18) is placed between a sender host and
the MaSTER-1 and another (Figure 3.19) is placed between the MaSTER-1 and
LFNs. In these graphs, the green fine plots are 1lmsec moving average of the
throughput and the blue plots are 1sec moving average. Until the throughput
reaches 2.47Gbps, the MSH does not pacing the stream. After the throughput
reaches 2.47Gbps, the MSH paces the stream to 2.47Gbps. In this time, with
the observation of 1sec moving average, the throughput of the stream which the
sender NIC generates looks 2.47Gbps. However, the stream has fine bursts from
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Figure 3.16: 4 streams in stable phase on pseudo LFNs with MSH, magnified
(RTT 500ms)

2Gbps to 3Gbps with the observation of 1msec moving average. The stream which
has passed through the MSH has no burst and both of 1msec and lsec moving
average of throughput are exactly 2.47Gbps. The total throughput averages for
10 minutes are shown in Figure 3.20. These indicate that the throughput of the
parallel TCP streams is improved by the MSH.

Before pacing After pacing
TAPEE TAPEE
Sender1 w\
Sender2 R
MaSTER-1
Sender3 -
Sender4 /

Figure 3.17: Observing points of TAPEE
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Figure 3.19: 1 of 4 streams on pseudo LFNs with MSH (RTT 500ms) AFTER
pacing

3.5.3 Experimental Results in Real LFN

The real LFN is shown in Figure 3.21. These paths consist of some WAN PHY
switches and IEEAF intercontinental line over Pacific Ocean. Packets are sent
from the send cluster in Tokyo, pass through several switches, turn around at
the switch in Seattle, go back on same paths and arrive to the receive cluster
in Tokyo. These paths have approximately 96ms delay and its RTT is 192ms.
Figure 3.22 shows the throughputs of four TCP streams with MSH on real LFNs.
With 8.0Gbps pacing of MSH, the four streams reach 2.0Gbps each. Because
these 4 connections start at different times, stream?2,4 reach 2.0Gbps earlier than
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Figure 3.20: The total throughput averages on pseudo LFNs (RTT 500ms)

stream1,3. MSH presses the throughput of stresm2,4 (over 2.0Gbps) to protect
bandwidth for stream1,3 and balance all streams. In this process, no packet loss
occurs. But surprisingly when the MaSTER-1 limits the packets to 4.00Gbps at
its uplink port, the throughput of four streams become unstable and many packet
losses occur.

Tokyo, Japan Seattle, US

Force10 » Foundry
E600 [« NI40G

Receiver
Y Cluster,

v

Foundry
RX-4 D

s

IEEAF(OC-192)
across Pacific Ocean

Figure 3.21: Real LFNs diagram

3.6 Relationship between TCP Window Size and RTT

Long distance data transfer needs large window size, since transfer rate is inverse
proportional to RTT. In addition, speed of growth of the window size is propor-
tional to RTT, since it takes RTT time till ACK returns. And when packet loss
occurs, it takes longer time for the sender to know the occurrence of the packet
loss, and to recover the throughput. Many congestion control algorithms have
been proposed to improve TCP performance on LFN; such as Fast TCP, Scal-
able TCP, BIC-TCP, and CUBIC. Commonly, the maximum window size is set
in advance, and size of the window grows until either it reaches this maximum
size or a packet loss occurs. There is correlation between the size of RTT and
the communication distance of the real network. When we proceed experiments
for parallel TCP streams on real LFN, we face strange phenomena.

Figure 3.23 and Figure 3.22 show the experiment of data transfer from four
senders to four receivers between Tokyo — Seattle — Tokyo round-trip path whose
RTT is 193ms. The original aim of the experiment is to balance four TCP
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Figure 3.22: 4 streams on real LFNs with MSH (8.0Gbps pacing)
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Figure 3.23: 4 of 1Gbps streams in real LFN

streams using our network testbed MaSTER-1, which is described in next sec-
tion. In Figure 3.23 and Figure 3.22, the total throughput of output streams is
limited to 4Gbps and 8Gbps. Our network testbed tries to make stream share
the bandwidth equally, and the resulting throughput of each stream is 1Gbps and
2 Gbps, respectively. But, with a careful look, we notice that surprisingly when
the MaSTER-1 paces the packets to 4Gbps at its output port, the throughput
of four streams become unstable and many packet losses occurred. On the other
hand, when the MaSTER-1 paces the packets to 8Gbps, all streams are stable
and equally share the bandwidth. This is the opposite result of the experiment,
where we send each sender host desirable throughput rate, 1 Gbps and 2Gbps,
respectively. When we set sender host throughput, each 1Gbps and total 4Gbps
is stable, but, each 2Gbps and total 8Gbps is unstable and result in a lot of
packet losses, possibly because in total 8Gbps case, margin to the WAN PHY
bandwidth (9.2Gbps) is much smaller. In the real world, it often happens that
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Figure 3.24: Network diagram of round-trip path between Tokyo and Chicago

the bandwidth of output port of the switch is limited. So, we investigate the
buffer utilization of the switch and throughput.

3.7 The Behavior of Path-bottleneck Switch

We arrange the pseudo network and the real network paths as LFNs. The network
diagram is shown in Figure 3.12. As for the real network, we use Tokyo to Tokyo
via Chicago networks as shown in Figure 3.24.
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Figure 3.25: Buffer flooding of 4Gbps pacing for 4 streams

First, we show the utilization of the buffer on MaSTER-1 in Figure 3.25 and
Figure 3.26, for the case of Figure 3.23 and Figure 3.22, respectively; the former
limits output throughput to 4Gbps, and the buffer reaches the ceiling, and this
buffer shortage may cause its unstableness. On the other hand, the latter has
sufficient buffer, which limits output throughput to 8Gbps and is stable. For
340msec, 500msec, and 700msec RT'T, we changed the bandwidth of output port,
and we plot the relationship between buffer utilization and throughput for each
RTT in Figure 3.28. This plot can be on the line of

Buf fer,;; = Const. — RTT x Throughput (3.1)

where Bufferutil is the used size of the buffer. Figure 3.28 suggests that the
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Figure 3.26: Buffer utilization of 8 Gbps pacing for 4 streams (BIC-TCP)

500 4 T | ] port0 ——
port1
ya port2 ——
= 400 | , 1 port3
= / port4
S 300 / ]
"(E y
= 200 / ,
= .
100 |/ T
0 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time [sec]

Figure 3.27: Buffer utilization of 8 Gbps pacing for 4 streams (highspeed TCP)

point over the upper limit of the buffer size, communication may become unstable.
We also compare the congestion control algorithms. Figure 3.26 and Figure 3.27
shows the utilization of BIC-TCP, and highspeed TCP, respectively.

3.8

Discussion

From the observation in previous sections, the followings seem to occur.

1.

. At time ¢ in Figure 3.29

cwnd increases while no packet loss occurs.

cund

RTTom'g
bottleneck, where RTTom'g is the RTT of the whole path.

exceeds the bandwidth of the path

At time ¢9 in Figure 3.29, cwnd reaches the max value, which is set by
default or in advance.

In the period from ¢7 to ¢9, with the speed equal to the difference of input
throughput and output throughput, the packets are stored in the buffer of
MaSTER-1.

Since the data is stored, hence stops in buffer, RT'T becomes longer, which

is denoted RTT o4

RTT ., and throughput become equilibrium, and buffer utilization be-
comes constant.
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And, we get the followings:

cwndmazr = Buffer,;;+ Thrpttarget X RTTorz'g (3:2)
RTT _ _cwndmag 3.3
ext Thrpttarget (3.3)

where let cwndmaaz denotes the max cwnd of the sender host, Buf fer ;i
denotes the utilization of the buffer, T'hrpt;qyget denotes the throughput of the
port, RTTorig denotes the RTT of the network path, and RT7T ..+ denotes
the addition of RTTom'g to period of time that data is staying in the buffer,
respectively.

3.9 Related Work

FPGA-based network testbeds for 10GbE have include TGNLE-1 [116], XGE-
ProtoDevel [123], GtrcNET-10p3 [74], Forcel0 P-Series [41] and HP ProCurve
[38]. TGNLE-1 has two 10GbE ports and RX side of one port is connected with
TX side of another port through a FPGA, and can operate the streams at wire
rate. TGNLE-1 can pace the streams but cannot merge the parallel streams from
multiple 10GbE ports. XGE-ProtoDevel is a FPGA-based network testbed. It is
supposed that this is placed between a NIC and a network switch. It is designed
for the long-time packet analysis and the emulation of packet loss and error. It
is not dedicated to operate the parallel TCP streams. GtrcNET-10p3 has three
10GDbE ports and they are managed by one FPGA. Tt is used for packet capturing,
packet generating, latency insertion and bandwidth control, etc. No research of
it includes the parallel TCP streams merging. ForcelQ P-Series has two 10GbE
XFP ports. ForcelO P-Series is a FPGA-based hardware and the FPGA is used
for only analyzing the packets. HP ProCurve 9400sl has four 10GbE ports, which

600 |

500 |- - MaSTER-1 buffer iimit

g . RTT 340msec  +
= 400 } T RTT 500msec
S A RTT 700msec =
«© e
¥ 200 r
2 x .

100 |

0 1 l 1 1 1 1 l 1 1 ]

0 1 2 3 4 5 6 7 8 9 10
Throughputtarget[Gbps]

Figure 3.28: Buffer utilization and throughput of one port (the maximum value
of congestion window size is 600 MB)
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have a FPGA for each. But there is no research and evaluation for the parallel
TCP streams.

Other researches of the parallel TCP streams include [67], [120] and Stream
Harmonizer [117, 118]. In [67], the communication performance was improved
by fixing TCP stacks in hosts. In [120], the end hosts have 1GbE interface and
the packets that sender transmit are paced by software. It is difficult to process
10GDbE streams by software. The Stream Harmonizer [117, 118] is implemented on
the FPGAs of TGNLE-1. One of the ports of the Stream Harmonizer is connected
to the end switch and the other port is connected to the LFNs. Parallel TCP
streams in a 10GbE line are disassembled to an individual stream by the Stream
Harmonizer. By suppressing a high-throughput stream, most of TCP streams are
balanced. FT-Box that is also implemented on TGNLE-1 is proposed in [119].
It schedules the parallel TCP streams with several algorithms; SHIFT, DIV, and
SHUFFLE, etc. But these two mechanisms can be placed in only the outside of
the end switches. Therefore, the packet loss in them cannot be worked around.
On the other hand, our MaSTER-1 has five 10GbE XFP ports and the potential
to analyze and scheduling the parallel TCP streams. Users can use the MaSTER-
1 as a network switch and internal logic in the switch can be programmed at their
choice.

Researches of the implementation on FPGAs for network switching include
[3]. This shows that FPGAs are less power-efficient than dedicated ASICs but
that the leakage power can be reduced. It describes the possibility of the routing
switch by using FPGAs. Network switches for 10GbE are, for example, Optixia
[62], SmartBits [112], Biglron RX Series [21], Forcel0 E-Series [41], etc. They
are chassis, which are able to have up to dozens or several hundred 10GbE ports.
But the switching is mostly done by hardware with specific circuits. So, we
cannot reconfigurable the internal scheduling algorithms in them. Similarly, Fu-
jitsu MB86C69RBC is 10Gbps 26-port Ethernet Switch Chip [43], but it is not
programmable.
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Figure 3.29: Transition of congestion window size (cwnd) and RTT with
MaSTER-1 (BIC-TCP). Finally, the TCP reaches a stable state.
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3.10 Conclusion

In this chapter, we propose the MSH, a hardware mechanism that merges the
parallel TCP streams and paces each stream to improve communication per-
formance of parallel TCP. We implemented MSH on the FPGA-based network
testbed MaSTER-1. The MSH can buffer the packet bursts and schedule the
packets to avoid unnecessary packet losses due to collision of packet bursts. We
evaluated the communication performances of the parallel TCP streams with and
without MSH. As a result, the throughput of the parallel TCP streams communi-
cation was more stable when we use the MSH on MaSTER-1 than the traditional
switch in the pseudo LFN. In the real LFN, four TCP streams filled in 8.0Gbps
totally on the 9.2Gbps bandwidth with 8.0Gbps packet pacing. Parallel TCP
streams could be transferred stably by using MSH. Results of experiments show
MSH is effective to stabilize parallel TCP communication. Our mechanism is a
stand-alone solution for the parallel TCP streams and the MaSTER-1 has more
potential to solve other problems of the communication performance in LFNs
than our previous approach, two-port network harmonizer [118]. The proposed
MSH can be applied to a cluster to another cluster communication with 10GbE
NICs. This situation will be common in near future.

Our future work includes improvement of the implemented scheduling algo-
rithm on the MaSTER-1. Currently we use the round-robin algorithm to decide
the priorities of the streams. This provides packet-level fairness but fails to guar-
antee a fair allocation of bandwidth when the streams have varied size of the
packets. The packet pacing with byte-level analyses is needed for it. Another
future work is use of MaSTER-1 for harmonizing parallel TCP in the presence of
dynamically changing cross traffic. Detailed instrumentation of cross traffic and
feedback mechanism to packet scheduler is necessary.

Also, in this chapter, we introduce the importance of a path-bottleneck switch
on very long-distance communication with TCP protocol. We investigate the ef-
fect of the buffer of the path-bottleneck switch on LFN, analyzing the relationship
between RTT and buffer size, with several TCP congestion control algorithms.
Behavior of bandwidth of the TCP communication differs by the TCP congestion
control algorithm. The main contribution of this study is to show the relation
between RTT, maximum bandwidth of the network, necessary buffer size of the
path-bottleneck switch and TCP congestion control algorithm through detailed
experiments using pseudo LFN and real LFN. Inverse-proportional relation be-
tween bandwidth and the size of the buffer e.g. low bandwidth TCP stream
requires larger buffer size. We constructed MaSTER-1, a FPGA based network
testbed to measure effect of buffer size at the path-bottleneck switch. We showed
that we can avoid packet losses to some extent when path-bottleneck switch has
huge size of buffer. Loss-based TCP algorithms show better and stable perfor-
mance than delay-based algorithms when the size of the buffer at path-bottleneck
switch is large enough to avoid packet losses. We also showed the guideline to set
appropriate buffer size at the path-bottleneck switch. However, all the current
network switch cannot have the necessary buffer size. To avoid this problem with
existing switch, it is necessary to insert large buffer by external hardware such
as MaSTER-1.

As a future work, we will investigate more detailed behavior of the path-
bottleneck switch with wide range of TCP congestion control algorithm. The
key issue is the management of the size of buffer by the cooperation of cwnd,
advertise window size management and the utilization of buffer.
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Chapter 4

Accelerators for Playout Generation of
Monte Carlo Go

4.1 Introduction

4.1.1 Go — A Board Game for Two Players

Go is a popular board game for two players. It originated in ancient China more
than 2,500 years ago, and it spread to Korea, Japan, and subsequently, to all
parts of the world. Each player is given a set of either black or white stones.
Given an empty line-grid, players alternately place their stone on a vacant grid
point to enclose and enlarge their own territory. The player’s territory comprises
sets of grid points that are surrounded by his or her own stones. The goal in
Go is to capture a larger territory than the opponent. We shall briefly explain
the rules and terms. The board is called a Go board, and a square grid with an
odd number of lines is printed on this board. A standard Go board has 19 x 19
grid lines, whereas smaller boards with 13 x 13 and 9 x 9 grid lines can also be
used for shorter games. Each grid point of the Go board is in one of three states
of occupancy—black stone, white stone, or vacant. The state of the Go board,
or the collection of all states of all grid points at a particular time, is called a
position. Normally, the game starts with an empty position. Each player places
his or her own stone on a vacant grid point. A single turn for one player is called
a move. Only when two grid points are horizontally or vertically adjacent, we
say that the two grid points are adjacent. When two stones of the same color
are adjacent, they are defined as being connected. A stone connected to one of a
group of connected stones is also defined as being connected. A stone or a set of
connected stones is called a block. A vacant point adjacent to a stone of a block
is known as a liberty of the block.

A block dies when it loses its liberties, i.e., all adjacent points of the block are
covered by stones of the opposite color. When a block dies, all stones of the dead
block are removed from the Go board. In Figure 4.1(left), a block consists of two
white stones “P” and is killed by a move “black Q”; the white stones are going
to be removed. A player is prohibited from placing a stone in such a manner
that his or her own block dies (suicide). In Figure 4.1(center), a move “white
R” is a suicide move and is thus prohibited. It is also prohibited to repeatedly
kill the opponent’s blocks by alternately placing a stone at the same point (ko).
Figure 4.1(right) shows an example of ko; the repetition of continuous moves of
“white S” and “black T” is prohibited. There are several varieties of local rules
on prohibiting ko.

Basically, players alternately make moves, however, if a player cannot find an
appropriate move, he or she may pass the turn. The game is over when both
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Figure 4.1: Rules of Go game: (left) When “black (Q)” is employed, a white
block (P) is dead and is going to be removed. (center) Suicide move “white (R)”
is prohibited. (right) Ko move “white (S)” just after “black (T)”, which has
killed the previous “white (S)”, is prohibited.

players agree to terminate the game or both players cannot find a move and pass,
i.e., they have reached a terminal position. There are several variants of rules on
how to evaluate the territory size or how to prohibit ko. In this study, we use the
so-called Chinese rule, which is simpler and is a standard rule for Computer-Go.

4.1.2 Computer Go

From the very beginning of computers, many people have attempted to develop
programs that can be used to play board games such as Othello, chess, Shogi, and
Go. Currently, Computer-Othello and Computer-Chess can beat human world
champions, and Computer-Shogi can beat amateur champions. On the other
hand, until very recently, Computer-Go was much weaker than ordinary human
players.

In general, these two-player board games are represented by rooted game trees.
A game tree is a directed graph whose nodes are positions of the game, edges
are moves of each player, and leaves are the terminal positions where victory
or loss is determined. A game starts at the root node. As each player makes
a move, the current position changes to one of the children nodes. When the
current position reaches a leaf, the game is over. At each node, the objective
of each player is to determine the optimum move, which is likely to lead to the
best leaf. In other words, one player attempts to select a move that maximizes
the value of the position, while the opponent attempts to minimize the value
of the position; this is called the mini-maz search. However, the size of the
tree is combinatorially large, and the complete analysis of the tree is impossible.
Therefore, in many cases, the evaluation function for each position is developed
beforehand. While the game proceeds, a player evaluates the candidate positions
after several alternate moves by using an evaluation function and selects a move
that would lead to the best position. However, it is believed that it is difficult to
create an appropriate evaluation function for Go. In addition, the search space of
Go is larger than that for chess and Shogi. Therefore, Computer-Go is difficult.

4.1.3 Monte Carlo Go

Since the creation of the evaluation function for Go is quite difficult, the use
of Monte Carlo simulation is proposed in [22]. Monte Carlo simulation can be
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used to solve problems experimentally by generating a large number of samples
using random numbers. In this case, the result of Monte Carlo simulation is
used instead of the evaluation function to determine the best move. Monte Carlo
simulation starts from a node to be evaluated and the random selection of a child
node is repeated until it reaches a leaf of the tree, i.e., the game terminates. We
call this single simulation from a node to a leaf a playout. In Monte Carlo Go,
the best candidate is selected using the result of playout repetition.

Monte Carlo Go did not become popular initially, mainly because it was not
strong and the machine power was not sufficient. However, two big improvements
were proposed: (1) using the win-loss ratio for evaluation, instead of the difference
between the territory sizes at the terminal node and (2) applying randomized tree-
search techniques such as UCT [73], an extension of the UCB1 algorithm, to the
tree structure; UCB1 is a probabilistic algorithm to maximize the total reward in
the multi-armed bandit framework by using past selections and results [5]. This
is called Monte Carlo Tree search. Currently, the Monte Carlo Go method is used
in many famous and strong Computer-Go programs [35, 47].

To make Monte Carlo Go strong, a huge number of playouts are required.
Further, as the size of the Go board grows, the desirable number of playouts
increases because of its combinatorial nature. Since the generation of playouts
has naive parallelism, several methods for the acceleration of generating playouts
have been proposed. For example, MoGo uses Huygens, an IBM Power 575
Hydro-Cluster system, and it competed well with a professional human Go player
on a 19 x 19 Go board [81].

4.1.4 Owur Proposal for Acceleration Using FPGA

We propose a triple line-based playout for Go (TLPG): a fast and compact algo-
rithm for an FPGA to accelerate the generation of playouts, which can be used
for a 19 x 19 Go board. For generating a single playout, the following operations
are required: (1) enumeration of all possible moves, (2) random selection of a
move, and (3) update of the position. Both for the enumeration and the update,
information on a block is used. Some blocks may cover a large part of the Go
board, and global operation may be required for a single move. However, if com-
plete information on the Go board is stored in registers, the circuit size becomes
large and parallelization becomes difficult. The key idea in TLPG is as follows;
to execute operations locally, global information is reproduced at local points and
stored with redundancy. This enables pipelining and keeps the circuit size small
so that we can operate several copies of circuits in one FPGA in parallel.

This chapter is organized as follows. In Section 4.2, we describe the prelimi-
nary experiment on how the number of playouts affects the strength. In Section
4.3, we describe our proposal, TLPG, and in Section 4.4, we present our evalua-
tion. In Section 4.5, we describe related studies, and in Section 4.6, we present
our conclusion.

4.2 Preliminary Experiments

When there exists a difference between the abilities of two players, to play an even
game, the weaker player places handicap Go-stones at the initial position, and
this number of handicap Go-stones is commonly used as a measure of the relative
strength of Go. To evaluate the strength of Computer-Go, sometimes, matches
between human Go players and Computer-Go as well as automatic matches be-
tween Computer-Go programs are carried out. Here, both the win-loss ratio and
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Table 4.1: Parameters of GNU Go

Normal mode 9 x 9 —mode gtp —quiet —level 10
—never-resign —boardsize 9

~komi 7.5 —chinese-rules

Monte Carlo mode 9 x 9 || -mode gtp —quiet —level 10
—never-resign —boardsize 9
—komi 7.5 —chinese-rules —monte-carlo

—mc-games-per-level Number

the number of handicap Go-stones are used as its measures. GNU Go is a pop-
ular free software program for playing Go. According to their web page, “GNU
Go may be 1-2 stones weaker than the top commercial Go programs” [48]. Since
GNU Go is ported to many platforms, GNU Go is popularly used to measure the
strength of Computer-Go.

Monte Carlo Go is also implemented for GNU Go as one of its possible strate-
gies. Currently, it has only a 9 x 9 Monte Carlo Go mode. To see the effect of
the number of playouts of Monte Carlo Go, we observe the correlation between
the strength and the number of playouts. We carried out 200 matches between
GNU Go in the normal mode and GNU Go in the Monte Carlo mode; in 100
matches, the first move is made in the normal mode, and in the remaining 100
matches, the first move is made in the Monte Carlo Go mode.

Table 4.1 lists the run-time option for GNU Go execution. Figure 4.2 shows
the relationship between the number of playouts for each move (horizontal axis)
and the win ratio of Monte Carlo mode (vertical axis). With the small number
of playouts, i.e., less than 20,000, the win ratio shows an increasing trend. On
the other hand, for around 100,000 playouts, this trend weakens, and for around
180,000 playouts, the win ratio may not increase even though the number of
playouts increases.

Next, to observe the computational cost for generating playouts, we compare
the time for playout generation and total time. Table 4.2 lists the specifications
of the host machine. Figure 4.3 shows the playout generation time and the total
time per playout required to make the n-th move. In the initial stage, the time for

vs level 10 ——

Winning percentage

04 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200

Number of playouts [1000po0]

Figure 4.2: The relationship between number of playouts and win-ratio of Monte
Carlo mode in the games of GNU Go (Monte Carlo mode) versus GNU Go
(normal mode)
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generating playouts is approximately 80% of the total time. In the final stage,
although the search space becomes smaller, the time for generating playout is
more than 50%. Further, for the 19 x 19 grid, this ratio of playout generation is
likely to increase a lot.

Table 4.2: Specification of the host computer for experiments

Processor Core i7 965 3.20GHz * 4CPU
Memory 6GB
Operating system || CentOS5.3 64 bit

0.09 T

Tree Stfucture Operation
Random Simulation (Playout)

0.08

0.07

0.06

0.05

0.04

0.03

Playout speed [msec/1po]

0.02

0.01

0 10 20 30 40 50 60
Nth move

Figure 4.3: Playout speed in the n-th move in GNU Go. Monte Carlo tree
search consists of tree operations and random simulations referred to as playouts.
The Y-axis indicates the execution time of a single tree insertion (red) and a
single playout (blue). In the initial stage, the time for generating playouts is
approximately 80% of the total time. In the final stage, although the search
space becomes smaller, the time for generating playout is more than 50%.

4.3 TLPG: Triple Line-based Playout for Go

4.3.1 Scope and Difficulty

As shown in the previous section, the number of playouts directly affects the
strength of the Monte Carlo Go. In addition, the ratio of the time for playout
generation to the total time is quite high. Most of the required operations for
generating a playout are bit manipulations. This is quite different from the
tree-search involving the use of UCT, where a probabilistic method is utilized
and floating-point operations are required. In addition, since each playout is
independently generated, the computation has naive parallelism. Thus, in this
study, we concentrate on generating playouts; given a position, the win-loss result
of Monte Carlo simulation is returned.

Since bit-manipulation plays a critical role, we design an accelerator for gen-
erating playouts using an FPGA. However, a naive implementation on an FPGA
fails because the circuit size becomes large. As shown in Section 4.1, every stone
shares its fate with the block to which it belongs, and the life and death of a
block are determined by the number of liberties. However, it may be necessary
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Figure 4.4: Logic diagram of TLPG
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Figure 4.5: Concept of TLPG Logic

to check all the adjacent points of the block, which may cover a large part of the
Go board. Thus, for one move, we may need global operation. However, if we
store complete information on the position in registers, the circuit size becomes
huge, and for the standard 19 x 19 Go board, this is not feasible.

4.3.2 Basic Idea of the TLPG

To keep the required hardware resources small, we count the number of liberties
by local operation. The number of liberties is redundantly stored at all points of
the block so that all operations can be locally performed. This enables pipelining.
In addition, since the circuit size is small, we can operate several copies of circuits
in one FPGA in parallel.

We propose triple line-based playout for Go (TLPG), a compact hardware
algorithm to generate playouts. TLPG attempts to accelerate the generation of
playouts by processing one line at a time; all points on a single line are treated
in parallel, and columns are naturally pipelined. Since information on a block
is reproduced at each point, it is sufficient to check four adjacent points. Thus,
to operate on a single line, it is sufficient to check its adjacent lines, namely, the
line above and the line below. TLPG performs all operations locally using three
lines, which are stored in a three-stage shift register.

Figure 4.5 shows the concept of TLPG logic. Here, a single line from the
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FIFO for the unprocessed position is retrieved and is input to a three-stage shift
register. Bit manipulation on the middle line on the three-stage shift register is
executed using the information on the other two lines, and the result is stored in
the FIFO for the processed position. The required operations such as counting
liberties, enumerating possible moves, selection of a move, and updating the po-
sition, are divided into multiple stages depending on whether the completion of
the previous operation is required, and FIFOs are inserted between these stages
(Figure 4.4). Here, all data for one playout are sent to the next FIFO after
the current operation, which enables the generation of multiple playouts simul-
taneously, where the number of playouts that can be generated is the number of
FIFOs since each playout occupies only one stage. Moreover, since TLPG avoids
storing the complete Go board information on costly pipeline registers, the circuit
size is small, which enables us to place multiple generators on a single FPGA and
exploit its parallelism.

4.3.3 Algorithm Description

The generation of a single move for playout consists of the following three oper-
ations:

e Count the number of liberties of each block.
e Enumerate all possible moves.

Select a move at random.

Update the position.

Change turn.

Each grid point is in one of three states {vacant, black, white}, and when a
point is in either the black or white state, the block ID and liberty count of the
block are stored. As for the liberty count, we categorize the blocks into three
states {0, 1, 2 or more}; liberty count 0 means the block is dead, which is only
used in operations of move selection and position update. When a block has
one liberty, losing the liberty by a move may lead to the death of the block,
and a check for suicide and ko is also required. When a block has two or more
liberties, the block always survives for one move. Figure 4.6 shows the flowchart
for generating a playout. We describe each operation.

1. Count the number of liberties of each block

Since a block is continuous on the grid of the Go board, to count the number
of liberties, TLPG scans lines in two directions: forward and backward. For
each point of the target line, if a stone exists, it examines its block ID and
assigns the liberty count of the same block on the line above to a block
on target line. Then, it checks all four adjacent points, and if there exist
several liberties, it increments the number of liberties till it becomes 2 and
updates the liberty counts of all stones of the same block on the same line.
Here, a double count is avoided by using a single local variable per block.
TLPG scans forward, stores all processed data in FIFO, and then scans
backward. Thus, TLPG obtains the correct liberty count state at all points
of the block. Figure 4.7 shows the liberty count state of each point of a
white block just after the forward scan (left) and after the whole operation
(right).
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Figure 4.6: Flowchart for generating a playout

2. Enumerate all possible moves

Check all the vacant points of the target line, and if the target point is
neither suicide move nor ko move, it is a candidate. The conditions in
a suicide move are; (a) all four adjacent points are not vacant, (b) all
adjacent blocks of the opponent’s color have two or more liberties, and (c)
all adjacent blocks of the player’s color have one liberty. As for ko, we relax
the constrains only during playout; we prohibit the placement of a stone at
the point where a single stone was just killed in the previous turn.

3. Select a move at random

TLPG selects a move from all the possible moves with equal probability,
checks the block ID and liberty count state of all adjacent blocks, and
determines whether the block needs to be updated. Note that selection is
performed using the total number of possible moves. Thus, selection starts
after all the possible moves are stored in FIFO.

4. Update the position

TLPG updates the target point and information on blocks, as obtained by
the operation above. When a block is killed, TLPG removes all stones of
the block, and when multiple blocks are merged into one block, it updates
their block ID.
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Figure 4.7: Calculate the numbers of liberties for a block with two-way scans

4.3.4 Detailed Data Structure

Table 4.3 lists the data structure. The state of each point is represented in 2 bits;
{vacant, white, black}. The block ID is represented in 8 bits for a 9 x 9 grid
and 10 bits for a 19 x 19 grid. The number of liberties is expressed in 2 bits; {0,
1, 2 or more}. Table 4.4 shows the clock counts for each process. In this table,
the following stage does not start before all the data pass through the previous
stage.

Table 4.3: Data structure in the TLPG

Data size
Data 9 x 9|19 x 19 | Unit size
Turn 1 bit 1 bit
Position state 18 bit 38 bit | 2 bits per point
ID of the block 72 bit | 190 bit | 8 bits (9 x 9) or 10 bits (19 x 19)

Number of liberties 18 bit 38 bit | 2 bits per point

Possible move or not 9 bit 19 bit | 1 bit per point
Update position list 72 bit 88 bit

4.4 FEvaluation

We evaluate the TLPG on an FPGA board. We implement playout generators for
the 9 x 9 grid and 19 x 19 grid. Xilinx Virtex-5 XC5VFX70T-1FF1136 is used
as a target device. Our designs are synthesized with Xilinx ISE 11.2. We evaluate
our designs in terms of (1) implementation, i.e., clock cycle time and circuit area,
(2) speed, i.e., the cycle count for the generation of one playout, and (3) validity
of the playout, i.e., whether TLPG logic generates playouts accurately.

4.4.1 Clock Cycle and Resource Consumption

First, we evaluate our design on the basis of the synthesis report. Table 4.5 lists
the usage of resources and the clock cycle time for generators. The resources for
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Table 4.4: Clock counts for each process in the TLPG

Clocks

9x9 |19 x 19
Liberty count (forward direction) 3 3
FIFO 11 21
Liberty count (backward direction)
Move possibility check
FIFO 11 21
Move selection 3 3
FIFO 11 21
Position update 3 3
Turn change
Total 49 79

each component of the generator are listed in Table 4.6 and Table 4.7.

Table 4.5: Resource consumption of the TLPG implementations

9%x9 (%) 19 x 19 (%) | capacity

Slice Registers 4268 (10) 11538 (26) 44800

Slice LUTs 3882 (9) 14545 (32) 44800

Block RAM 16 (11) 23 (16) 148
Critical path 9.572 ns (104.5 MHz) | 15.972 ns (62.6 MHz)

Table 4.6: Resources for 9 x 9 grid Go board

Slice Register | Slice LUTs | BRAM

Liberty count 670 1592 0

Enumeration of the candidates 1063 718 0

Position update 328 356 0

FIFO between logic blocks 677 130 9

In obtaining these results, block RAMs are used for FIFO between the stages.
The FIFO-based stage reduces the number of registers and the area of the gen-
erator. This area-effective design also helps realize reasonable clock cycle time
for the 9 x 9 grid. However, the clock cycle time for the 19 x 19 grid is much
slower than that for the 9 x 9 grid, which is because of the complexity of liberty
check. The liberty check for the 19 x 19 grid uses around six times the LUTs as
that for the 9 x 9 grid. Such a large combinational circuit increases the design

complexity and degrades the clock cycle time.

50



Table 4.7: Resources for 19 x 19 grid Go board

Slice Register | Slice LUTs | BRAM
Liberty count 1762 9345 0
Enumeration of the candidates 2551 1738 0
Position update 740 862 0
FIFO between logic blocks 1341 246 18

4.4.2 Playout Generation Speed

To evaluate the average playout generation speed, we estimate the number of
playouts generated for 100 ms. The cycle counts are evaluated by performing
a VHDL simulation. The actual playouts for a second are calculated from the
circuit frequency in Table 4.5.
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Figure 4.8: Playout generation speed of GNU Go, MoGo, and TLPG. 19 x 19
playout is unsupported in the GNU Go Monte Carlo mode.

The results are shown in Figure 4.8. TLPG generates 40,649 playouts per
second for the 9 x 9 grid, and 4,668 playouts per second for the 19 x 19 grid.
This playout generation speed for the 9 x 9 grid is two to three times faster
than the speed of software implementation by the computer, as listed in Table
4.2 (single thread). However, the playout generation speed of TLPG for the 19
x 19 grid is approximately equal to the speed of software implementation. This
is mainly because the critical path delay of TLPG logic for the 19 x 19 grid is
larger than that of the logic for the 9 x 9 grid. TLPG can support three playouts
simultaneously because one playout occupies only one operation stage at a time.
Moreover, since our current implementation of TLPG requires one-tenth of the
FPGA resources for the 9 x 9 grid and one-third for the 19 x 19 grid, we will be
able to accelerate these speeds several times faster by duplicating the core circuit.

4.4.3 Validity of the Playout

We check validity of the playout of our generator in a Computer-Go game. We
carry out matches between the program using our playout-generation algorithm
and GNU Go. To play the real Computer-Go game, we implement a naive sub-
tree expander instead of UCT, which expands its subtree under all possible nodes
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with equal probability.

We use our FPGA board MaSTER-1 to implement the TLPG logic. MaSTEr-
1, which we originally designed as a testbed for network experiments, is character-
ized by the following; (1) five FPGAs (Xilinx Virtex-5 XC5VFX70T-1FF1136),
(2) 537 MB DDR2 SDRAM components for each FPGA, (3) five 10GBASE-
SR/LR optical ports, and (4) complete connections between all FPGAs by Rocket
I/O (10 Gbps). In these experiments, we use one FPGA for playouts. In the
FPGA, TLPG logic is operated at 104.2 MHz for 9 x 9 grid playouts.

Table 4.8: TLPG v.s. GNU Go (for Chinese-rule)

number of playouts for each move || win-loss-draw result
100 1-18-1
300 5-12-3
500 3-7-0

Since our sub-tree expander is inferior to the UCT method, we use six hand-
icap stones. The results of the games (9 x 9 grid) are listed in Table 4.8. In
this table, “N playouts” means that all candidates are simulated N times. We
set komi to 0. The result for 500 playouts shows a higher winning ratio than
the results for 100 and 300 playouts. We observe that as the number of playouts
increases, the win-loss ratio is improved.

4.5 Related Work

In May 2009, MoGo on the Huygens IBM Power 575 Hydro-Cluster system de-
feated a human Go professional in an official match on a 19 x 19 grid board
with a 9-stone handicap [81]. The key implication of this news is the Monte
Carlo Go can defeat a professional player. It implies that Monte Carlo Go with
the support of more computational power might defeat the grandchampion. To
achieve high-performance computing, the acceleration of programming kernel is

important. TLPG can also accelerate the playout speed, which is kernel of Monte
Carlo Go.

4.6 Conclusion

Monte Carlo Go seems to be one of the promising methods to strengthen Computer-
Go, which has shown good results for the 9 x 9 grid board, i.e., appears as strong
as human Go players. However, performing Monte Carlo Go on a 19 x 19 grid
board is difficult because its search space expands rapidly. In this study, we
propose an algorithm for the generation of playouts, TLPG, which is suitable for
FPGA implementation. Board data are divided into rows and treated row by row,
which saves hardware resources, and FIFO is placed between operation stages.
By implementing the TLPG on an FPGA, we generated 40,649 playouts/s on a
9 x 9 grid board and 4,668 playouts/s on a 19 x 19 board. In our study, we
have accelerated Monte Carlo simulations for Go. However, other components
such as UCT are also important for a good match. We would like to implement
these components to create a much stronger Go program that defeats not only
the strongest Go program but also the professional human champion.
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Chapter 5

Accelerators for Continuous Skyline
Computation

5.1 Introduction

5.1.1 Skyline Computation

The skyline computation algorithm [18] is used for extracting the interesting
entries from a database of multi-attribute entries. Skyline computation plays
an important role in data-driven artificial intelligence, which extracts the ex-
traordinary entries from data without requiring a model. This multi-objective
optimization problem finds a Pareto (maxima) set of vectors [80], and various
efficient algorithms (e.g., [82]) are studied. The computation can be stated as a
geometric problem. Given two d-dimensional vectors v = (vg,v1,...,v4—1) and
u = (ug, u1,...,uq—1), we define the dominance relation as follows: v dominates
wif and only if (Vk € {0,1,...,d=1} v <wu) A (k€ {0,1,...,d—1} vp < uy).
Given a set V of n points vg,v1,...,v,—_1 in the closed positive orthant of a d-
dimensional space, v € V is defined as a skyline point of V if there exists no
u € V such that w dominates v. The set of all skyline points of V is called the
skyline of V. The left and right panels of Figure 5.1 show examples of skylines in
two- and three-dimensional space, respectively. As shown in Figure 5.5, the sky-
line cannot extract entries effectively from a high-dimensional space because the
skyline ratio (ratio of skyline entries to whole entries) asymptotically approaches
1. The skyline ratio r is obtained as follows:

T =

1 i(_l)kﬂ( Z )

- i (5.1)

k=1

We experimentally confirmed that when r is fixed, the number of dimensions d is
proportional to logn. Therefore, we target mid-range-dimensional data even for
larger n.

The task of computing the skyline of a dynamic set of points is known as
the continuous skyline computation [92]. Real databases are updated frequently
in streaming or other suitable environments. Streaming applications play a sig-
nificant role in diverse fields such as fraud detection in financial trading, in-
trusion detection in computer networks, data processing, scheduling, and traffic
control in sensor network applications [103]. The injection and ejection times
of an entry into/from the database are called the activation and deactivation
times of the entry, respectively. Let act(v) and deact(v) be the activation
and deactivation times of an entry v. At time ¢, define S; as the skyline of
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Figure 5.1: Examples of skylines in multi-dimensional spaces (top: two dimen-
sions and bottom: three dimensions). Yellow and blue points denote the skyline
and non-skyline points, respectively.

Vi ={v eV |act(v) <t < deact(v)}. In a continuous skyline computation, Sy
is updated from the points that are activated and deactivated at time t.

The continuous skyline computation is useful for removing non-skyline points
in preprocessing for screening a large amount of data in real time. Our objective is
to optimize the overall maintenance time of the continuous skyline computation.
The continuous skyline computation is a difficult problem because the activation
or deactivation of just one point can demote many existing skyline points from
the skyline or promote many existing points to the skyline, which changes a
large part of the skyline. Many previous studies have proposed data structures
for managing point sets and fast algorithms for computing the skyline. These
methods use spatial indexing trees, such as B-trees, R-trees, R*-trees [18, 76, 98],
or quadtrees [92].

5.1.2 New Tree Structure for Skyline Computation

We employ the skyline potential of point v 4 in the d-dimensional space defined
by

1 (</|{'v € V|v dominates v4}| (5.2)

n

A skyline potential of a skyline point is 1. Assuming that points are uniformly
distributed, the number of points is proportional to the volume. Therefore, we
use the d-th root of the dominant point ratio. A point that is dominated by many
points has a low potential to become a skyline point. As the points in Figure 5.2
are activated and deactivated, the skyline potential of point A exceeds that of
point B. Exploiting this difference in skyline potential, we can reduce the number
of comparison operations in the skyline update.
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A point dominated by many points is unlikely to become a future skyline
point. Therefore, we can avoid unnecessary comparisons between the points.
Existing algorithms can compute the skyline of low-dimensional of data (e.g.,
d < 5) at reasonably fast speed. However, because points are stored in the tree
without considering their potential to become a skyline point, these algorithms
perform redundant computations. Additionally, the number of spatial partitions
in a spatial indexing tree exponentially increases with number of dimensions.
Therefore, the points become sparsely distributed in the partitioned space, and
the traversal performance of the tree decreases.

It is inefficient to store every dominance relation between pairs of active points
in the continuous skyline computation in a simple O(N?)-sized table. As the dom-
inance relation is transitive, there are numerous dominance relations. However,
many of these dominance relations (such as those between points with low po-
tential of joining the skyline) are unlikely to be used in the skyline computation,
so their calculations can be delayed. Furthermore, the number of recalculations
can be reduced by storing the results of the previous activation and deactivation
operations. We propose a balanced jointed rooted tree (BJR-tree) for continuous
skyline computation. Each vertex and arc in the BJR-tree represent a point and
a dominance relation respectively. As the dominance relation is transitive, a di-
rected graph G that exactly expresses a set of points V is uniquely determined.
This graph, called the complete dominance graph, is a transitive closure with
Q(n?) arcs, whereas the BJR-tree contains O(n) arcs. Our concept excludes arcs
that are unnecessary for computing the skyline, and preserves arcs that may be
utilized in future. The BJR-tree is a rooted spanning subtree of the complete
dominance graph.

The higher computational speed of the BJR-tree algorithm over existing algo-
rithms is attributed to two features: (1) appropriate hierarchical expression and
(2) dimensionality independence. Regarding (1), the hierarchy in the BJR-tree
reflects the points’ potentials to join the skyline, namely, the skyline potentials.
A point with higher potential is closer to the root than a point with lower poten-
tial. Existing spatial indexing methods (such as B-tree, R-tree, and quadtree),
which express the clustering and proximity relationships, are unsuitable for sky-
line computation because the non-uniformity of the spatial distribution is not
directly related to the dominance relationships. Regarding (2), BJR-tree algo-
rithms are dimensionality-independent because they project a multidimensional
space onto a simple graph using the dominance relations alone. In other words,
the number of comparisons is independent of the dimensionality, so the skyline
computation can be rapidly and continuously performed in any number of di-
mensions. Furthermore, the BJR-tree is not restricted to a set of points with a
dominance relationship, but applies to any partial order. The BJR-tree is detailed
in Section 5.4, and its complexities are discussed in Section 5.6.

We then propose a non-dominated relation cache (ND-cache), a data structure
that accelerates the continuous skyline computation. This O(n)-sized structure
essentially caches the non-dominated relationships (in contrast to the BJR-tree,
which stores dominance relationships). The BJR-tree and ND-cache play com-
plementary roles.

5.1.3 Serendipitous Searching Problem

Many classification methods for spatial data processing in super-high-dimensional
spaces have been proposed in recent years. Clustering methods divide vectors
into several groups, and outlier detection methods identify distinct entries such as
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Figure 5.2: Points with high and low skyline potentials (Points A and B, respec-
tively)

noise. The serendipitous searching problem (SSP) is a new cognitive problem that
detects “boundary” entries; i.e., entries that locate geometrically near the rind
(or envelope) of a population. The population may comprise multiple clusters
or include outliers. The typical characteristics of the population are regarded
as central entries (e.g., entries around the mean and median). Meanwhile, the
extreme characteristics of the population are regarded as boundary entries. Very
rare and valuable boundary entries can be encountered serendipitously.

We solve the SSP as a skyline computation problem, regarding the set of
boundary entries as a set of skyline points. As the cultivation proceeds, the
features of the boundary set gradually shift. Hence, the boundary group is main-
tained by an online algorithm that adds newly processed cells and removes earlier
cells.

Our SSP application Serendipiter [52, 95, 55] is a fast cell sorter that discovers
very rare cells with atypical ability from an enormous number of cells. Serendip-
iter includes six technologies at the single-cell level with the following function-
alities: (1) cell stimulation, (2) speed control of the cells, (3) high-resolution
cell measurements using multiple sensors, (4) identification of cells from multi-
dimensional vectors of cell measurement information, (5) sorting of cells into
wanted and unwanted groups, and (6) analysis of the wanted cells. A block di-
agram of Serendipiter is shown in Figure 5.3. The cells are identified from cell
measurement information obtained by multiple sensor technologies, such as op-
tical imaging and spectroscopy. The measurement and identification latencies
must be below ten milliseconds. Existing cell sorters such as [8] process cells at
sufficient speed, and microscopes enable the accurate analysis of cells. However,
because these methods cannot simultaneously realize fast and accurate analysis,
we have developed Serendipiter. The discovery of very rare cells (constituting one
per trillion cells) in a realistic time is expected for efficient biofuel production by
FEuglena spp. and high-precision blood testing. Serendipiter, which combines an
optical time-stretch quantitative phase microscope with a hydrodynamic-focusing
microfluidic chip, accurately analyzes single cells and classifies 10,000 cells each
second.

In biofuel production by FEuglena spp., we require cells with a superior fat-
producing ability (Super Fuglena). However, because the measured static infor-
mation relies on the lifecycle and photonic synthesis phase of the cells, it cannot
directly determine the fat production potential of Fuglena cells. Various features
of Fuglena cells can be generated by stimulating the cells and promoting muta-
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Figure 5.3: Flow diagram of Serendipiter

tion. The Serendipiter system selects and cultivates Euglena cells with extreme
features. After several stimulation-cultivation cycles, we obtain a population of
FEuglena cells that are rarely found in ordinary cell populations. The efficiency of
our proposed algorithms is verified on Serendipiter.

To determine the usefulness of the skyline cells extracted by BJR-tree, we
must biochemically analyze the cells after repetitive cultivation and extraction.
This study confirms that by appropriately selecting the features, we can stably
isolate rare skyline cells. We also confirm the faster execution of BJR-tree than
the existing algorithms, regardless of feature selection.

5.1.4 Hardware Implementation of Skyline Computation

We also propose the low-latency skyline computation accelerator (LSCA) with
delayed JR-tree reshaping. The JR-tree is a variant of the BJR-tree and employs
simple injection process instead of balancing injection; thus, an initially discov-
ered child that dominates an injected node is traversed in the JR-tree. Methods
for continuous skyline computation using cluster systems and hardware accelera-
tors have been proposed in many previous studies, but it is difficult to efficiently
parallelize this task because many entries must be handled but only a limited
number of entries can be processed at the same time. The LSCA reduces the
time required for entry deactivation in two ways: (1) it parallelizes the domi-
nance relation calculations between a target entry and the skyline entries and (2)
it delays the evaluation of postponed dominance relation calculations until the
system is idle. In the LSCA, random-access memory (RAM) is implemented on
the FPGA to manage the entries. Since the most frequently performed domi-
nance relation comparisons involve current skyline entries, our method maintains
all skyline entries using flip-flops on the FPGA and executes related comparison
operations in parallel. This speeds up the comparison operations that have pre-
viously bottlenecked the continuous skyline computation. Linked list-based data
structures are implemented in the FPGA’s on-chip RAM, allowing us to achieve
high-speed tree construction and traversal and compact implementation of the
hardware logic.

In Section 5.2, we discuss related work. In Section 5.3, we discuss relevant
concepts for static skylines. In Section 5.4, we describe our BJR-tree, and in
Section 5.5, we introduce our ND-cache. In Section 5.6, we discuss the complexity.
In Section 5.7, we describe experiments that compare the BJR-tree to other
methods, and In Section 5.8, we discuss performances of skyline operation and
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other entry extraction methods and describe another application of our BJR-
tree. In Section 5.9, we propose a hardware algorithm LSCA for FPGA-based
continuous skyline computation. In Section 5.10, we describe experimental results
about query processing latency, and in Section 5.11, we conclude this study.

5.2 Related Work

In a pioneering study, Kung et al. [80] extracted the maxima among a set of
vectors. They also showed that for n vectors in d-dimensional space, the time
complexity of this problem is O(nlogyn) for d = 2,3, and it is bounded between
[logyn!] and O(nlogd~2n) for d > 4. The same problem has been applied to
database applications, e.g., the skyline operator of Borzsonyi [18].

In static skyline computation, the input points are loaded and stored in data
structures, which are accessed by a skyline computation algorithm. The block
nested loop (BNL) [18], bitmap, and index [121] algorithms use no special data
structures. A variant of the BNL algorithm, called the sort-filter-skyline (SFS)
algorithm [31], presorts the points. The linear elimination sort for skyline (LESS)
algorithm [49] improves the SFS algorithm. The sort and limit skyline algorithm
(SaLSa) [6] presorts points by a monotonous limiting function. The authors of
[18] proposed basic divide-and-conquer algorithms using a B-tree [7] or R-tree
[53], and those of [76] proposed nearest-neighbor algorithms using an R*-tree [9].
The branch and bound skyline (BBS) algorithm [98] also uses an R*-tree. In the
object-based space partitioning (OSP) algorithm [144], the partition trees store
only the skyline points. BSkyTree [82] selects effective pivots for the space par-
titioning, which reduces the number of dominance relation computations. These
methods, which construct spatial-indexing tree structures, initially build a tree
from the input points, then traverse the tree to compute the skyline. These meth-
ods are optimized for static skyline computation and are unsuitable for updating
the skyline.

Depending on the format of their temporal information, datasets in continuous
skyline computation are classified into three types: count-based [85, 122], moving-
object-based [57, 125, 83], and time-based [92]. Count-based datasets include an
activation sequence with a fixed number of concurrently activated points. The
complexity of the update operation for count-based datasets is discussed in [85].
In moving-object-based datasets, the points move around a multi-dimensional
space and the skyline must be tracked throughout the simulation. In [83], the
tracking is performed on an R*-tree. Our algorithm targets a time-based dataset
with the time of activation (entry into the database) and deactivation (exit from
the database).

In continuous skyline computation, the tree-building algorithm is replaced by
injection and ejection algorithms. A variant of the bitmap algorithm was pro-
posed in [42]. The Lookout algorithm [92] performs more effectively on a quadtree
[39] than an R*-tree. The quadtree reportedly outperforms the R-tree in update-
intensive applications [77], and is more effective in point indexing than the R*-tree
[71]. The height of an n-leaf quadtree in d-dimensional space is O(log;n). Closely
placed points are stored in deep positions of the quadtree. Because the quadtree
must be recursively traversed in skyline computation, the computational time is
difficult to reduce. Recently, many parallelized and hardware-based methods have
been proposed for this purpose. For instance, Lazy List and Lock-Free Parallel
BNL [107] and APSkyline [84] have been proposed for a multi-core processor en-
vironment. The hardware-based methods include methods for GPUs [30, 14, 15]
and FPGAs [137, 138].
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The k-dominant skyline [27] is similar to the skyline, but contains more
points under the relaxed dominance relation definition. The nearest-neighbor
query [105] and convex hull [50] are well-known sampling problems with multi-
dimensional vectors. The SR-tree [69], proposed for nearest-neighbor querying,
is a structure that is a combination of an R*-tree and an SS-tree [134]. A method
based on X-tree [11], a variant of R-tree, has been proposed for convex hull com-
putation [16].

5.3 Preliminaries

In this section, we show our findings for a static skyline. We randomly gener-
ated synthetic datasets with multidimensional vectors. The specifications of our
generated datasets are described in Section 5.7.

Figure 5.4 shows the change in the number of skyline points due to an increase
in the number of points (called the “cardinality”) in three different numbers of
dimensions (d = 2,5,and 8). In each dataset, points are activated cumulatively.
When a point that dominates many other points is activated, the number of
skyline points decreases. Such a decrease is often found in d = 2, but the number
of skyline points continues to increase for d = 5 and 8.

We call the ratio of the number of skyline points to the total number of
points the “skyline ratio”. When the cardinality is 100k, the skyline ratio in a
two-dimensional dataset is approximately 0.01%. On the other hand, the skyline
ratio is approximately 1% in five dimensions and approximately 10% in eight
dimensions. The skyline ratio varies with the number of dimensions; thus, the
algorithms and tuning techniques optimized for low-dimensional datasets are mis-
cast as a method for high-dimensional datasets.

Skyline
10* — g-dim
1000
100 5-dim
10 — 2—-dim

‘ ‘ ‘ — Cardinalit
1 10 100 1000 10* 103 Y

Figure 5.4: Growth of the number of skyline points with new point activations
(independent distribution)

The skyline ratio in each number of dimensions is shown in Figure 5.5. We set
the cardinality to 10k. We show three types of spatial distributions of the input
vectors: anti-correlated (ANTI), independent (INDE), and correlated (CORR).
In ANTI, nearly all points in the datasets of more than 10 dimensions belong
to the skyline. In CORR, nearly all points in the datasets of more than 25
dimensions belong to the skyline. Let A(n,d) be the average number of maximal
vectors of n d-dimensional vectors, A(n,d) = 2A(n,d — 1) + A(n — 1,d) for
n,d > 2, A(1,d) =1 for d > 1, and A(n,1) = 1 for n > 1 [10]. The purpose
of the skyline operation is to extract interesting points. In such a situation, any
skyline with a high ratio has no significance. In [28], a skyline frequency was
proposed for this problem. The dominance relation of the k-dominant skyline
[27] is defined as a partial order in k-dimensions (k < d). In this variant of
the dominance relation, the number of cases in which a dominance relation is
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Figure 5.5: Skyline ratio versus number of dimensions for 10,000 randomly gen-
erated entries with three types of spatial distributions (anti-correlated, indepen-
dent, and correlated)

established increases and the number of skyline points decreases. The continuous
k-dominant skyline was studied in [75]. The acceleration of high-dimensional
datasets is needed in these problems. Therefore, the targets of our work are the
datasets with 2-25 dimensions.

We observed that the features of a dataset strongly depend on the spatial
distribution of points and number of dimensions. The dominance relation is es-
tablished easily when the number of dimensions is small but is more difficult to
establish when the number of dimensions is large. Previous methods that use
spatial indexing trees consider not the dominance relation but the spatial distri-
bution of points in the tree construction phase. If the target dataset has a small
number of dimensions and many dominated relationships, it is effective to manage
points in geometrically hierarchic structures. However, when the dataset has a
large number of dimensions and the dominated relationships sparsely exist, such
structures are not effective for skyline computation. The spatial indexing trees
are not suited for skyline computation, especially when the number of dimen-
sions is large. Therefore, a data structure that can directly deal with dominance
relations and omit the needless operations on points with a low skyline potential
will accelerate skyline computation.

5.4 BJR-tree

5.4.1 Algorithm Description

In the BJR-tree concept, a point that is dominated by many other points is
unlikely to become a skyline point in future, so its precise information need not be
maintained. The BJR-tree is a rooted tree that expresses the dominance relations
in a given set V, with n points in the closed positive orthant of a d-dimensional
space. Each vertex represents a point and each arc (directed edge) represents a
dominance relationship. The vertex set of a BJR-tree is {O} UV, where O is the
origin of the d-dimensional space. Note that O dominates all n points in V', and
its corresponding vertex is the root of the BJR-tree. A complete dominance graph
is a directed acyclic graph in which the vertices and arcs correspond to the points
{O} UV and all dominance relations, respectively. A BJR-tree T is a spanning
subtree of the complete dominance graph with the following properties: (1) If
vy is a skyline point, then 7" directly connects O to the corresponding vertex X,
and (2) If vy is not a skyline point, then T' directly connects a non-origin point
to the corresponding vertex X.

A given set of points in a multi-dimensional space admits multiple BJR-trees.
If an arc extends from A to B, then point v4 corresponding to A dominates
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Figure 5.6: Examples of BJR-trees (b,c) constructed from nine points (a) repre-
sented by two-dimensional vectors

point vp corresponding to B. However, even if v4 dominates vg, T" does not
necessarily connect A to B by one arc. A point belongs to the skyline if and only
if the corresponding vertex is a child of O.

Figure 5.6 shows two examples of BJR-trees constructed from nine points in
a two-dimensional space. One of these BJR-trees is sufficient to determine the
skyline.

To output the skyline, we need to enumerate the children of O. There is
no need to traverse the tree. The BJR-tree offers two advantages in continuous
skyline computation: (1) the small size of the BJR-tree and (2) the applicability
of BJR-tree to partially ordered datasets as well as multi-dimensional datasets.
Regarding (1), the tree contains O(n) edges, whereas the complete dominance
graph contains (n?) edges. Regarding (2), BJR-tree accesses the values of each
dimension when computing the dominance relation, and its concept is applicable
to any dataset with a transitive partial order. In contrast, methods based on
spatial indexing trees evaluate the dominance relations between a point and the
maximum or minimum corners of the partitioned regions, using the Manhattan
distance between the points. In methods that select the dimensions for presorting,
the constructed trees are of limited applicability in solving independent multi-
objective optimization problems. A point corresponding to a vertex in a deeper
layer of the BJR-tree tends to have a low skyline potential, whereas a point
corresponding to a vertex near O tends to have a high skyline potential.

Continuous skyline computation activates and deactivates the entries over
time. The BJR-tree dynamically injects new vertices and ejects existing vertices.
The BJR-tree is built by repeating the injection and ejection operations, which
are implemented by Algorithms 1 and 2, respectively.

The BJR-tree maintains the dominated relations discovered in the injection
and ejection operations as arcs. This information may be utilized when the
skyline potential of the points increases because of the ejection operations. This
information is used when related points approach the root under subsequent
ejection operations. When executing multiple ejection operations in a single
time-step, it is helpful to collectively remove points and inject the children into
their parents.

We now show a running example of the injection and ejection operations.
Suppose that the BJR-tree in Figure 5.6 (b) is constructed from the dataset
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Algorithm 1 Injection (base)

1: procedure inject(r: root,v: new vertex)
2: C < children of r;

3: for all c € C do

4 if ¢ dominates v then

5: inject(c,v);

6 return

7: set v to r’s child;

8: for all c € C' do

9 if v dominates ¢ then

10: move ¢ to v’s child;

Algorithm 2 Ejection

1: procedure eject(v: ejected vertex # O)
2: p < parent of v;

3: C < children of v;

4: remove v from p;

5: for all ¢ € C do

6 inject(p,c);

shown in Figure 5.6 (a), and that point 3 is to be deactivated. First, node 3 is
removed from the tree. Second, the children of node 3 (nodes 4, 6, and 9) are
injected into the root node (the parent of node 3). Node 4 neither dominates nor
is dominated by node 1 or 7; consequently, node 4 becomes a child of the root
node. Node 6 neither dominates nor is dominated by node 1, 4, or 7, so becomes
a child of the root node. Finally, node 9 is dominated only by node 7, which has
no children; therefore, node 9 becomes a child of node 7. Figure 5.7 (b) shows
the new BJR-tree constructed after ejecting node 3 from the BJR-tree in Figure
5.6 (b).
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Figure 5.7: Points in two-dimensional space (a) and a BJR-tree (b) derived from
the dataset shown in Figure 5.6 after ejecting point (node) 3
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5.4.2 Lazy Strategy

The inject() and eject() procedures (in Algorithms 1 and 2 respectively) gen-
erate one possible BJR-tree representing the current set of points. The generated
tree depends on the child-selection order in the first iteration of Algorithm 1.
For example, multiple BJR-trees can be generated from the complete dominance
graph in Figure 5.8 (a), which is transitively closed. Note that graph (b) of Fig-
ure 5.8 is the transitive reduction of graph (a) and is not a BJR-tree. Clearly,
the rooted tree generated by inject() without eject() (see Figure 5.8 (c)) is a
spanning subtree of the transitive reduction.

Algorithm 1 increases the depth of the tree. A shallow vertex in the BJR-tree
corresponds to a point with high skyline potential. Such points must be processed
immediately. Conversely, points far from the origin (i.e., deeper vertices) can
be computed later because their results may not be used until the end of the
computation. However, in tree (c) of Figure 5.8, the dominance relation between
B and E is computed even though both points are more than two hops from A.

To delay such operations, we substitute Algorithm 1 with Algorithm 3. A
tree built by Algorithm 3 is displayed in Figure 5.8 (d). This tree is a subtree
of the transitive closure and satisfies the conditions of a BJR-tree. Rather than
increasing the tree height, Algorithm 3 increases the child number of a parent.
By using appropriate thresholds on the dataset, we can balance the number of
children and the depth of each vertex. Tree (d) is low-height but unbalanced.
In contrast, tree (c) has the smallest maximum number of children among the
trees in Figure 5.8 and is properly balanced, but has a large height. Figure 5.8 (e)
shows another tree built by Algorithm 3, which is a compromise between trees (c)
and (d). Building the appropriate type of BJR-tree equates to a lazy evaluation
problem. The timing of the lazy evaluation is determined by imposing a limited
depth, as shown in Section 5.6.
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Figure 5.8: Examples of rooted trees derived from transitive closure (a). The
reachabilities of the rooted trees differ from those of the original transitive closure
and its transitive reduction (b). Tree (c) was generated by Algorithm 1, and trees
(d, e) were generated by Algorithm 3.
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5.4.3 Balancing Injection

In the previous subsection, we discussed the balance between the tree height and
number of children. Here, we balance the numbers of descendants of vertices at
the same depth. When multiple vertices dominate an injected vertex, Algorithm
1 selects and traverses from the first-found vertex, which unbalances the BJR-
tree. When vertex X is injected to vertex Y and Y has children Z and W who
dominate X, either Z or W is chosen, whichever equalizes (as far as possible) the
number of descendants of Z and W. This concept, which underlies Algorithm 3,
balances the number of descendants of each vertex. The number of descendants of
vertex z is denoted Desc(z). In the ejection process (Algorithm 2), the number of
calls of the injection function equals the number of children of the ejected vertex.
A single ejection operation invokes multiple injection operations. A BJR-tree is
balanced directly in each invoked injection operation. Therefore, the BJR-tree
remains balanced through the entire ejection operation, and the ejection process
yields a balanced BJR-tree.

Algorithm 3 Injection (lazy evaluation and tree balancing)

1: d: the depth at which a vertex is injected lazily
2: procedure inject(r: root,v: new vertex)

3: if » = O or Depth(r) < d then

4:  C < children of r;

5: g < +0o0;

6: t < null;

7 for all c € C' do

8 if ¢ dominates v and Desc(c) < g then

9

: t <+ ¢
10: g < Desc(c);
11:  if ¢ # null then
12: inject(t,v);
13: return

14: set v to r’s child;

15: if » = O or Depth(r) < d then
16: for all c e C do

17: if v dominates ¢ then

18: move ¢ to v’s child;

5.5 ND-cache

In the datasets considered here, once a set of skyline points p has been dominated
by a set of newly activated points ¢, some of the p are restored as skyline points
by deactivating ¢. In such datasets, we can reduce the recalculation by saving
information about the former dominance relation calculations. Because non-
dominated relations (except those of the skyline) are not stored in the BJR-tree,
many recalculations are required.

To solve this problem, we propose a non-dominated relation cache (ND-cache)
that stores recently computed skylines. The ND-cache comprises an array C of
length N (where N is the total number of given points). Each value C; is updated
at time t; if and only if point e; is a skyline point at ¢1. At time ¢, if C, equals
Cy, then e, cannot dominate e, and e, cannot dominate e, (we call this case a
“cache hit.”). If C, and Cj, are unequal, the standard comparison is computed.

As an example, Tables 5.1 and 5.2 show the history of the skyline and the
contents of ND-cache at time T3 of Table 5.1, respectively. As es and eg are
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Table 5.1: History of the skyline

Time T(] T1 T2 T3

Skyline || {eg,e1} | {eo,e1,e2,e3} | {es} | {eo,e€1,€6}

Table 5.2: Contents of ND-cache at time T5. The timestamp at which entry e,
last belonged to the skyline before T3 is stored as a value at index .

Index || O | 1 | 2 | 3 4 5 | 6
Value T3 T3 T1 T1 null TQ T3

equal in the skyline cache, both points simultaneously belong to the skyline, and
neither dominates the other. Table 5.3 compares the complexities of ND-cache,
a non-cached method, and a method storing all former comparison results. The
spatial complexity of the method that caches all results is O(N?), versus O(N)
for the ND-cache. The time complexity of a hit is O(1) in a fixed-dimensional
space.

We consider the situation in which the skyline S composed of s points is
completely dominated by a newly activated point, and one new skyline point
is deactivated immediately. The ejection operation invokes s(s — 1) comparison
operations. However, all points in S have the same value in the ND-cache. The
ND-cache guarantees that the results of all s(s — 1) comparison operations are
non-dominated.

Table 5.3: Complexity of the dominates() function

Complexity || No cache Cache all ND-cache
Time O(d) O(1) when hit | O(1) when hit
Space None O(N?) O(N)

The ND-cache stores information about former dominance relation calcula-
tions in a one-dimensional array instead of a set. This feature realizes the follow-
ing advantages: (1) the later skyline is preferentially stored; (2) the old skyline,
which has dropped into a deeper position, is maintained and not overwritten; and
(3) the ND-cache is easily implemented.

The dominance relation includes both dominated and non-dominated rela-
tions. The BJR-tree stores the dominated relations and the ND-cache stores the
non-dominated relations between two skyline points. The BJR-tree and the ND-
cache complement each other. However, the ND-cache is applicable not only to
BJR-trees but also to other continuous skyline computation algorithms.

5.6 Complexity Analysis

We first describe the spatial complexity of our BJR-tree. Each vertex in the
BJR-tree contains the information of its parent and a variable-length list of its
children. The spatial cost of the fixed information is O(1) per vertex; thus, the
total cost is O(n), where n is the number of points that are active at the same
time. Therefore, the spatial complexity of the BJR-tree is O(n).
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We now compute the complexities of the existing algorithms and our algorithm
on a 2-dimensional dataset. The time complexity is the number of comparison
operations of the dominance relation (which constitute the most expensive part
of the algorithm). The average number of skyline points in a set of n independent
d-dimensional vectors A(n,d) is given by [23]

. n g d—1 " d—1
— — < A(n,d) < - 5.3
(i) =< (324) 53
k=1 k=1

When d = 2, we have A(n,2) = H(n), where H(n) denotes the n-th harmonic
number. In the left panel of Figure 5.9, the number of children of the root is the
same as the number of skyline points H(n). Because the numbers of children in
the BJR-tree are balanced, the average number of descendants of the vertices at
depth 1 (e.g., vertex P), denoted by Di(n), is #. Therefore, the number of

H(n)
children of a depth-1 vertex, Ci(n), is A(D1,2) = H (%) These quantities
meet the following criteria.
Dy(n) =n, Cy(n)= H(n) (5.4)
C; = H(D;), Dy[]}Z; Ci=n (5.5)

We first describe the complexity of a single injection, which causes a recur-
sive traversal of the BJR-tree. The dominance relations between the children
of the root and the injected vertex are calculated at depth k with complexity
O(Ck—1(n)). Therefore, the complexity of a single injection is

d
e = Co(n) + C1(n) + - - 4 Cy(n) (5.6)
=0
= O(logn) 4+ O(logn — loglogn) + - - - (5.7)
= O(logn) (5.8)

We next show the time complexity of a single ejection. When a vertex R at
depth k is ejected (Figure 5.9, right), all of R’s children (numbering Ci(n)) are
injected into R’s parent Q). If the depth of R equals or exceeds L, no dominance
relation is calculated by the lazy evaluation; otherwise, the complexity of each
injection is O(log Dy_1). The time complexity of a single ejection without lazy
evaluation is

Ck -0 (log Dkfl) =0 (H(Dk) log Dkfl) (5.9)
= O (log Dy, log Dy,.—1) (5.10)
= O (log®n) (5.11)

In the BBS method [98], the average complexity of both injection and ejection
is O(log?n). In LookOut [92], the average complexities of injection and ejection
are O(logn) and O(log?n), respectively, if the ejection of the LookOut consists
only of the computation of dominance relations between the vertices. Actually,
when traversing an R*-tree or quadtree, LookOut additionally needs the com-
parison operations between the ejected point and the maximum corner of the
regions expanded in a heap. The worst-case cost of these operations is O(n).
Therefore, the BJR-tree incurs lower injection and ejection costs than BBS and
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Figure 5.9: An example of BJR-trees built by the lazy algorithm at depths below
L (left). When a vertex R is ejected, its children are moved to below vertex @
(right).

LookOut, and more rapidly ejects the vertices deeper than L. Asymptotically,
the complexity of the BJR-tree is the same as or better than those of previous
methods.

In the worst-case injection scenario, when all active points belong to the sky-
line, the complexity of single injection into a BJR-tree is O(n). In the worst-case
ejection scenario, when the ejected point is the only skyline point and all others
belong to the new skyline, the complexity is O(n?). The worst-case complexities
of BJR-tree match that of LookOut.

5.7 Experimental Evaluation of BJR-tree

We now compare our proposed algorithm with two existing algorithms using two
types of datasets: randomly-generated synthetic datasets and datasets of real-
world cell measurements. Datasets for continuous skyline computation contain
both spatial and temporal information, i.e., the vector values of the points and
their activation/deactivation times, respectively.

5.7.1 Synthetic Datasets

We generated three types of random synthetic dataset, characterizing the spa-
tial information by the correlation strengths of the spatial distributions. In a
correlated dataset (CORR), any point A that dominates another point B in
one dimension tends to dominate B in other dimensions. All pairs of criteria
for these points are strongly positively correlated. In an independent dataset
(INDE), each multi-dimensional vector is randomly determined and there are no
correlations among dimensions. In an anti-correlated dataset (ANTI), any
point A that dominates another point B in one dimension tends to be dominated
by B in the next dimension. In this dataset, the 2k + 1-th and 2(k + 1)-th axes
are strongly negatively correlated. CORR datasets are easily handled because of
their low skyline ratio, whereas ANTI datasets are well known to be difficult to
handle [108]. The spatial features of static skyline computations are categorized
in [18]. In the synthetic datasets of this study, the activation time act(v) and
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Figure 5.10: Model of CONC. Set (A), with a strongly anti-correlated spatial
distribution, is activated at the start and deactivated at the end. The points
in set (B), which dominate most of the points in (A), are repeatedly activated
and deactivated. At each activation (deactivation), some of the points in (A)
are purged from (readmitted to) the skyline. These operations require heavy
computational effort.

lifetime (deact(v) — act(v)) of each point v were randomly selected.

The synthetic datasets were generated from simple parameters. To pro-
vide a pathological benchmark, we created additional synthetic datasets with
a drastically changing skyline. This dataset, called the concealed-skyline dataset
(CONC), is shown in Figure 5.10. Previous skyline points repeatedly leave and
then return to the skyline, forcing the same dominance relations to be repeatedly
recalculated. This dataset consists of a set of anti-correlated points (A) and mul-
tiple sets of independent points near the origin (B). When only (A) is activated,
the skyline is a subset of (A), but when a set in (B) is activated, most of the
skyline points in (A) are dominated. Then, when the set in (B) is deactivated,
the points that were previously part of the skyline return to it. Such a dataset
tends to require longer processing time than other datasets consisting of similar
numbers of points.

The generated datasets contained up to 320,000 points in spaces of dimensions
2 to 25, and their parameters are shown in Table 5.4. For all criteria, smaller
values are better, i.e., points with smaller values dominate those with larger ones.

5.7.2 Real Cell Measurement Datasets

We then extracted features from cell images taken under a fluorescence micro-
scope and created real-world datasets by using the feature vectors. The latencies
of the proposed and existing methods were compared on these real-world datasets.
Three types of real-world datasets are described in detail below.

Human Protein Cell Images

High-resolution images were taken from the CYTO 2017 Image Analysis Chal-
lenge [36]. These images, stored in the Human Protein Atlas database, were
taken by a Leica SP5 confocal fluorescence microscope. They show immunos-
tained human proteins in four fluorescence channels (see Figure 5.11): (a) DAPI
for the nucleus (blue), (b) antibody-based staining of microtubules (red), (c) en-
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doplasmic reticulum (yellow), and (d) protein of interest (green). Each image
was tagged with 19 types of labels, 13 indicating the protein location and six
indicating rare events in the cells. For example, images (a), (b), and (c) in Fig-
ure 5.12 were tagged with the protein-location labels “Mitocondria,” “Cytosol,”
and “Plasma membrane,” respectively. Images (d), (e), and (f) were tagged with
the rare-event labels “Cytokinetic bridge,” “Focal adhesion sites,” and “Nuclear
speckles” respectively. The cell positions in the images are synchronized among
the channels.

(a)

Figure 5.11: (a—d) Human protein cell images from the CYTO 2017 Image Analy-
sis Challenge. Each image is captured in four channels: (a) DAPI for the nucleus,
(b) antibody-based staining of microtubules, (c¢) endoplasmic reticulum, and (d)
protein of interest.

We first identified the nucleus region in the DAPI nuclear staining images.
Second, we identified the entire cell region using the antibody-based microtubule
staining images. Third, we identified the cytoplasm region by subtracting the
nucleus region from the whole-cell region. In this way, we found 19,495 cells in
2,538 microscopic images. For each cell, we calculated a 1,014-dimensional feature
vector including 48 area-shape features, 60 intensity features, 18 location features,
and 212 texture features. We then constructed pipelines and analyzed these
cells using the Cell Profiler [25]. We selected seven labels, namely, “Euglena,”
“Mitochondria,” “Nucleoli,” “Cytosol,” “Nucleus,” “Aggresome,” “Cytokinetic
bridge,” and “Focal adhesion sites,” and individually assigned them to seven
datasets, each consisting of 19,495 three-dimensional entries with two-, three-,
or four-dimensional vectors. The condition positive rate in each dataset ranged
from approximately 4.9% to 54.1%. All skyline entries in each dataset were
tagged with each label (true condition). Thus, the skyline computation can
identify the required entries in these biologically important datasets, confirming
the suitability of these datasets for the performance evaluation. To create datasets

Table 5.4: Synthetic dataset parameters

Cardinality 10,000 to 320,000

Dimensionality 2,3,4,---,25

Anti-correlated (r = —0.9),
Spatial distribution Independent (r = —0.0),
Correlated (r = +0.9), Concealed

Temporal distribution || Independent, Concealed

Spatial value [0, 65535]
Temporal value up to 49999
Lifetime 1,000 to 1999
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for continuous skyline computation, we allocated uniformly distributed lifetimes
to the entries. The maximum time step was set to 10,000.

Euglena Cell Images

We also used low-resolution cell images taken under a fluorescence microscope in
flow cytometry (our Serendipiter [52]). The cells were Euglena cells, which are
expected to be highly effective for biofuel production. The cells were captured
in one transmitted light and two fluorescence channels (Figure 5.13(a)). The
images show lipid and chlorophyll staining of cells. The cell positions in the
images are synchronized among the channels, and there is one Fuglena cell per
image. Fach cell was tagged with one of two labels depending on the cell’s
environment: nitrogen deficient (“N-def”) or nitrogen sufficient (“N-suf”). High-
efficiency biofuel production will require the extraction and cultivation of Fuglena
cells that are lipid-rich in nitrogen deficient environments.

The goals of Serendipiter are simultaneous high image quality and through-
put of cell flow. As the Serendipiter microscopes are still being developed, the
images are noisy with low resolution, and difficult to analyze in Cell Profiler.
Instead, we analyzed the images ourselves. First, we identified the Fuglena cell
region and constructed mask images from the transmitted light images (Figure
5.13(b)). In this way, we found 1,072 Euglena cells in 1,072 microscopic images.
Second, we calculated a 47-dimensional feature vector for each cell, including
23 area-shape features from the mask images and 24 intensity features from the

Figure 5.12: Examples of the tagged cell image: (a) “Mitochondria,” (b) “Cy-
tosol,” (c) “Plasma membrane,” (d) “Cytokinetic bridge,” (e) “Focal adhesion
sites,” and (f) “Nuclear speckles.” In (a—c), the labels indicate the protein loca-
tion; in (d—f), they indicate rare events in the cells.

(b)

Figure 5.13: (a) Images of Fuglena cells under a fluorescence microscope in flow
cytometry (Serendipiter). Each image is captured in three channels: transmitted
light, lipid fluorescence, and chlorophyll fluorescence. (b) Mask images of the
Euglena cell generated from the transmitted light channel.
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three-channel images. We then selected the features “IntensityMinumum” and
“IntensityMean” in the transmitted light channel and “IntensityStandardDevi-
ation” in the chlorophyll channel. Finally, we obtained the EUGLENA dataset
consisting of 1,072 three-dimensional entries. Approximately 7.4% of the entries
in EUGLENA, and all of the skyline entries in EUGLENA, were tagged with
“N-def.” That is, the skyline computation extracted the rare “N-def” entries
with 100% precision. To create datasets for continuous skyline computation, we
allocated uniformly distributed lifetimes to the entries.

Blood Cell Images

We also generated datasets of blood cell measurements. The blood cell images
contained aggregated platelets, single platelets, and white blood cells. In total,
4992 cell images were captured by optofluidic time-stretch quantitative phase mi-
croscopy and the cell features were extracted from the images by Cell Profiler [25].
Cell Profiler is an open-source software that analyzes cell images for biologists.
The cell information was provided by the authors of [64]. Figure 5.14 shows the
heat map of the pairwise correlation matrix of 41 features (14 area-shape fea-
tures, 13 intensity features, and 14 texture features) extracted from the blood
cells. Ten of the area-shape features were strongly correlated with the “Area”
feature (enclosed in the upper-left black box in Figure 5.14). The intensity and
texture features were also strongly correlated. As poorly correlated features in
datasets are preferred for experiments, we eliminated the strongly correlated fea-
tures and selected four weakly correlated features: the “Area” feature, one of
the three area-shape features (“Compactness,” “Eccentricity,” or “Orientation”),
one of the 13 intensity features, and one of the 14 texture features. Thereby,
we created 546 types of datasets, each containing 4992 four-dimensional vectors.
Figure 5.15 shows the cumulative distribution function of the maximum skyline
ratio in these datasets. The skyline ratio was below 7% in all datasets, and below
1% in 20% of the datasets. Therefore, these datasets were pragmatic.

5.7.3 Experimental Setup

We implemented the BJR-tree on a single Intel-based computer. Although the
processor was multi-cored, we executed and benchmarked all implementations in
a single thread. The specifications are detailed in Table 5.5.

Table 5.5: Specifications of our platform

Processor Intel Core i7 6700K @ 4.0 GHz
Motherboard ASUS Z170M-PLUS
Main Memory 4 CORSAIR 8GB DDR4-2133
Operating System || CentOS Linux 7.1.1503 x86_64
C/C++ Compiler || GNU GCC 4.8.3

Our algorithm was competed against three existing algorithms. Continu-
ous BNL (cBNL) and Continuous BBS (cBBS) extend the static skyline
computation algorithms BNL [18] and BBS [98], respectively, to continuous sky-
line computation. LookOut is an algorithm developed for continuous skyline
computation [92]. All algorithms were implemented in C/C++. In all imple-
mentations, we employed the same interface functions to read the input datasets
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Figure 5.14: Heat map displaying the correlations between 41 features obtained
by Cell Profiler (blue and red indicate positive and negative correlations, respec-
tively). The black boxes enclose the strongly correlated feature groups.
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Figure 5.15: Cumulative distribution function of the maximum skyline ratio in
546 real datasets. Each dataset contains 4992 four-dimensional vectors.

and output the skylines, and the same comparison functions for the dominance
relations. The ¢cBBS and LookOut algorithms were implemented on quadtrees,
which accommodate a maximum of ¢ points in their leaf regions.

5.7.4 Tree Analysis

In Algorithm 3, we included a depth parameter L that controls the timing of the
lazy evaluation and balances the tree. The relationship between execution time
and L for different datasets is shown in Figure 5.16. The cases of L — inf and
L =1 are referred to as the no-lazy and full-lazy policies, respectively. The best
L depended on the dataset, and equaled 1 in the two-dimensional datasets. L
exerted little influence on the execution time in the other datasets. Therefore,
we adopted the full-lazy policy.

We now show the features of the constructed quadtrees and BJR-trees. Figure
5.17 shows the relationship between the cardinality and heights of the quadtrees
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Figure 5.16: Execution time (normalized such that y = 1 when L = 1) versus
depth threshold L in the BJR-tree algorithm for different datasets with 320k
cardinality: ANTI (blue), INDE (orange), CORR (green).

and BJR-trees in independent datasets with two and eight dimensions. The trees
were of four types; a BJR-tree with a full-lazy policy (blue), a BJR-tree with
a no-lazy policy (yellow), a quadtree with ¢ = 1 (green), and a quadtree with
g = 40 (red). The large-¢ quadtree was shallower than the small-¢ quadtree,
but the local skylines needed to be computed in each leaf region. Meanwhile,
the height of the BJR-tree was lowered by the lazy evaluation. As shown in
Figure 5.17 (bottom), in the eight-dimensional dataset, the heights of all four
trees were very similar. The number of spatial partitions in the spatial indexing
tree exponentially increased with increasing number of dimensions. Establishing
a dominated relation between two independent points is more difficult in a high-
dimensional space than in a low-dimensional space, which explains the lack of
height difference in the eight-dimensional dataset. Therefore, the tree structure
largely depends on the number of dimensions. It is valuable for low-dimensional
datasets to lower the height of the trees.

Panel (a) of Figure 5.18 shows the skyline potential of the two-dimensional
vectors, and panel (b) displays the depths of the vertices corresponding to each
vector in the BJR-tree expressing the same two-dimensional vectors. In each
distribution, the BJR-tree expressed the skyline potential of each vector as a
vertex depth in the tree. Moreover, the skyline potential and vertex depth were
highly consistent near the origin (in the high skyline potential area). The BJR-
tree stores the skyline potentials as the vertex positions.
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Figure 5.17: Heights of the BJR-trees and quadtrees constructed from up to
10,000 points. The green quadtree has a single point per leaf, and the red quadtree

accommodates up to 40 points per leaf.

5.7.5 Results for Synthetic Datasets

We evaluated the execution times of our proposed algorithm and other existing
continuous skyline computation algorithms on the synthetic datasets, excluding
the times consumed by initialization, memory-loading of the points from the input
file, and storing the skylines from the array to an output file.
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Figure 5.18: (a) Skyline potentials of the points and (b) BJR-tree depth positions
of the corresponding vertices (left: ANTI, center: INDE, and right: CORR)
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Cardinality

The execution times are plotted as functions of cardinality in Figure 5.19. In this
comparison, the dimensions are two or eight. On almost all datasets, our BJR-tree
outperformed the existing algorithms; the only exception was the CORR dataset
with 320,000 two-dimensional points, on which ¢cBBS and Lookout performed 1.6
times faster than BJR-tree. On the INDE dataset with 320,000 eight-dimensional
points, BJR-tree executed more than 70 times faster than LookOut.

Dimensionality

Figure 5.20 shows the relationships between the number of dimensions and the
execution time at cardinalities of 10,000 and 100,000. The execution time only
slightly varied with number of dimensions because cBNL does not use a tree struc-
ture and BJR-tree is dimensionally independent. The execution time of BJR-tree
mostly depended on the skyline ratio (see Figure 5.5). At lower dimensions, the
execution times of cBBS and LookOut also depended mainly on the skyline ratio,
but a dimensional effect emerged at up to 14 dimensions.

On the CORR dataset with 25-dimensional points, the BJR-tree outperformed
LookOut by a factor of approximately 570. For example, the skyline ratio of the
eight-dimensional CORR was approximately 0.3. On the INDE dataset with
100,000 eight-dimensional points, BJR-tree was approximately 43 times faster
than LookOut.

Concealed-skyline Dataset

Processing CONC datasets is time-intensive because the ejection operations incur
a heavy computational load. Our ND-cache resolves this problem. Figure 5.21
compares the execution times of BJR-trees with and without an ND-cache. The
z-axis indicates the number of anti-correlated points (set (A) in Figure 5.10).
The anti-correlated points were dominated by 200 temporal clusters (set (B) in
Figure 5.10), each with five points. The ND-cache reduced the CONC execution
time without significantly increasing the execution time of the INDE datasets.
In the CORR dataset with eight-dimensional points, the BJR-tree executed ap-
proximately 2.3 times faster with the ND-cache than without the cache. The
ND-cache achieved a hit ratio of 50-70% in five- and eight-dimensional CONC
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datasets (see Figure 5.22).

5.7.6 Results for Real-world Cell Measurement Datasets

Finally, we competed our proposed algorithm against three existing algorithms
for continuous skyline computation on real-world datasets. Figure 5.23 shows
the speed-up ratios calculated from the execution times of the existing method
implementations (¢cBNL, ¢cBBS, and LookOut), and our BJR~tree implementation
for eight datasets. On average, the BJR-tree reduced the execution time by 97.7%
from that of ¢cBNL, 94.4% from that of ¢cBBS, and 63.9% from that of LookOut.
On the Euglena dataset and Mitochondria datasets, BJR-tree executed 2.1 and
9.7 times faster than LookOut, respectively.

Figure 5.24 shows the execution times of the algorithms on real-world datasets
of blood cells. Plotted are the cumulative distribution functions of 546 blood
cell datasets. In real-world datasets, the algorithm performance depends on the
feature selection. The average execution times of BJR-tree and LookOut were
14.2 and 33.8 microseconds, respectively. In almost all datasets, the execution
time of BJR-tree was below 20 milliseconds. In contrast, LookOut required over
100 milliseconds in 17 datasets, and ¢cBNL and ¢cBBS required over one second in
almost all datasets. Therefore, in both synthesized and real-world datasets, the
execution time of BJR-tree surpasses the execution times of existing algorithms.

5.8 Discussion

In this section, we discuss performances of skyline operation and other entry
extraction methods on real-world applications. We also describe another appli-
cation of the proposed BJR-tree.

Gating is a simple method for extracting the target cell entries in cell infor-
mation analysis. This statistical method is widely used in cell analysis. After
selecting two or more cell measurement metrics, the measurement data are pro-
jected to a space with two or more dimensions. The minimum and maximum
thresholds in each dimension are then set, and the subspace enclosed by the
thresholds is obtained. By filtering the entries outside the enclosed subspace, the
purity of the measurement data is improved. However, gating is problematic for
two reasons. First, the metrics must be appropriately selected to isolate sets of
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Figure 5.20: Execution time versus number of dimensions (left: ANTI, center:
INDE, and right: CORR/upper: 10k and lower: 100k) in different algorithms:
¢BNL (blue), ¢BBS (yellow), LookOut (green), and BJR-tree (red). All vertical
axes denote execution time in milliseconds.
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cells. Unless we know the metrics that can divide cell clusters, gating is inap-
plicable to cell identification. Another problem is the low precision of gating.
Gating extracts the large-scale populations in low-dimensional spaces. The aim
of the gating method is to improve the purity of a relatively large-scale popu-
lation. Therefore, the gating method is not suitable to improve the precision
of extracting extremely rare cells. For example, in the datasets of the CYTO
2017 Cell Image Analysis Challenge, the proteins in cells tagged with “Cytosol”
and “Endoplasmic reticulum” occupy intracellular regions outside the cell nu-
cleus. Therefore, in the cell images, the channel intensity of the protein is high in
the cytosol and endoplasmic reticulum, respectively. Meanwhile, the proteins in
cells tagged with “Nuclear membrane” reside at the boundary between the cell
nucleus and the surrounding region. In these cell images, the channel intensity
of the protein is high at the outer perimeter of the cell nucleus. Many tagged
cells can be extracted by combining metrics that appropriately describe the cell
characteristics. However, this rough approach is unsuitable for extracting cells
with rare labels. Thus, gating is an ineffective method for extracting rare cells in
the Serendipiter.

Clustering methods, including gating, are employed in the extraction of large-
scale populations. In the data analysis domains, researchers have applied out-
lier detection methods to rare-entry extraction. Outlier detection is also termed
anomaly detection. In several applications of Serendipiter, obtaining large amounts
of measured samples tagged with a rare label and creating a model from the ex-
tracted data are difficult tasks. To alleviate these difficulties, we often employ
unsupervised machine learning in the Serendipiter. Typical unsupervised outlier
detection algorithms are based on the local outlier factor (LOF) [19]. In addi-
tion, a method based on the one-class support vector machine (OC-SVM) [106]
is also used. In high-dimensional spaces, the entries are very sparsely distributed
owing to the curse of dimensionality, so the outliers are difficult to detect. Con-
sequently, the LOF-based and other distance-based outlier detection methods
are unsuitable for high-precision rare-entry extraction in high-dimensional space.
This difficulty in high-dimensional space has been overcome by the angle-based
outlier detection (ABOD) method [78]. ABOD and other angle-based methods
assume that the variance of angles among vectors of an outlier entry to other
entries is low even in high-dimensional space. Table 5.6 lists the prevalence and
precision performances of the existing outlier detection methods on the CYTO
2017 datasets. We used scikit-learn Python library [100]. We have listed the true
contamination value of the rare label for each outlier detection method. Neither
outlier detection method could achieve a high precision score.

Outlier detection methods are effective because they require no pre-selection
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Figure 5.24: Cumulative distribution function of the execution times in real-world
blood cell datasets
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of the dimension. However, in real-time operations, we have to reduce the num-
ber of dimensions and implement a high-speed identification algorithm. The cells
to be discovered are neither outliers nor anomaly cells, but are regular cells with
extreme characteristics or rare labels. Therefore, outlier detection methods are
inappropriate for our purpose. Instead, our problem can potentially be solved
by skyline computation, which was originally proposed for extracting interest-
ing entries. We searched appropriate metrics for extraction with the skyline
computation on the CYTO 2017 datasets and obtained sets of metrics that ex-
tract 2-11 true positive cells from populations with prevalences from 0.02 to
0.1. Rare-labeled cells on the Serendipiter are expected to be poorly identified
by unsupervised machine learning with no dimensional reduction. Furthermore,
the appropriateness of an identification algorithm depends on the cell type. In
this study, we discussed the effectiveness of the combination of skyline compu-
tation and appropriate dimension reduction. We also showed the robustness of
our algorithm to the low-latency real-time query processing of continuous skyline
computation.

The BJR-tree is robust in high-dimensional spaces. As the number of dimen-
sions increases, the skyline ratio approaches 1, and we cannot obtain an effective
subset of entries by using the skyline computation. Even in datasets with same
cardinality, the skyline ratio varies greatly because of correlation coefficient of the
entry distribution. The skyline ratio of a dataset with positive or negative cor-
relations is higher and lower, respectively, than that of an uncorrelated dataset.
Nonetheless, as shown in Figure 5.5, in synthetic datasets with 25 or more di-
mensions and practical correlation values, almost all entries join the skyline. In
this study, we showed that BJR-tree operates faster than the existing algorithms
in datasets with up to 25 dimensions. In both the experimental results and theo-
retical analysis of computational complexity, it is showed that the execution time
of BJR-tree in high-dimensional datasets strongly depended on the number of
skyline entries. Thus, even in real-world datasets, the number of skyline entries
and the execution time of BJR-tree can be controlled by adjusting the window
size of the computational target entries.

The BJR-tree operates efficiently in continuous skyline computation. We now
present another application other than continuous skyline computation of the
BJR-tree. Because the skyline ratio is uniquely determined relative to a dataset.
Therefore, skyline computation cannot be used for extracting an arbitrarily sized
subset of entries. In addition, the skyline ratio largely depends on the distribution
of entries in a multi-dimensional space. Thus, we cannot stably extract an entry

Table 5.6: Prevalence and precision performances of existing outlier detection
methods: One-Class Support Vector Machine (OC-SVM), Local Outlier Factor
(LOF), Angle-based Outlier Detection (ABOD). We created a dataset from 19495
cell information with 1035 attributes computed by the Cell Profiler [25].

Rare label Prevalence | OC-SVM | LOF | ABOD
Aggresome 0.049 0.023 0.067 | 0.072
Cytokinetic bridge 0.112 0.426 0.133 | 0.125
Focal adhesion sites 0.126 0.119 0.212 | 0.225
Microtubule organizing center 0.003 0.006 0.000 | 0.000
Nuclear speckles 0.005 0.009 0.000 | 0.011
Nucleoli fibrillar center 0.007 0.013 0.008 | 0.007
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subset of the expected size. Previously, entries surrounding the skyline have been
extracted by methods such as skyband [99] and a distance-based method [115],
which use geometric information (e.g., the norm). As mentioned above, when
the number of dimensions is high, the entries are sparsely distributed and cannot
be successfully extracted. The concept of k-dominant skyline [26] also provides
another extraction method with dimension selection. However, it is necessary to
compute a skyline in each combination of dimensions. It appreciably increases
the computational time. To address this problem, we can employ the skyline
potential concept. All entries in a dataset can be ranked based on a value of their
skyline potential. Because the time complexity of obtaining the exact values of
skyline potential of all entries is O(N?), we can instead construct a BJR-tree and
roughly rank the entries based on the depths of their corresponding nodes. Thus,
only by a single construction of the BJR-tree, we can obtain entry subsets of
various sizes. This application exemplifies how entry extraction methods based
on the BJR-tree can compensate the weak points of skyline operation.

5.9 LSCA: Low-Latency Skyline Computation Accelerator

5.9.1 Basic Idea of the LSCA

We propose the LSCA, a hardware algorithm for high-speed continuous skyline
computation and implement it on an FPGA. We delay non-urgent dominance re-
lation comparisons under the concept of the BJR-tree algorithm. However, many
comparisons related to deactivation of skyline entries cannot be delayed. These
comparisons are the main part of the BJR-tree update process. Since there is no
dependency between these operations, LSCA parallelizes them. In the BJR-tree
algorithm, we are free to choose a strategy for delaying comparison operations.
Preliminary experiments show that we should maximally delay operations in most
kinds of datasets. Therefore, The LSCA adopts a maximally-lazy strategy where
only one level of the BJR-tree is traversed. Because the dominance relation com-
parisons are executed in parallel, the time complexity of vertex injection is O(.S)
and that of vertex ejection is O(C'). In the injection process, the time complex-
ity when the newly-activated entry belongs to the skyline is O(.S), but becomes
O(1) when the entry does not belong to the skyline. To avoid complication of
circuits, we employ the JR-tree instead of the BJR-tree; thus the LSCA is based
on the JR-tree. Figure 5.25 shows the logic diagram of the LSCA, and we will
now describe the algorithms used for each of its part in detail.

5.9.2 Tree-Structure Memory

Figure 5.26 shows an example JR-tree and the corresponding tree-structure mem-
ory for LSCA. The tree traversal and update (i.e., vertex addition, deletion, and
move) are implemented as read and write operation of this memory. In this mem-
ory, the children of an entry are stored in a linked list, and the entries are indexed
by their ID numbers. Address k in the tree structure stores the following IDs:
(1) the ID of the parent of entry k, (2) the ID of the next child after entry & in
the linked list of children, and (3) the ID of the first child of entry k, namely the
head node of the linked list. When entry k belongs to the skyline, its parent is
the root of the tree. When entry k is the last child, which is the tail node in the
linked list, the next child is null. When entry & has no children, the first child is
null. For example, in the tree in the left of Figure 5.26, the parent of vertex B
is vertex A, the next child for B is C, and the first child of B is D. By using this
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Figure 5.25: Logic diagram for the LSCA, which mainly consists of (1) query
dispatcher, (2) skyline comparator, and (3) skyline enumerator.

Contents of tree-structure memory
Address  Parent Next Head child

A Root Null B

B A C D

C A Null Null
D B E Null
E B F Null
F B Null Null
G Root A Null

JR-tree

Figure 5.26: Example contents of the tree-structure memory. A JR-tree (left) is
expressed in the memory such as a table (right).

structure, the JR-tree can be fully built, traversed, and updated efficiently.

The tree-structure memory is accessed by several different parts of the control
logic, so these read and write requests are properly serialized. In between the acti-
vation and deactivation queries handled by real-time streaming applications, the
bus of the tree-structure memory and the dominance relation comparator buses
are not used. The LSCA uses this time to eagerly re-evaluate non-skyline entries
to potentially reduce the number of children of each parent. This background
evaluation makes it possible to speed up ejection operations, whose processing
time is proportional to the number of the children.

5.9.3 Query Dispatch

Figure 5.25(1) shows the logic of query dispatcher. First, queries are stored in
the query first-in, first-out (FIFO) buffer. Activation and deactivation queries
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are processed differently. For an activation query, a vector representing the ac-
tivation entry is stored in the ID/vector memory, and the corresponding vertex
information is stored in the tree-structure memory. For a deactivation query, the
process varies depending on whether or not the deactivated entry belongs to the
skyline.

Let X be the deleted vertex. If X does not belong to the skyline, the LSCA
first traverses the linked list of children of X’s parent to find the vertices adjacent
to X in the tree-structure memory. After X has been found, it is removed from
the linked list. The LSCA also enumerates all of X’s children and moves them
under X'’s parent, resulting in X’s children becoming children of X’s parent.
These operations can be executed in parallel as long as there are no tree-structure
memory access conflicts.

If X does belong to the skyline, it is first removed from the set of skyline
entries. Then, to check whether X’s children belong to the skyline, the children
are stored in the FIFO buffer used for adding a new entry, i.e., the operand buffer.
Since entry addition requests derived from skyline entry ejection are merged in
the same buffer with the request of new entry injection, a dominance relation
comparator unit is utilized more efficiently.

5.9.4 Dominance Relation Comparison

Figure 5.25(2) shows the logic of dominance relation comparator. The LSCA
stores the vectors representing the skyline entries in the flip-flops so that the
dominance relation comparisons can be parallelized. Entries stored in the operand
buffer have to be checked whether or not they join the skyline. Each entry x is
compared to all existing skyline entries in a fixed number of clock cycles as shown
in Figure 5.27. Based on these results, when x is dominated by a skyline entry,
the tree-structure memory is updated to make x a child of that skyline entry.
When no skyline entries dominate x, x becomes a skyline entry and all other
skyline entries dominated by x are removed from the skyline. In this case, both
the tree-structure memory and the skyline entry flip-flops are updated.
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o 4 comp - B, [ [, |8
s, 4—L.comp [T
T <] = =) =]
SZ_ n . \\\
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comp 0 L 2 3 _DA<B
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Figure 5.27: Logic diagram of dominance relation comparators for dataset with
four-dimensional vectors. Each dominance relation comparator includes ”less-
than” and ”greater-than” comparators.
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5.9.5 Skyline Enumeration

With a JR-tree, we do not need to traverse the tree to output the skyline entries.
Instead, we just have to enumerate the root’s children. In the LSCA, since the
skyline is stored in the flip-flops, no RAM access occurs, Figure 5.25(3) shows
the logic of skyline enumerator. so the use of flip-flops for the skyline entries
leads to faster calculations. On the other hand, the flip-flops consume a lot of
FPGA slice resources. However, since the goal of skyline computation is to find
rare and interesting entries, in real-world datasets, the number of skyline entries
tends to be small. Therefore, it is feasible to design the logic to limit the number
of skyline entries.

The ID numbers are never reused. If we store vectors in the ID /vector memory
using the original entries’ ID numbers, the memory used for deactivated entries
cannot be reused. In the LSCA, we use a hash table and a shorter ID number
that is called an SID. The hash table is updated whenever an entry is activated or
deactivated. When outputting the skyline entries, the SID numbers are converted
back to the original ID numbers using the hash table. First, the LSCA calculates
a new SID number corresponding to the entry for an activation query using the
FNV-1 algorithm. If a collision occurs when registering the calculated SID entry
in the hash table, a new address is found using open addressing strategy with
linear probing. In the main LSCA logic, the SID numbers are used as the entries’
ID numbers.

5.9.6 Delayed JR-tree Reshaping

Continuous skyline queries consist of the activation or deactivation of entries.
The JR-tree can adjust the tree shape it maintains by changing its lazy or eager
evaluation strategy. When implementing the LSCA on an FPGA, a maximally
lazy strategy is used to reduce the query processing time and simplify the logic
design. However, this means that the numbers of children in the JR-tree tend
to be larger. When a non-skyline entry is deactivated, dominance relation com-
parisons are not executed due to the maximally lazy strategy, resulting in the
query processing time increasing little. On the other hand, when a skyline entry
with children is deactivated, the dominance relation comparisons are executed
due to the enforced eager strategy, which means that the execution time depends
strongly on the number of children the ejected vertex has.

To solve the issue of the processing time for deactivation of skyline entry, we
propose the new calculation method, delayed JR-tree reshaping (DJR). The DJR
reshapes the JR-tree in the waiting time before the query arrives. In a region of
the JR-tree which is built with the lazy strategy, it is not guaranteed that children
of a parent do not dominate each other. For example, in Figure 5.28, since vertex
P and Q are children of the root, it is guaranteed that they do not dominate
each other. On the other hand, children of the P may dominate each other
and children of the Q may dominate each other. The DJR re-traverses the JR-
tree with eager strategy and calculates dominance relation and move dominated
vertices under dominant vertex. The DJR reduces the number of children and
query processing time of deactivation queries. The DJR is equivalent to bring
forward the comparison operations that likely to occur in future deactivation of
skyline entries.

In realistic continuous skyline applications, there will be some spare time
between the completion of one query and the arrival of the next query. The DJR
is optimized for continuous skyline computation and it improves logic element
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utilization efficiency. Traversal of the DJR can be aborted at any time, and it
can use any spare time to traverse and reshape the entire JR-tree. Since the
time taken to deactivate a skyline entry depends on the number of children, not
the number of descendants, reshaping at depth two, corresponding to the root’s
grandchildren, has the greatest impact.

5.10 Experimental Evaluation

In this section, we show evaluation results for LSCA.

5.10.1 Experimental Setup

We compared our proposed LSCA method, which was implemented on an FPGA
platform, with two existing software algorithms implemented on a computer. We
implemented two LSCA versions, one with DJR and one without, and compared
their results. For the LSCA, we used a Xilinx Ultrascale FPGA VCU108 Eval-
uation Kit equipped with a Virtex UltraScale XCVU095-2FFVA2104E FPGA.
Although this platform includes DDR4 SDRAMSs, the LSCA did not use it to
achieve low-latency performance. We used the Xilinx Vivado System Edition
2016.4 software for synthesis, implementation, and simulation. We measured the
total execution time from the start of each input query until all skyline entries
had been output for each time step. We implemented the existing algorithms
on a single Intel-based computer using the x86_64 architecture. The processor
has multiple processing cores, but LookOut is not capable of multithreading. Al-
though JR-tree can process multiple queries in parallel, it cannot parallelize a
single query process. Thus JR-tree is not capable of multithreading in actual
continuous skyline application. Therefore, we executed and benchmarked all im-
plementations using a single thread. The computer’s specifications are shown in
Table 5.7. For fairness, since the FPGA was produced using a 20-nm semicon-
ductor fabrication technology, we used an Intel Core i7 3770 processor based on
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“Deactivate %” (P)
Invoked

comparisons

Reshaping in Query

idle time e @ “Deactivate %” 9 Invoked
|:> comparisons
O OO0 @
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Figure 5.28: (a) Example of deactivation query processing without DJR. Because
the vertex Q has four children, the deactivation process involves dominance re-
lation comparisons between five entries. (b) Example of deactivation query pro-
cessing with DJR. The JR-tree was reshaped before the query arrived, reducing

Q’s number of children to two. Now, the deactivation process only involves dom-
inance relation comparisons between three entries.
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a 22-nm semiconductor technology. We measured the execution time from the
time when all queries had been written to the main memory to the time when
all skyline entries had been written to the main memory, thus excluding the time
taken for initialization, loading the entries from the input file into memory, and
storing the array of skylines to an output file.

We compared our algorithm with two existing algorithms that have been
previously proposed for continuous skyline computation: LookOut [92] and the
JR-tree. All algorithms were implemented in C/C++ and employed the same
interface functions to read the input datasets and output the skylines, as well
as the same comparison functions for the dominance relations. The LookOut
algorithm was implemented using a quadtree, which accommodates a maximum
of ¢ points in its leaf regions.

5.10.2 Performance

We evaluated our proposed algorithms against two existing software algorithms
for continuous skyline computation using both synthetic and real-world datasets.
Figure 5.29 shows the normalized execution times for the existing software im-
plementations, LookOut and JR-tree, and our hardware implementations, LSCA
with and without DJR, for ten datasets. LSCA without DJR reduced the laten-
cies by 46% from LookOut and 30% from JR-tree on average. LSCA with DJR
reduced the latencies by 80% from LookOut and 71% from JR-tree on average.
For all synthetic datasets, LSCA with DJR was the fastest method. Particularly,
for the five-dimensional CORR datasets, LSCA was 3.7x faster than the software
JR-tree implementation. As the distribution’s correlation coefficient increased,
LSCA with DJR became faster, while LSCA became slower. This was because
LSCA uses a maximally lazy strategy and does not calculate all the dominance
relations, leading to increasing numbers of children in the JR-tree. The DJR deals
with this weak point of the LSCA. JR-tree executes faster than LookOut algo-
rithms on higher-dimensional datasets. For all the concealed datasets (CONC),
LSCA with DJR was also the fastest method. For the two-dimensional CONC
dataset, DJR made little difference to the execution time. If the two-dimensional
entries shown in Figure 5.10 are evaluated with eager strategy, a deep JR-tree
will be built and, once built, this structure is not changed by DJR re-traversal.
For the EUGLENA real-world dataset, LSCA without DJR was 13x faster than
the software JR-tree implementation, and DJR improved the performance by a
further 2.7x faster than LSCA. For the CYTOSOL dataset, LSCA without DJR
was slower than JR-tree, but LSCA with DJR was 1.7x faster than JR-tree.
Figure 5.30 shows the latency improvements when DJR was used for the syn-
thetic datasets. For example, the bottom left subfigure shows that when activa-
tion and deactivation queries were processed using LSCA for the two-dimensional

Table 5.7: Computer platform specifications

Processor Intel Core i7 3770 @ 3.4 GHz
Motherboard Gigabyte Z77TMX-D3H TH
Main Memory 2x Corsair 4GB DDR3-1333

Operating System || CentOS Linux 7.3.1611 x86_64
C/C++ Compiler || GNU GCC 4.8.5
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Figure 5.29: Comparison of the normalized execution times for the existing soft-
ware implementations, LookOut and JR-tree, and our hardware implementations,
LSCA with and without DJR, for ten types of datasets. For each dataset, the
execution times (y-axis) of the four methods are normalized such that the value
of the JR-tree is 1.

CORR dataset over 10,000 time steps, approximately 50% of the queries were pro-
cessed within 500 clocks (2.5 microseconds). For the two-dimensional INDE and
CORR datasets, DJR significantly improved the latency. On the other hand, the
latency only slightly improved or the two-dimensional ANTI and five-dimensional
CORR datasets, and hardly at all for the five-dimensional ANTI and INDE
datasets. This was because, in datasets with high numbers of dimensions or small
correlation coefficients, entries are less likely to dominate each other, decreasing
the number of dominance relations, which means that DJR does not significantly
change the shape of the JR-tree. Figure 5.31 shows the latency improvements
due to DJR for the real-world datasets. For all real-world datasets, LSCA with
DJR was the fastest method. For the EUGLENA dataset, there was no latency
improvement for approximately 90% of the queries, although the latencies of the
remaining 10% of queries improved. For the CYTOSOL dataset, there was no
latency improvement for approximately 10% of the queries, but the latencies of
the remaining 90% of queries improved. These results show that DJR can also
improve latency in real-world datasets.
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Figure 5.30: Execution clock counts for the ANTI (top), INDE (center), and
CORR (bottom) synthetic datasets, plotted as cumulative distributions over
10,000 time steps. The entry vector dimensions were two (left) and five (right).
The LSCA was implemented on an FPGA operating at 200 MHz.
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Figure 5.31: Execution clock counts for the EUGLENA (left) and CYTOSOL
(right) real-world datasets, plotted as cumulative distributions over 10,000 time
steps. The LSCA was implemented on an FPGA operating at 200 MHz.

5.10.3 Resource Consumption

The tree-structure memory is designed to be allocated to Block RAMs. The FIFO
buffer that stores the queries and entries waiting to be processed, is designed to
be allocated to FPGA hard macros. All the intellectual property cores that we
used are built-in resources provided by Xilinx. The size of the LSCA logic is
determined by three parameters: the maximum number of skyline entries, the
maximum number of entries that can be active at the same time, and the entry
vector dimension. Most of the allocated slices are used for comparison operation
logic for the dominance relations. The slice (LUT and flip-flop) usage depends on
the maximum number of skyline entries. Figure 5.32 shows resource consumption
of the LSCA designed for different maximum number of skyline entries. The
slice usage is proportional to the maximum number of skyline entries. Table 5.8
shows the slice usage of each unit in a logic that can handle five-dimensional
datasets with a maximum of 256 skyline entries and a maximum of 4,096 active
entries. Approximately 88% of used slice LUTSs are allocated to the logic for the
dominance relation comparator. Block RAM consumption mainly depends on
the maximum number of simultaneously active entries and the number of entry
dimensions. When processing larger numbers of active entries, we can instead use
high-capacity RAM outside of the FPGA (e.g., SRAM or DRAM). The critical
path is in the logic for managing the values of the skyline entry vectors.

Table 5.8: LSCA with DJR slice usage on a Xilinx Virtex Ultrascale XCVU095

LUT FF

Skyline 52459 38767

Comparator | 46157 (88.0%) | 25327 (65.3%)
Enumerator | 1703 (3.24%) | 3372 (8.70%)
DJR 305 (0.58%) 615 (1.59%)

5.10.4 Energy Consumption

One of the advantages of using an FPGA is its low energy consumption. Ta-
ble 5.9 shows the power consumption of the logic circuits with three different
sets of parameters. These results are derived from the power consumption re-
ports produced by the Xilinx Vivado synthesis software, which gives the static
power consumption of the device and the dynamic power consumption of the
synthesized logic. The actual measured idle power consumption of the target
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Figure 5.32: Slice usage vs maximum number of skyline entries of the LSCA

Xilinx VCU108 FPGA platform was approximately 18 W. As shown in Table
5.7, the computer used for the software implementations was equipped with an
Ivy-Bridge processor and its TDP is 77 W. For comparison, we measured the
power consumption of the computer while running the existing software algo-
rithms with a power meter, showing that it consumed 43 W. Thus, the power
consumption of the FPGA platform was half that of the processor, and that of
the FPGA chip was a tenth or less. Therefore, for solving problems that do not
require floating-point arithmetic operation, such as skyline computation using
an algorithm with hardware-optimized tree search (e.g., JR-tree), FPGAs offer
substantial advantages.

Table 5.9: Power consumption of a Xilinx Virtex Ultrascale XCVU095

Logic A | Logic B | Logic C

Dimensions 2 4 5
Max. skyline entries 128 256 256
Max. active entries 1024 1024 4096
Dynamic 0.402 0.740 1.254
Skyline comparator 0.120 0.414 0.826
Clocks 0.072 0.137 0.161
Signals 0.072 0.208 0.474
Block RAM 0.066 0.079 0.158
MMCM 0.114 0.114 0.114
Device Static 1.378 1.386 1.400
Total On-Chip Power 1.780 2.127 2.654
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5.11 Conclusion

The skyline computation algorithm is used for extracting the interesting entries
from a database of multi-attribute entries. The task of computing a dynamic set of
points is known as the continuous skyline computation. The continuous skyline
computation is useful for removing the non-skyline points in preprocessing for
screening a large amount of data in real time. We proposed the BJR-tree structure
for continuous skyline computation. The fast speed of the BJR-tree is conferred
by an appropriate hierarchical expression and dimensionality independence. To
handle artificial datasets with temporal features requiring many computations,
we proposed an ND-cache mechanism. The BJR-tree and ND-cache store the
dominated relations and the important non-dominated relations, respectively.

We competed our proposed algorithm against the extended BNL and BBS
(for continuous skyline computation), and LookOut. We used datasets with
randomly-generated vectors and real datasets of blood cell measurements. On
the synthetic datasets, the BJR-tree computed the continuous skylines approxi-
mately 3-70 times faster than LookOut. On real-world datasets, the BJR-tree is
approximately 2.4-3.2 times faster than LookOut.

Our main contributions are as follows. (a) We proposed a new tree structure
and a new cache mechanism for continuous skyline computation. Our approach
reduces the number of avoidable comparisons and stores the previously calculated
results. (b) Combined with the ND-cache, our proposed algorithm speeds up
the continuous skyline computation, as confirmed in comparisons with existing
algorithms. (c) In terms of execution time, BJR-tree outperforms LookOut on
real-world medium-dimensional datasets extracted from cells.

To determine the usefulness of the skyline cells extracted by BJR-tree, we
must biochemically analyze the cells after repetitive cultivation and extraction.
This study confirmed that by appropriately selecting the features, we can stably
isolate rare skyline cells.

Although skyline computation is a significant task for Al computation, lit-
tle attention has been paid to the hardware-based acceleration of the skyline
problem. Continuous skyline computation is a useful preprocessing step to help
screen large amounts of data in real time by removing non-skyline entries. In
this chapter, we have proposed an efficient FPGA-based approach to acceler-
ate the JR-tree algorithm, LSCA. The LSCA minimizes the skyline computation
time and realizes high-throughput continuous skyline query processing, and par-
allelize continuous skyline computation while reducing energy consumption. The
evaluation results show that the LSCA was 5.5x and 3.1x faster than a software
implementation of the LookOut and JR-tree algorithms for synthetic datasets on
average, respectively. For two real-world datasets, the LSCA was approximately
2.8x and 4.8x faster than LookOut and JR-tree, respectively. The experimental
results show that our algorithm not only accelerated the computation but also
reduced power consumption. LSCA with DJR reduced the latencies of skyline
query processing by 80% from LookOut and 71% from JR-tree on average.

Our main contributions are as follows. (a) We have proposed a new hardware-
based algorithm (LSCA) that exploits the intrinsic parallelism of continuous sky-
line computation. (b) Evaluation shows our proposed LSCA implementation
reduces both execution time and energy consumption from existing optimized
software implementations. (c¢) We have implemented a classifier integrated into
an actual image-activated cell sorter system for biological and medical

application fields.
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Chapter 6

Design Methodology for High-performance
FPGA-based Accelerators

6.1 Introduction

In software design, automatic optimization has been realized at the practical
level through cooperation of the CPU, operating system, and compiler. Soft-
ware programmers do not have to be highly aware of parallelization, and with
automatic parallelization of compilers, for-loop statements are automatically ex-
ecuted across multiple threads. The data layout of the execution of a software
program is controlled automatically by register renaming of the compiler, virtual
memory management of the operating system, and the CPU cache mechanisms.
Therefore, programmers do not have to be aware of where calculated data are
stored and how the data are read.

In hardware design, designers must optimize parallelization and the data lay-
out without assistance from the compiler, operating system, and CPU. Instruc-
tion sequences arranged in the execution order and control syntax, which deter-
mine the additional execution order, are described in the software code. On the
other hand, the static structures of circuits are described in the hardware code.
Programming with the API framework for a GPU can be considered to be a
continuation of the programming in CPU. Software programmers can implement
GPU-based applications by acquiring several extended specifications. However,
hardware design is not a continuation of software design, and it is more challeng-
ing to learn hardware design as compared to the software design (i.e., CPUs and
GPUs).

It is widely known that hardware-based accelerators, particularly FPGAs, are
more efficient at high-performance computing than CPUs and GPUs. Therefore,
the requirements for software programmers to design high-performance FPGA-
based accelerators have increased significantly. Behavioral synthesis technology
has appeared as a support tool for software programmers to design hardware.
Behavioral synthesis technology converts a code written by software program-
mers into a hardware RTL code. This technology is expected to enable software
programmers to design high-performance FPGA-based accelerators efficiently;
however, the performance of the generated designs was not as high as expected.
Compiling and assembling a software program involve converting behavioral de-
scription to behavioral description. On the other hand, behavioral synthesis
converts a behavioral description to a circuit structure. This is the reason why
it is difficult to generate high-performance hardware designs. Current behavioral
synthesis technology is insufficient in automatic optimization. Skilled hardware
designers can make an efficient design using the HDL coding.

Owing to the progress in hardware development environments, hardware de-
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sign has become much easier. However, designing a high performance FPGA-
based accelerator remains difficult. Methodologies that would enable less ex-
perienced hardware designers to acquire an ability to design circuits that are
equivalent to those developed by experienced designers have not been discussed
sufficiently in previous studies. In this chapter, we discuss the important hard-
ware design elements obtained from our studies. The keys are multi-level paral-
lelism and an application-oriented data layout, which are described in the form
of a design methodology.

6.2 Hardware Design Difficulties

Development models, as well as the code contents, differ significantly between
software and hardware development. Example software and hardware develop-
ment models are shown in Figure 6.1. In the software code, instructions to
be executed on the CPU are described in order. Even if the processor has an
out-of-order execution function, the result is the same as when the code is exe-
cuted as described. In most software development projects, a processing order
flowchart is created, and the code is written based on this flowchart. Even if
the code is compiled and converted to assembly or machine languages, the order
of processing remains the same. On the other hand, hardware designers often
create an initial rough block diagram of circuits and timing charts and write an
RTL HDL code based on these block diagrams. Current hardware development
primarily uses the HDL-based approach, which is employed in the development
model shown in Figure 6.1. The RTL HDL code describes the “structure” of
the circuits rather than the processing procedures. Even if the RTL HDL code
is synthesized into a netlist code describing schematic information, the netlist
represents the “structure” of gate-level logical connections. In hardware design,
the structure corresponds to the CPU architecture in software design. Hardware
design is difficult because elements in the structure have high degrees of freedom,
such as parallelization of the execution unit, data paths, and data layout in the
memory hierarchy. Among the various elements, parallelization and data layout
are observed to considerably affect the performance. A design methodology to
determine such elements is required to design high-performance accelerators.

Source code (C-language) Assembly source code (x86_64)

cmpl $3,%edi
je L5

Software Compile addl  $1, (3rdx)

— ret
.L5:

addl $1, (%rsi)
ret

Source code (VHDL)

Logic diagram

if a=X"3" then

b <=Db+ '1'; Synthesis 1R
Hardware | else E—
c <=c¢c+ '1l’";
nan
End if; X"3 41 b

Figure 6.1: Software and hardware development models. Behaviors are described
in the software model, and structures are described in the hardware model.
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Here, we consider two computations and compare the software and hardware
development. The first computation is a population counting (popcount) func-
tion, i.e., a bit summation function, that returns the number of “1” digits in
binary number representation. Algorithm 4 shows the pseudocode of a naive
popcount function that includes for-loop statements and conditional branches.
The pseudocode for another well-known popcount algorithm is shown in Algo-
rithm 5. Here, the returned values for all input values are stored in a read-only
array in advance. This code invokes memory access and does not include for-loop
statements. Figure 6.2(a) shows the optimized hardware logic of the popcount
function. Here, each bit of an input value is connected directly to adders, and
the circuit outputs a bit summation. Here, 1-bit adders, which are also referred
to as half adders (HA), are placed in the first stage of the logic shown in Figure
6.2(a). The logic design is a structural representation of how logical gates and
logical modules are connected. Algorithm 6 shows the pseudocode for a faster
popcount function. Here, the pseudocode consists of bit-operation instructions.
A sufficiently optimized code that contains this code may be an approximate
representation of the structure. The circuit shown in Figure 6.2(b) is a hardware
implementation of Algorithm 6. Note that this circuit does not obtain perfor-
mance that is as high as the circuit shown in Figure 6.2(a). Using general logical
synthesis technology, it is possible to optimize circuit (b) to circuit (a). Several
processors have native instructions for very simple calculations, which is equiva-
lent to a hardware approach. For example, Intel’s IA-32 architecture implements
an embedded function popcnt () to perform the popcount. Here, we introduce
the dominance relation calculation with four-dimensional vectors, which is a more
complicated computation than the popcount function. Algorithm 7 shows the
pseudocode of the dominance relation calculation function. Note that the code
includes for-loop statements and conditional branches. Figure 6.3 shows a manu-
ally optimized circuit. In more complicated applications, such as the dominance
relation calculation, even though the behavioral description is complicated, the
structural description may be simplified through optimization. Behavioral syn-
thesis converts software code to hardware circuits. With the current behavioral
synthesis technique, generating a hardware circuit, such as that shown in Figure
6.2(a), using a software code, such as algorithms 4 and 5, is difficult. However,
it is relatively easy to generate the hardware circuit shown in Figure 6.2(b) from
a software code, such as Algorithm 6. Although it is possible to convert a be-
havioral description that is approximately close to the structural description into
an actual structural description, it is challenging to convert a general behavioral
description into a structural description.

Algorithm 4 Popcount function 1

: procedure popcntl(u_int8 a)
while a # 0 do
if (a & 0x1) > 0 then
c=c+1
a=a>>1
return c
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Algorithm 5 Popcount function 2

1: procedure popcnt2(u_int8 a)
2: mem[256]= {0,1,1,2,1,---,8}

3: return mem]a)

Algorithm 6 Popcount function 3

1: procedure popcnt3(u_int8 a)
2: a = (a & 0x55) + (a >> 1 & 0x55)
3: a = (a & 0x33) + (a >> 2 & 0x33)
4: a = (a & 0x0f) + (a >> 4 & 0x0f)
5: return a
a '01010101"
a
[HA|[HA|HA|[HA]
2
\i 3
+ v
4
(a) (b)

Figure 6.2: Popcount function logic diagrams: (a) optimized logic and (b) man-
ually converted logic from Algorithm 6.
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Figure 6.3: Dominance relation function logic diagram
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Algorithm 7 Dominance relation function

1: procedure domrell(int a[4], int b[4], int flag)
2. ¢c=0

3: if flag =1 then

4: for0<d<4do

5: if a[d] > b[d] then

6: return 0

7 else if a[d] < b[d] then
8: flag=1

9: else

10: for0<d< 4do

11: if a[d] < b[d] then

12: return 0

13 else if a[d] > b[d] then
14: flag =1

15: return flag

6.3 Previous FPGA Design Methods

6.3.1 Schematic-based Design

Previously, various logic design methods have been employed. In the 1960s, en-
gineers employed a schematic-based design [89], i.e., logic diagrams for electronic
circuits were drawn manually. Logical optimization, simulation, and verification
have also been performed manually. Currently, a computer-aided design (CAD)
system can be used to create logic diagrams. However, even if CAD systems
are used, logic gates are positioned and wirings are drawn in the logic diagrams
manually. Currently, HDL-based design and behavior-based design methods,
which are described in sections 6.3.2 and 6.3.3, have become common. How-
ever, schematic-based design is still employed because it realizes circuits with
the optimal performance and efficiency. However, the schematic-based design
method requires a long development period; thus, for large-scale projects, using
schematic-based design for an entire circuit is unrealistic. In situations where a
critical part of a design that is developed using other design methods is optimized
locally, the schematic-based design remains a realistic approach.

6.3.2 HDL-based Design

Designing large-scale logic within a realistic timeframe using the schematic-based
design method is difficult. However, the HDL-based design method, which sig-
nificantly reduces the development time, has been introduced. Unlike software
programming languages, such as C and C++, HDLs, such as Verilog-HDL and
VHDL, describe hardware logic. Low-level circuit elements, such as logical gates
and adders, are described as abstract grammar representations. Representing the
input and output of registers from the viewpoint of data flow is referred to as an
RTL description. With HDL-based circuit design, the RTL HDL code is written
manually. Initially, Verilog-HDL and VHDL considered simulation and verifica-
tion rather than synthesis. Note that advances in synthesis tools have achieved
a certain level of performance. However, HDL-based design still requires longer
development time than software programming.

Figure 6.4 shows development flows of software and HDL-based FPGA cir-
cuit design. The feasibility analysis of software development is made easier by
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the processor, operating system, and register mapping of the compiler. There-
fore, software programmers rarely perform taxing feasibility analyses and tend to
concentrate on algorithms that have to be implemented.

FPGA development with

Software development Verification HDL-based design

Specification ' :

;| - | ; e
g ; Prelimina : Abstract algorithm :
T |Abstract algorithm [€— e Y > Top-level block diagram '
S ' feasibility analysis ; .. '
2 ' | Timing chart ;

: Write a code! i Write a code :

| \ : I :

' Software code : [RTL functional simulation (€= RTL HDL code ! :
~ . i i :
“§ ' \ Compile . . Integrate, :
Qo i Il . 9 ]
3 : : : ' Logic-synthesis 1
T - |
§, : : [Gate-level logic simulation]<—i—>|Netlist| |Constraints |<— :
3 ' '
% : Integrate | ; Map, Place, Route !
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Q ' ]

; : Timing analysis [€— Configuration data| :
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Figure 6.4: Development flows of software and HDL-based FPGA circuit design

6.3.3 Behavior-based Design

Mainstream hardware design has shifted from classical schematic-based design to
HDL-based design. However, as mentioned previously, hardware design still con-
sumes significant development time. Recently, design methods with more abstract
behavioral descriptions have become available. Target users of such methods are
software programmers who intend to design hardware circuits. In behavior-based
design, a code written in an extended HDL or an extended high-level language,
such as SystemC [60], is converted to an RTL HDL code or gate-level netlist
code. Here, extended C or other high-level languages are referred to as C-like
languages. Note that we will describe the examples of the C-like language later
in this section. This conversion process is referred to as a behavioral synthesis or
high-level synthesis (HLS).

First, the C-like code is analyzed and converted to an intermediate form with
dataflow graphs and state machines. Then, after optimization, the RTL HDL
code is generated.

Many extended high-level languages for behavior-based design have been pro-
posed and standardized. For example, the Unified Design Language for Integrated
Circuit (UDL/I) [68] was proposed by Japan Electronic Industry Development
Association (JEIDA) in 1990. Unfortunately, UDL/I is not widely used outside
of Japan. In 2000, Superlog, which combined Verilog-HDL and the C language,
was introduced by Co-Design Automation (CDA) [40]. SpecC, which is a descrip-
tive language extended from the C language, was proposed in 2001 [45, 37]. In
2005, Accellera proposed SystemVerilog which is an extension of Verilog-HDL.
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Note that SystemVerilog has been standardized as IEEE 1800-2005 [51]. In Sys-
temVerilog, the verification functions were enhanced; however, the behavioral
design environment did not receive considerable improvements, and it maintains
a similar functionality to that of Verilog-HDL. In VHDL-200X, an improved ver-
sion of VHDL, specifications were improved to comply with IEEE 1076-2008.
Bluespec SystemVerilog (BSV), which is based on Haskell, was proposed in 2003
[94]. In BSV, type verification is performed during the compile process. OpenCL
[113], which is an extension of the C language, was introduced in 2008. Libraries
and device drivers for I/Os, such as memory, PCI Express, and DMA are available
in OpenCL. Note that the OpenCL code can be adapted to a new FPGA board
by recompiling the code. The OpenCL code does not depend on the memory ca-
pacity, memory type, or capabilities of the hard-macros (e.g., DSP) of the target
FPGA board. OpenCL provides a device-independent development environment,
and its use is currently expanding. In 2011, SystemC, which is an extension of
C++, was standardized as IEEE 1666, and users can employ SystemC as class
libraries in C+4. Owing to the development of these high-level languages, it
became possible to verify designs in a short time using behavior-level simula-
tion. Furthermore, it has become possible to develop cooperating software and
hardware seamlessly. These extended languages differ only relative to the given
language specifications and verification functions. The languages are similar in
that a behavioral description written in a C-like language is converted to a circuit
design. SystemC and SystemVerilog include various specification extensions for
more abstract behavior descriptions. Basically, in behavioral synthesis, local vari-
ables, global variables, array variables, and functions are converted to registers,
internal RAM, FIFOs, and circuit modules, respectively. Efficiency of the HDL
code that is generated by behavioral synthesis is strongly dependent not only on
the language extensions but also on the synthesis algorithm of each behavioral
synthesis tool.

Figure 6.5 shows the developmental flow of the behavior-based design. In
HDL-based design, the HDL code is written manually. In contrast, in behavior-
based design, the HDL code is generated from the C-like code using a synthesis
tool. In behavior-based design, directives are sometimes inserted manually into
the C-like code. Here, directives are used as hints to create circuits that the
designers provide to the synthesis tool.

Here, we describe the Xilinx Vivado Design Suite as an example of a consis-
tent development environment, which covers various elements including synthesis
tools, verification tools, IP cores, chip devices, and evaluation boards. The Xilinx
Vivado Design Suite consists of Vivado, a logical synthesis tool, and Vivado HLS,
a behavioral synthesis tool. Vivado logical synthesis tool converts an RTL HDL
code to a netlist code. Note that Vivado HLS supports C, C++4, SystemC, and
OpenCL.

We illustrate the advantages of the behavior-based design. Behavioral syn-
thesis tools can generate a high-performance HDL code for simple calculations.
In addition, verification is fast and easy. HDL-based design requires a consid-
erably long time for coding, simulation, and debugging processes. In contrast,
behavior-based design reduces the development time of each process, thereby re-
ducing the overall development time [54]. Functional behavior simulation is much
faster than logical gate-level simulation, and behavioral synthesis tools can auto-
matically divide an algorithm into multiple stages to generate a pipelined circuit.
Here, users must use a directive statement to designate which calculation should
be pipelined.
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Figure 6.5: Development flow of a behavior-based design for an FPGA

6.3.4 Limitations of Behavior-based Design

Although abstract behavioral descriptions can be written in C-like language, there
are many restrictions. Such restrictions vary according to the tool employed.
Major restrictions are listed in the following.

1. Recursive function calls are prohibited

In contrast, the C language and many other high-level languages permit the
use of recursive functions. In the C-like code, the function corresponds to a
module in the circuit. Note that the number of times a recursive function
will be called can only be determined at runtime. Since the number of
module layers cannot be determined statically, the behavioral synthesis
tool cannot generate an exact circuit.

2. Multiple indirections are prohibited

The C language and many other languages permit multiple indirections. A
multiple indirection means that one pointer variable indicates the pointer
of another pointer variable. Variable values are stored in the registers or
on-chip RAMs. With multiple indirection, if a value of the pointer variable
is changed, the register or RAM to be accessed will also change. Note that
the register or RAM to be accessed can only be identified during runtime.
Therefore, the behavioral synthesis tool cannot route the data paths to
registers and RAM statically. Similarly, a structure definition in C-like
code can have fixed-length arrays as members but cannot have pointers to
arrays or structure variables.
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3. Arrays whose length is not determined at compile time are pro-
hibited

The C language and many other languages provide memory allocation func-
tions for an array of dynamic length, such as the malloc() and calloc()
functions. Omn the other hand, for functions to be synthesized, dynam-
ically allocated arrays cannot be accessed because the array may be re-
allocated with a different length in using a reallocation function, such as
realloc(). A fixed-length multidimensional array can be synthesized; how-
ever, variable-length multidimensional arrays with multiple memory allo-
cations and indirections cannot be synthesized. The length of a local array
variable in stack memory must also be fixed. Thus, the definition and use
of arrays whose length is not determined at compile time are prohibited. In
other words, we can write int *a as a call by reference of a single variable in
a list of the function’s parameters; however, we cannot write int *a or int
al[] as a call by reference of an array. When a function with an input array
variable is defined, the length must be added like int a[10]. For exam-
ple, several behavioral synthesis environments for an SDSoC-based design
provide specific alternative functions for dynamic memory allocation.

4. Functions with subloops that cannot be unrolled cannot be pipelined

A loop statement whose number of iterations cannot be determined at com-
pile time cannot be unrolled at synthesis time. Functions including such
loops can be synthesized; however, they cannot be converted to a pipelined
circuit.

5. Other coding recommendations

For example, global variables in C-like code can be synthesized; however,
this is not recommended because using a global variable in a wide area of
a circuit leads to severe timing constraints. There are many other coding
patterns that should be avoided even though they are synthesizable.

A code that is written for a software compiler may not be synthesized as it is.
For example, C code must be rewritten as restricted C-like code, and this is not a
simple code conversion and may require reconstitution of the software algorithm.

6.3.5 Problems of Behavior-based Design

In addition to the aforementioned restrictions, the behavior-based design ap-
proach has various problems, which are discussed in the following.

1. Designers must insert directives for optimization.

An operable HDL code can be obtained if the C-like code satisfies the
above restrictions. However, manual optimization is required to obtain
a high hardware efficiency. One advantage of FPGAs is that resource and
power consumption can be reduced by decreasing the bit width based on the
precision and value range required by the target application. Here, bit width
is indicated by an inserted directive. However, it is difficult to precisely
indicate the optimization policies using such directives. For example, when
pipelining a function, it is difficult to indicate how the function is to be
divided into the pipeline stages. Note that determining which functions
should be pipelined also requires a directive.
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2. The accuracy and limitation of behavior simulation and verifica-
tion are problematic.

Functional behavior simulation is fast; however, certain coding bugs in error
handling and boundary condition cannot be found by behavior simulation
and verification techniques. Therefore, logical gate-level simulation and
verification must be performed after synthesis. In addition to the above
logical bugs, bugs related to the performance issues should also be elimi-
nated. Since the HDL code generated by behavioral synthesis is difficult to
understand, it is also difficult for designers to see the overall structure of a
generated circuit. A designer can only verify the generated circuit using a
black box process, and it is difficult to modify the HDL code directly.

3. Directions of circuit specification

Although a target clock frequency can be specified, precise control of the
logic delay in a generated circuit is difficult. In addition, it is difficult to
control resource consumption. There is a trade-off between the maximum
operating clock frequency and resource consumption. Resource consump-
tion should be reduced while satisfying the required operating performance.
However, it is difficult to control the trade-off during the behavioral syn-
thesis.

Currently, behavioral synthesis is widely used in hardware development; how-
ever, it remains “rough-around-the-edges,” and it is difficult to generate an HDL
code for high-performance circuits from a C-like code unless it is simple. Note
that OpenCL supports both GPUs and FPGAs, and although OpenCL generates
a code optimized for a GPU, it is difficult to generate such code for an FPGA [63].
Software programmers must be aware of the circuit that will be generated while
writing the C-like code. Currently, the main purpose of behavior-based design is
to create IP of primitive functions. It is still not possible to completely replace
the HDL-based design approach. Additionally, if an accelerator cannot provide
better performance and efficiency than that of a CPU, there is no objective to
produce or use an accelerator. The software approach for CPUs has shorter de-
velopment time, easier maintenance, and lower cost. In software languages, the
use of low-speed language such as scripting languages (e.g., Python and Ruby) is
still meaningful because the scripting languages have higher portability and lower
development costs than the C language. As mentioned previously, the hardware
approach incurs greater costs than the software approach; thus, the hardware
approach must yield considerable performance improvements. It is reasonable to
say that the software programmers will be able to understand various features of
code that is suitable for the hardware during the process of writing a restricted
C-like code. The knowledge that is obtained in such a way is useful to design
high-performance accelerators.

6.3.6 Hybrid Approach of Software and RTL

We can implement a general-purpose processor on an FPGA. A processor imple-
mented by logical block resources is referred to as a soft processor core, and a
built-in processor on the FPGA device is called a hard processor core. A soft
processor core can also be instantiated on FPGAs that do not have a built-in
processor. Note that the hard processor core does not consume logical block
resources. Currently, Xilinx and Intel have released FPGA devices with ARM’s
processor as the hard processor core. A hybrid approach is also used with FPGAs
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that have a processor core. In the initial development stage, the entire software
code is compiled and executed on the processor core of the FPGA. Here, the
functional behavior simulation of such an accelerator is easy to debug. Then, a
part of the primitive functions is converted to HDL code by manual coding or
behavioral synthesis. When a converted function is called in the processor core,
the processor core drives the corresponding circuit rather than calling the soft-
ware function. This approach is more efficient than when an external CPU device
drives the acceleration circuit on the FPGA. In this approach, calculations that
are not suitable for FPGAs (e.g., floating-point operations) are performed by the
processor core. Here, the performance of the converted or written HDL code dom-
inates the overall performance. In the latest version of OpenCL, we can directly
invoke the highly optimized IP and RTL HDL design of other hardware design-
ers. Also in the hybrid approach, it is important for realizing a high-performance
logic to generate or write an optimized HDL code.

6.4 Proposed Design Methodologies

6.4.1 Overview

Logical synthesis has become highly technical, and simple design guidelines for
small-scale circuits have been studied and incorporated into logical synthesis
tools. Therefore, the need for precise manual optimization has been reduced.
If we only write the RTL HDL code, the logical synthesis tool optimizes the
logic delay and resource consumption and generates netlists. Thus, the HDL-
based design approach realizes high-performance FPGA-based accelerators. The
performance of the manual RTL HDL code strongly depends on the hardware
designers. Not all designers can design a high-performance accelerator. The be-
havioral synthesis environment supports the software programmers in designing
circuits in high-level languages. However, the practicality of behavioral synthesis
technology is still far from that of manual RTL design. In particular, it is a chal-
lenging task to detect parallelisms automatically, generate parallelized circuits,
and determine the data layout in the memory hierarchy automatically. Currently,
these tasks rely on manual insertion of directives.

A simple design pattern containing pipelining and optimization techniques
for simple circuits has been discussed in previous studies [89, 131, 2, 135]. Un-
fortunately, a unified design methodology for high-performance accelerators for
real-world applications has not yet been established. Such a methodology is es-
sential to perform behavioral synthesis; however, it is absent from the current
behavioral synthesis flow.

In this chapter, we propose a design methodology for high-performance FPGA-
based accelerators using the HDL-based design approach. The proposed design
methodology is expected to be useful for hardware designers to systematically
design logic circuits. Simply developing an accelerator that works at least is
insufficient to elicit the entire capability of the FPGA device. Engineers must
pursue high parallelism and an optimal data layout in the memory hierarchy.
Nevertheless, the importance of these two concepts has not been emphasized in
previous studies.

Here, we describe the first concept, which we refer to as multi-level paral-
lelism. Parallelizable calculations have various parallelization granularities. The
entire computation runtime is reduced by parallelizing at multiple granularity-
scales simultaneously. Therefore, we should parallelize calculations with as many
granularities as possible. The parallelisms are divided into three types, i.e., data,
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task, and pipeline parallelism. Data parallelism indicates that the same process-
ing can be executed in parallel for each element in a data array. Task parallelism
means that different processes without dependencies can be executed in parallel.
Pipeline parallelism means that the same processes can be executed in parallel by
separating the process into multiple steps and executing the processes such that
the same steps are not executed simultaneously. We can create a circuit pattern
to realize each type of parallelism. Note that these parallelism techniques have
only been discussed independently in the context of classifying a software code.
However, in the design of FPGA-based logic circuits, it is important to parallelize
application-specific computations simultaneously at multiple granularities.

Here, we describe the second concept, which we refer to as an application-
oriented data layout. There are many types of on-chip memory blocks on an
FPGA and off-chip memory devices around the FPGA. Specifying a data layout
indicates determining the location at which data should be stored from across
various memories. Figure 6.6 shows the specifications of typical types of memory
relative to FPGAs. Here, distributed RAM and block RAM are the on-chip mem-
ory blocks of an FPGA. Static random-access memory (SRAM), reduced latency
dynamic random-access memory (RLDRAM), and synchronous dynamic random-
access memory (SDRAM) are memory devices that can be accessed using circuits
on the FPGA. DDR4 SDRAM is an available state-of-the-art type of SDRAM.
External large-capacity storage devices, such as solid-state drives (SSD), may be
connected to the FPGA board via a cable or socket. Note that these memory and
storage devices have various capacities. The capacity of off-chip devices is ap-
proximately 10 to 100 gigabits, and the overall capacity of registers implemented
with flip-flops is limited to approximately 100 kilobits because of the resource
capacity and timing constraints. The capacity of distributed RAM implemented
with LUTSs is approximately 1 to 10 megabits, and the capacity of block RAM
is approximately 10 to 100 megabits in currently available FPGAs. Note that
memory capacity and access latency should be considered when determining the
data layout. The data layout is an important factor that determines the upper
performance bound of an FPGA-based accelerator. If we begin development with
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Figure 6.6: Capacity and latency specifications of memory blocks on FPGAs and
memory devices (2017)
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the design of an FPGA board, we can control the design of the memory hierarchy.
Generally, the memory that is located near to the computing circuit and exhibits
short access latency tends to have a small capacity. In contrast, the memory that
is located far away from the computing circuit and exhibits long access latency
tends to have a large capacity. There is a trade-off between memory capacity and
access latency, i.e., in distributed or block RAM, read data become available in
the next clock cycle of a read request. On the other hand, the access latency to
off-chip memory is approximately a few tens of nanoseconds. Such long latency
suspends the operation of the circuit. However, determining an effective and ef-
ficient data layout is not a simple task because it should be optimized based on
the data size, data access pattern, and data access frequency of an actual test
run of the target application. Note that the impractical data layouts should be
redesigned. The data layout has already been automated in behavioral synthesis;
however, analysis of the input code is insufficient, and an optimal data layout is
not necessarily provided by the behavioral synthesis. Behavioral synthesis often
rejects dynamic memory allocation in the input code, and synthesis is restricted
to a code that contains only static memory allocation. The behavioral synthesis
tool should use trace information for multiple input datasets to determine the
optimal data layout. Currently, we must manually analyze a code to obtain a
good data layout.

6.4.2 Design Flow

Figure 6.7 shows the design flow of the proposed methodology. This design flow
is used in the steps from “specification” to “RTL HDL code” of the HDL-based
design flow shown in Figure 6.4. In step 1, we first describe an abstract algorithm
for the target application. This abstract algorithm contains the pseudocode of the
primary computations. In step 2, we estimate the amount of hardware resources
required by the abstract algorithm. Specifically, we estimate how much memory
bandwidth and capacity each calculation will require. When the required memory
size massively exceeds the available capacity, we cannot implement the abstract
algorithm on the FPGA. In this case, we must return to step 1 to modify the ab-
stract algorithm. In step 2, we can roughly estimate the theoretical performance
limit of the accelerator to be implemented. In step 3, we enumerate candidates
for parallelizable functions in the pseudocode of the algorithm. Note that several
functions with nested structure can be parallelizable at multiple levels. Here, we
enumerate parallelism at all levels. In step 4, we divide the parallelizable func-
tions enumerated in step 3 into three types of parallelism (data, task, and pipeline
parallelism). The classification principle is described in the next subsection. In
step 5, we design circuits using patterned circuits for each type of parallelism.
The abstract algorithm is also converted to a set of circuit modules in this step.
Note that functions with multi-level parallelism are converted to nested circuit
modules. By reviewing this logic diagram, we can understand the entire circuit.
In step 6, we enumerate the data handled in each of the designed computation
logic circuits. Here, we calculate and check the size and throughput of all data.
Concretely, we clarify how much data the circuit designed in step 5 receives in a
single clock period. In step 7, we determine memories on which data are stored
based on the size and throughput of the data estimated in step 6. Note that data
are not necessarily stored on a single type of memory. To facilitate adequate
performance, the same data may be stored in multiple types of memory. When
we are stuck on the data layout, we will cancel several parallelization components
or return to step 1 to modify the abstract algorithm. The memory decision prin-
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ciple is described in the next subsection. In step 8, we write the RTL HDL code
based on the circuits designed in the previous steps. At this point, since the data
layout has been determined, here, the main task is designing data paths between
the modules, including the memory access controllers.

Specification
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[Stepl: Design abstract algorithm] ‘1’
)\ Step5S: Design logics which are
( - ) d by each parallelism type
Step2: Required resource and patterned by p yp

 memory bandwidth estimation)
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—

RTL HDL code

Figure 6.7: Flow of the proposed design methodology

6.4.3 Design Principles

Here, we describe the design principles in the three steps of our design flow. In
the following, we sequentially show the design principles required in steps 4, 5,
and 7.

First, we discuss how to categorize the functions in step 4. When multiple
data elements are processed in the same procedure, these elements can be pro-
cessed in parallel using the same logic circuits. Note that such processing has data
parallelism. For example, consider a circuit for the pseudocode shown in Figure
6.8(a). In this code, the data elements are given in the form of an array. We apply
a function to each element of the input array and assign the returned values to
another array. Such a computation is parallelizable at a level of the array index.
Multiple processes without mutual dependency have task parallelism. Because of
the existence of conditional branches, multiple processes can exhibit different se-
quences of instruction execution. Such processes exhibit task parallelism. Thus,
we observe that multiple processes exhibit task parallelism even when different
data are provided as input to the same algorithm. In processes with task par-
allelism, the input data are not necessarily given as an array at the same time.
Note that the format of the input data and the timing when the input data are
given may differ. For example, consider a circuit for the pseudocode shown in
Figure 6.9(a). Here, two integer numbers a and b are given, and different func-
tions F() and G() are applied to a and b. H() depends on the results of F() and
GO, but FO) and G() do not depend on each other. Thus, the processes of F()
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and G() can be executed in parallel. When a process can be divided into multiple
steps, multiple executions of the process for different datasets can be parallelized.
Such a process has pipeline parallelism (Section 2.4). For example, consider a
circuit for the pseudocode shown in Figure 6.10(a). This code includes a product-
sum operation. Since multiplication and addition are executed sequentially, these
instructions can be divided into two pipeline stages. Pipelining significantly im-
proves throughput in the execution of instruction sequences (e.g., on the CPU)
and streaming applications (e.g., multimedia CODECs). As described above, we
find parallelizable functions and classify them by the parallelism type in step 4.

function(int a[N], int b[N]) {
for (i=0;i<N;i++)
bli]=G(al1])

(a) C-like code

a0 FF — G |— FF |- b[0]

ol Fr G —{re -t

a2l -{ FF — G — FF |-bl2]
aN-11—{ FF — G |— FF |—bIN-1]

(b) Logic diagram

|
a |G'| b
1 C 1 LC

BRAM/FIFO BRAM/FIFO
(c) Logic diagram

Figure 6.8: Design pattern for data parallelism. Here, C-like code (a) has data
parallelism. Logic diagrams (b, ¢) are design patterns for code (a).

Second, we describe how we apply patterned logic circuits in step 5. We show
an example of a circuit for functions with data parallelism in Figure 6.8(b). This
is a circuit for the pseudocode shown in Figure 6.8(a). Here, in circuit (b), all
input and output data are stored in flip-flops. Note that the flip-flops are directly
connected to the input and output ports of the combinational circuit for function
G(). Circuit (b) completes the processes for all data elements in a single clock
cycle. However, a weak point of circuit (b) is that the consumption of flip-flop
resources is proportional to the length of the array. We show another example
circuit in Figure 6.8(c). Here, in circuit (c), the input data are read sequentially
from a RAM device, and the calculation results are written sequentially to another
RAM device; thus, the functions are not executed in parallel, and circuit (c)
consumes memory blocks and few flip-flop resources. We show an example circuit
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function (int a, int b) {
return H(F(a),G((b));

(a) C-like code

a— F
H

(b) Logic diagram

Figure 6.9: Design pattern for task parallelism. C-like code (a) has task paral-
lelism. Logic diagram (b) is a design pattern for code (a).

function (int a, int b, int c¢)
return a*b+c;

(a) C-like code

(c) Logic diagram (Pipelined)

Figure 6.10: Design pattern for pipeline parallelism. C-like code (a) has pipeline
parallelism. Logic diagram (b) is a design pattern for code (a) without pipeline
parallelization, whereas logic diagram (c) is a design pattern for code (a) with
pipeline parallelization.
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for functions with task parallelism in Figure 6.9(b). This is a circuit for the
pseudocode shown in Figure 6.9(a). Here, the circuits of F() and G() are arranged
in parallel, and their output ports are connected to the input ports of the circuit
of H(). Here, the total logic delay is observed to be the delay of circuit H() plus
the delay of the slower of F() or G(). Note that task parallelism differs from
data parallelism in that the granularity of the synchronization of the parallelized
circuits is coarse and different processes are performed in the same clock cycle.
We show an example circuit for functions with pipeline parallelism in Figure
6.10(c). This is a circuit for the pseudocode shown in Figure 6.10(a). Here, by
comparing circuit (c) with the not-pipelined circuit (b) in Figure 6.10, it can be
seen that flip-flops (i.e., pipeline registers) are inserted between the multiplier
and adder in this case. We show the timing chart of circuits (b) and (c) in
Figure 6.11. In pipelined circuit (c), the multiplier calculates the next data,
and the adder calculates the previous data. In this case, pipelining doubles
the calculation throughput. As described above, we create concrete parallelized
circuits for the software functions in step 5. Note that the hardware circuits are
patterned after each type of parallelism and that we can arrange the patterned
circuits and connect their input and output ports.

clock

Figure 6.11: Timing chart comparison of the logic circuits in Figure 6.10(b, c)

Third, we show how to form the data layout in step 7. We enumerate the
flip-flops and built-in memory blocks that were actually used in the circuits which
were designed in the previous steps. Then, we consider the memory access pattern
of each circuit based on its structure. If large amounts of data are accessed
simultaneously in the same clock cycle, we place the data in flip-flops. If the data
are accessed in sequential order or streaming manner, we place the data in FIFO
blocks. If the data are accessed in a discontinuous order, we place the data in
block RAM. If a significant memory capacity is not required and a smaller logical
delay is required, we place the data in a distributed RAM. If the data size is
beyond the capacity of on-chip memory blocks, we place the data in an external
memory device, such as SRAM and DRAM. Table 6.1 depicts the access pattern,
latency, and capacity characteristics of the available memory blocks and devices.
For example, in the pseudocode shown in Figure 6.8(a), if the input array length
is large and comparable to the available capacity of the flip-flop resources, the
circuit shown in Figure 6.8(b) would be unrealistic. To achieve a more realistic
circuit with less flip-flop consumption (Figure 6.8(c)), we must modify the data
layout and change the patterned circuit. When using external memory, we access
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it by indicating a target address location; thus, we must implement a memory
controller with an address management circuit. Since we have already obtained
concrete circuits during the preceding steps, we can analyze the data size, access
pattern, and access frequency more clearly than the estimation in step 2. In step
7, as described above, we ensure the data layout via clearer feasibility analysis.

Table 6.1: Features of the memory blocks and devices

Memory Access pattern | Latency | Capacity
Flip-flop Simultaneous
Small
Distributed RAM i )
Discontinuous Short
Block RAM )
Medium
FIFO Sequential
Off-chip memory Any Long Large

6.5 Examples: Applications of the Proposed Design Methodol-
ogy

To explain the proposed design methodology in a concrete manner, we depict
the design policies for FPGA-based accelerators that were implemented in our
three typical studies, which are described in Chapters 3, 4, and 5. The well-
considered hardware design compensates the shortcoming of the FPGA that the
maximum operating clock frequency is low, and we can develop high-performance
accelerators that outperform the CPU-based approach Relative to multi-level par-
allelization and the application-oriented data layout, we discuss the relationship
between each study and the proposed design methodology in this section.

6.5.1 Accelerator for Chapter 3

In Chapter 3, we implemented an FPGA-based accelerator that increases the
speed of the switching process of network traffic. Note that data transfer in com-
puter networks should be processed in real time with low delay. An application
that requires real-time processing and low latency is a representative example in
which FPGAs are effective. First, we discuss parallelism. Packets of multiple
streams from the downlink port FPGAs are received and scheduled in the up-
link port FPGA of the merging stream harmonizer (MSH). These processes are
parallelized at the port level in the uplink port FPGA, and the processes have
task parallelism. Multiple stream processing is also load-balanced among four
downlink port FPGAs. Second, we discuss the application-oriented data layout.
In the MSH, several buffers are implemented on the FPGAs for temporarily stor-
ing the packets. The packet buffer with the greatest capacity is a FIFO that is
implemented using an external DRAM. Figure 6.12 shows the logic diagram of
the DRAM FIFO and neighboring small FIFOs of the MSH. To store 10-Gbps
wire-speed traffic for 0.5 seconds, a packet buffer of greater than approximately
0.6 gigabytes is necessary. Such a large-capacity buffer cannot be implemented
using the on-chip memory blocks of an FPGA; thus, external memory devices are
required. The memory access pattern when buffering traffic data is sequential for
both reading and writing data. Therefore, we can place traffic data in DRAM,
which has long latency. The access latency of DRAM is mitigated by a small

108



packet buffer implemented using on-chip block RAM. In this example, same data
are stored in multiple memory types. Note that all of the DDR memory capacity
in each port of the MSH is allocated to a single packet buffer, and there is no
memory partitioning mechanism. This point simplifies and speeds up the circuit.

FPGA
BRAM/FIFO -
S Address ,
Received S| DDR2 SDRAM memory ‘
acket g Data
p 9l %' DDR2 SDRAM memory ‘
streams § Data 1
< —2
BRAM/FIFO = < P S| DDR2 SDRAM memory ‘
[ 4
< é.-, < T S| DDR2 SDRAM memory ‘
° %| DDR2 SDRAM memory ‘
Data '
Flow-control signal I

Figure 6.12: Logic diagram of a packet buffer in the downlink port FPGA

6.5.2 Accelerator for Chapter 4

In Chapter 4, we proposed an algorithm to scan a computer Go board with three-
row-based processing. This algorithm is a good example of a hardware design
based on the proposed design methodology. First, we discuss parallelism. The
Triple Line based Playout for Go (TLPG) algorithm consists of multiple steps.
Note that the board is scanned once in each step, and the logic of each step is
connected via a FIFO for storing the board information in our hardware imple-
mentation. The FIFOs are similar to the pipeline registers in a general pipeline
architecture, and we refer to the FIFOs as pipeline FIFOs. The information of
one board moves from a single circuit for one step to another circuit for the
next step. Thus, at some point, different playout generations are processed by
each step circuit. We refer to this parallelism as step-level pipeline parallelism.
Calculations for liberties and updates for stone colors are done for a single row
of the board, and we refer to this parallelism as row-level pipeline parallelism.
Calculations for a single row (nine or 19 stones) are performed in a single clock
cycle, and we refer to this parallelism as stone-level data parallelism. The playout
generation is a Monte Carlo computation, which has obvious task parallelism. As
shown in Figure 6.13, the playout generation of the Monte Carlo tree search for
Go has multiple parallelisms and can be parallelized at multiple levels. Each par-
allelism and logic design is patterned in our design principles. Here, we discuss
the application-oriented data layout. In software implementation, information
about the game board, including stone color and liberty number, is stored in
array variables. This means that the information is stored in the main memory
(DRAM). Software programmers can entrust optimizations, including copying
the information to other memory regions such as cache and registers, to the com-
piler and CPU architecture. When the board information is stored in DRAM
while using an FPGA-based approach, the FPGA-based accelerator loses ground
to the CPU in terms of performance. On the other hand, an FPGA design that
stores all the board information in Flip-Flops consumes many logical blocks, and
it is difficult to synthesize such a design that satisfies both the timing constraints
and resource limitations. As a result, the maximum operating clock frequency of
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the design becomes low. Therefore, in the TLPG, the board information is read
from a FIFO line by line, and new board information is stored to a FIFO line by
line. Since the FIFOs are implemented with built-in block RAM, consumption of
logical block resources is reduced. Multi-level pipelining increases the consump-
tion of pipeline registers. However, owing to the TLPG algorithm, the flip-flop
consumption is proportional to the length of the side rather than the area of the
board. The TLPG algorithm efficiently reduces flip-flop consumption. Thus, we
have realized a high-performance FPGA-based accelerator with an effective data
layout, including efficient use of pipeline registers and FIFOs.

(B) Pipeline parallelism =

A —r

s N
BRAM/FIFO BRAM/FIFO

(C) Pipeline
parallelism

(D) Data parallelism

(A) Task parallelism

Figure 6.13: Logic diagram of the TLPG algorithm. (A) Monte Carlo playout
generation has playout-level task parallelism. (B) The processing steps of the
TLPG algorithm contain step-level pipeline parallelism. (C) Simple board pro-
cessing has row-level pipeline parallelism. (D) Single row processing has stone-
level data parallelism.

6.5.3 Accelerator for Chapter 5

Generally, since hardware approaches are weak relative to tree search, it is not
a good idea to traverse a deep tree using the FPGA logic. In Chapter 5, we
designed the JR-tree algorithm to avoid deep tree traversals. Recall that nodes
corresponding to skyline points are always located at a depth of one in the JR-
tree. Therefore, when enumerating skyline points, it is unnecessary to traverse
nodes that are beyond a depth of one. Furthermore, we introduced a delay eval-
uation to the tree update process. When injecting a new node, we can terminate
the traversal beyond a depth of one. First, we discuss parallelism. The most
primitive calculation in the skyline computation is the dominance relation calcu-
lation, which has dimension-level data parallelism. Note that dominance relation
calculations between the latest skyline points and a newly evaluated point are
performed frequently, these calculations have data parallelism, and this paral-
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lelization gives a higher priority to accelerate the overall computation. Note that
multiple tree update jobs can be processed simultaneously without resource con-
flict if the subtrees do not overlap. We can parallelize the tree update by dividing
the process into multiple stages (i.e., pipeline parallelism). When a skyline node
is ejected, a node move occurs once for each child of an ejected node, i.e., the
ejection of a node with many children is very heavy, and pipelining is effective
at speeding up this process. Our low-latency skyline computation accelerator
(LSCA) exploits the benefits of multi-level parallelization. Here, we discuss the
application-oriented data layout. As mentioned previously, the dominance rela-
tion calculations between the latest skyline points and a newly evaluated point
have a higher parallelization priority. To realize this data parallelization, the vec-
tors of all skyline points must be stored in registers and be available in the same
clock cycle. Here, the data layout policy is determined based on the trade-off
between flip-flop consumption and computation speed. On the other hand, the
vectors of many other non-skyline points can be stored in a RAM with sufficient
capacity. The data layout in this accelerator also follows our principle of placing
frequently used data in registers. Note that continuous skyline computations can
be accelerated by multi-level parallelization and the application-oriented data
layout.

6.6 Performance Evaluation

In this section, we quantitatively evaluate accelerators based on the proposed
design methodology. We compare the performance of the manual HDL code
based on our design methodology and the auto-generated HDL code from the
C-like code and directives generated using behavioral synthesis tools. The C-
like code is optimized for a general processor, and they are rewritten to satisfy
the constraints of the behavioral synthesis tools. The directives are manually
inserted to provide various hints to the behavioral synthesis tools. We used Xilinx
Vivado System Edition and Xilinx Vivado HLS to perform logical and behavioral
synthesis, respectively. The accelerators were evaluated based on two metrics:
(1) the number of clock cycles in the execution time for the same datasets in the
logic simulator and (2) resource consumption. Figure 6.14 shows the evaluation
flow. The target applications are the dominance relation calculation, decoding of
a BCH code, and JR-tree based skyline algorithm. The target device is Xilinx
Virtex UltraScale XCVU095-2FFVA2104E FPGA.

6.6.1 Dominance Relation Calculation

The evaluation of dominance relation is considered to be a primitive calculation
in skyline computation. This calculation is performed many times; therefore, it
is very important to accelerate it. Since this calculation consists of comparison
instructions rather than arithmetic instructions, the FPU is not required even if
the vector value is a floating-point number. Therefore, this calculation is suit-
able for an FPGA. The source code is shown in Appendix A.1. Since the HDL
code generated by Vivado HLS has low readability, it is difficult for engineers
to understand, analyze, and modify the generated circuits. Table 6.2 shows the
benchmark results. Here, we used a set of all pairs of 100 pseudorandom vectors as
a dataset. The benchmark results show that we can obtain a high-performance
HDL code using the behavioral synthesis technique if a target computation is
simple, such as the dominance relation calculation. Note that there is not much
difference between the performance of the manually designed circuit and that
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Figure 6.14: Evaluation flow of the design methodology
of the automatically generated circuit because the synthesis tool can perform
dimension-level loop-unrolling successfully.

Table 6.2: Synthesis and performance results of the dominance relation calcula-
tion

Approach HLS HDL (proposed)
Runtime [us] 624 250 250
Latency [clK] 2 3 1
Interval [clk] 1 1 1
Clock [MHz] 200 500 500

FF 243 184 160
LUT 596 429 83

6.6.2 BCH Decoding

For the error correction technique in a communication channel with errors, coding
and decoding are important tasks that require high-throughput performance and
low-latency processing. An encoder and a decoder are often implemented using
hardware to achieve high-performance operation and low-power consumption.
The Bose-Chaudhuri-Hocquenghem (BCH) code is a coding scheme that uses
operations on the Galois field. The source code is shown in Appendix A.2. Table
6.3 depicts the benchmark results that were obtained using the decoder of the
BCH code. The BCH code that was targeted by the implemented decoders
employs a 15-bit code length, which includes seven information bits and eight
check bits. This BCH code can correct two error bits per a single codeword. We
generated 1000 codewords with 0- to 2-bit errors as a dataset. We inputted the
dataset to the decoder and measured the runtime to decode all the codewords.
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The latency number of the design generated by the HLS is greater than that of
the manually coded HDL. This is because the HLS could not generate an efficient
circuit to perform the arithmetic operations on the Galois field GF(2*), which is
required by the decoder of the target BCH code. On the other hand, due to the
appropriate insertion of the pipeline registers and placement of circuits for the
parallelizable operations on the Galois field, the execution of the manually coded
design is approximately 60 times faster than that of the HLS-based design.

Table 6.3: Synthesis and performance results of the BCH decoder

Approach HLS HDL (proposed)
Runtime [us] 178 4 3
Latency [clK] 235 1 3
Interval [clK] 30 1 1
Clock [MHz] 170 250 375
Block RAM 1 0 0

Distributed RAM 0 1 0
FF 9873 47 62
LUT 10146 168 196

6.6.3 JR-tree Algorithm

We evaluated the JR-tree algorithm as a large-scale complicated application. We
used the C and HDL code implemented and optimized in Chapter 5. The C code
is optimized for a general processor. Note that it is difficult to auto-optimize a
code as is in behavioral synthesis. Therefore, we rewrote the C code and manually
inserted directives. The source code is shown in Appendix A.3. For details about
the JR-tree algorithm, see sections 5.4 and 5.9. For the manually written logic
circuits of the LSCA algorithm, see Section 5.9. Table 6.4 shows the benchmark
results. The design of the manually coded HDL code was observed to be 2.3 times
faster than that of the code generated by Vivado HLS because the loop unrolling
failed, pipelined circuits could not be implemented, and the memory data layout
was not optimized for the target application. Furthermore, the auto-generated
design was able to utilize logic resources only at approximately 30% of that of
the manually written design. In behavioral synthesis, we have no influence on
the selection of a tradeoff between performance and resource consumption. These
results demonstrate that it is difficult to design accelerators that are significantly
faster than software implementations by behavioral synthesis and that we can de-
sign high-performance accelerators with manual HDL coding based on our design
methodology.

6.7 Discussion

In this chapter, we have summarized the key points for the design of high-speed
accelerators obtained by our studies as a design methodology. The proposed
design methodology provides more in-depth guidelines to engineers who have
learned basic HDL grammar. In recent years, with the introduction of behavioral
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Table 6.4: Synthesis and performance results of the JR-tree algorithm

Approach HLS HDL (proposed)
Runtime [us] 1524 649
Clock [MHz] 200 200
Block RAM 2 14

DSP 2 0
FF 3655 10284
LUT 4186 11201

synthesis technology, the development period has been reduced only relative to
verification processes. However, replacing a manual logic design with automated
code conversion using behavioral synthesis tools has not been realized. It is
expected that the proposed design methodology and design principles will be
incorporated into a flowchart of the existing behavioral synthesis technology and
tools. By improving the behavioral synthesis environments using the proposed
design methodology, many users, including software programmers, will be able
to design high-performance hardware accelerators more easily.

As mentioned in Section 1.1, the microarchitectural design of a computer sys-
tem, such as general processors and accelerators, can be divided into (1) instruc-
tion interpretation, (2) execution, and (3) interconnection components (Figure
1.3). (1) The instruction interpretation component is a circuit that in-
terprets a programmable software code loaded from memory to the device and
that controls the execution components. In a general processor, the instruction
interpretation component analyzes the dependencies of an instruction sequence
and controls the procession of the pipeline stages. In a dedicated accelerator,
a soft/hard processor core corresponds to this interpretation component. Note
that an accelerator that does not include a processor core does not have an in-
terpretation component. (2) The execution component comprises a circuit
for computing the target calculations. In a general processor, this component
includes an arithmetic and logical unit (ALU) and a floating point-unit (FPU),
whereas in a dedicated accelerator, this component includes a main circuit for
the target algorithm. (3) The interconnection component consists of data
paths that connect logic modules and a circuit to control the data flow. This
component includes a connection between the interpretation and execution com-
ponents, a connection between the cores in a multicore processor, and an off-chip
connection between devices.

Note that these three components compete for logical and wiring resources. In
the development of general processors, researchers and developers have proposed
many conventional methods for each component, and a combination of efficient
individual technologies has led to greater processor performance and efficiency.
However, relative to the development of specialized hardware accelerators, such
versatile methods and approaches have not been developed. In this chapter, we
have established a design methodology for the execution component.

114



6.8 Summary

The structural design in hardware development has a high degree of freedom
compared to that of software development. In this chapter, we have established a
design methodology for the HDL-based design method. In the proposed method-
ology, schemes for parallelizing the computations at multiple levels are patterned.
This methodology provides a feasible data layout method for a given FPGA device
environment. In this chapter, we have shown how two concepts, i.e., multi-level
parallelization and the application-oriented data layout, were utilized in our stud-
ies (Chapters 3, 4, and 5). Both a single move in computer Go and one query in
continuous skyline computations are operations that can drastically change the
internal state of the calculations, and such operations are difficult to accelerate
using an FPGA. The data layout policy of using suitable memory blocks and de-
vices based on the data access pattern and frequency greatly contributes to the
performance improvement of the accelerators. However, this knowledge is not
sufficiently considered in the code conversion process of the currently available
behavioral synthesis tool. By incorporating the proposed design methodology, it
is expected that code conversion will improve such that high-performance RTL
designs can be generated. Our evaluations illustrate that the performance of the
manually written HDL code, which was based on the proposed design methodol-
ogy, is better than that of the HDL code generated by the behavioral synthesis
tool. Note that this behavioral synthesis technology is currently on a learning
curve.

The proposed methodology helps designers who have understood the gram-
mar of the HDL and the basic features of the FPGA to understand important
concepts that can help in designing high-performance accelerators. The proposed
methodology suggests various points that decide the performance of an accelera-
tor in order to achieve a performance that exceeds the performance of the software
implementation on a CPU. The proposed methodology complements the gap be-
tween gate-level design guidelines and design guidelines for an abstract algorithm
(including pseudo-code). In recent years, a System on Chip (SoC) FPGA, which
contains processor cores, has been in extensive use. In design using the SoC
FPGA, the proposed methodology also exhibits its effect in implementing a cir-
cuit of the function that affects the performance.
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Chapter 7

Conclusions

In this chapter, we review our studies, which are based on FPGA-based accel-
erators, and our design methodology. We also discuss future research prospects
based on our contributions.

7.1 Summary of Contributions

In Chapter 3, we described our research into improving the performance of par-
allel TCP streams. We proposed the merging stream harmonizer (MSH) hard-
ware mechanism, which directly merges parallel TCP streams. Merging parallel
TCP streams without packet loss improves the performance of TCP commu-
nication. In addition, we designed and produced the MaSTER-1 FPGA-based
network testbed and implemented the MSH on MaSTER-1. The MSH mitigates
traffic bursts in long-distance networks. Network congestion caused by bursty
traffic results in unnecessary packet loss. However, packet scheduling of the
MSH avoids such packet losses. We evaluated the performance of the MSH, and
the results demonstrate that it increases the throughput performance of paral-
lel TCP communications in pseudo high-latency high-bandwidth networks. The
MSH achieved parallel TCP streams that equally occupy 10-Gbps wire-speed
network bandwidth. In real-world long-distance fat-pipe networks with 9.2 Gbps
bandwidth, the MSH realized four TCP streams that equally occupy 8.0 Gbps
bandwidth with a packet pacing function with an 8.0 Gbps limitation. The
MSH can realize stable data transmission using parallel TCP streams. Note that
hardware-level packet scheduling techniques are essential in higher-bandwidth
computer networks. Many FPGA-based WAN accelerators have been studied
to increase the throughput of data transmission. However, such existing studies
did not comply with the specifications of TCP, UDP, or other protocol stan-
dards and required dedicated software and hardware inserted at the network
endpoints. Communication over proprietary protocols that do not consider RTT
fairness or TCP friendliness can reduce the performance of background traffic.
Our approach is TCP-compliant and maintains fairness and friendliness. In the
future, our method is expected to become an essential solution for inter-cluster
communication that generates large-scale end-to-end traffic.

In addition, we also described performance analysis of the TCP, which is the
most widely and commonly used network communication protocol. We analyzed
the relationship between RTT and the buffer size of the path-bottleneck switch.
We clarified the importance of a large buffer at the merge point of long-distance
fat-pipe networks, and we investigated the influence of packet buffer size on the
performance of parallel TCP streams. As a result, it became apparent that the
narrower the bandwidth of an uplink port of path-bottleneck switch compared
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to the total bandwidth of the end hosts, a larger packet buffer is required by the
path-bottleneck switch to prevent packet loss. We demonstrated that loss-based
TCP congestion control algorithms can avoid packet loss at the path-bottleneck
switch if the buffer size is sufficient. We also showed equations to calculate the
buffer amount required to avoid packet loss. In computer networks, intermediate
switches installed at a high-bandwidth network merge point must have a large
buffer, similar to that in MaSTER-1.

Our analysis was realized using a hand-made testbed with FPGAs, which can
perform real-time processing and have low development costs. Stream processing
at each port was distributed to each dedicated FPGA, and packet scheduling at
an uplink port was parallelized on a single FPGA. Packet datagrams handled by
the MSH are accessed sequentially, and they require a large amount of memory.
As a result, we arranged datagrams in DRAM by considering the number of ports
and required buffer size.

In Chapter 4, we described our study into speeding up the Monte Carlo Go
playout generation. Monte Carlo tree search is used in a stronger state-of-the-art
computer Go player. A game tree for a Go game has a large search space; thus,
it has been difficult to traverse such a tree and implement a player on hardware.
A playout requires the processing of many moves based on the complicated rules
of Go. In this study, we proposed a hardware algorithm for playout generation.
We simplified the complicated rules of Go by focusing on the relationships among
adjacent stones, and we focused on four adjacent neighbor stones and parallelized
the calculations for a row of stones. Here, the key idea is to maintain information
about three rows of stones and process a single row in a single cycle. Note that
a naive playout generation implementation requires a very wide memory band-
width. We stored information about the three rows, which comprise one ongoing
row and two adjacent rows, in registers and stored the complete board informa-
tion in FIFOs implemented by RAM. This application-oriented data layout led to
more efficient memory usage and realized acceleration of the playout generation.
The TLPG algorithm is easy to implement on FPGA. Our FPGA implementation
of the TLPG achieved a playout generation speed of 40,649 playouts per second
on a 9 x 9 grid board and 4,668 playouts per second on a 19 x 19 grid board.

In the TLPG algorithm, the playout, scanning the entire board, and updating
a single row of stones were parallelized. Note that these processes have different
types of parallelism, such as data, task, and pipeline parallelism. Here, we realized
high parallelism by employing logic circuits suitable for each parallelism. Stone
and liberty information of three rows used in the calculation is stored in the
registers. On the other hand, entire board information is stored in the FIFOs.
These techniques realized high parallelism of the TLPG algorithm.

In Chapter 5, we described our research into speeding up a continuous skyline
computation. We accelerated the computation of skylines, which represent a set
of points in multi-dimensional space, where points are activated and deactivated
dynamically. We discussed the reduction of potentially needless comparison op-
erations as a difficult point in continuous skyline computations. We proposed the
BJR-tree to speed up the continuous skyline computation by storing the results
of previous comparison operations. The BJR-tree is a new tree structure that
can intuitively express dominance relations and provides updating algorithms
that schedule comparisons to reduce unnecessary operations. Furthermore, we
proposed the ND-cache mechanism, which efficiently saves the results of previ-
ous comparisons. The results of a performance evaluation demonstrate that the
BJR-tree can reduce execution time compared to the state-of-the-art continu-
ous skyline computation algorithm. The results also showed that ND-cache can
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reduce the number of invoked comparison operations on pathological datasets
and generates little overhead with synthesized datasets. The BJR-tree software
implementation overcame the implementation of existing software algorithms.
Furthermore, the BJR-tree (JR-tree) was designed and optimized for an FPGA
implementation. An FPGA implementation of the LSCA hardware algorithm
based on the JR-tree reduced the execution time of the continuous skyline com-
putation significantly.

In the LSCA, a single dominance relation operation, the computation of all
dominance relations between the current skyline points and a newly injected
point, and the injection and ejection operations of the JR-tree were parallelized.
These computations have data and pipeline parallelism. Here, we also realized
high parallelism by employing logic circuits suitable for each parallelism. We
stored information about skyline points, which are repeatedly used for domi-
nance relation calculations, in registers, and we stored the information of all
points in Block RAM. When a skyline point is deactivated, the dominance rela-
tion calculations between the child nodes of an ejected node and the rest of the
skyline nodes are invoked. These heavy calculations were parallelizable using an
application-oriented data layout.

In this thesis, we have demonstrated that multi-level parallelization and an
application-oriented data layout are essential for high-performance logic design
through these typical studies. A single move in the Monte Carlo Playout Genera-
tion and a single query in the continuous skyline computation have the potential
to dynamically change the internal states of the computation (e.g., the values of
variables or registers). Thus, these applications have been considered difficult for
FPGA-based acceleration. We improved the performance of these applications
using a data layout based on the data access pattern and frequency. We focused
on multi-level parallelization (to parallelize computations at multiple granulari-
ties with multiple types of parallelism) and the application-oriented data layout
(to select a memory type to store the internal data in execution of applications)
for the logic design of the FPGA-based acceleration. Our design methodology is a
guideline for designing a high-performance FPGA-based accelerator and provides
a method to enhance behavioral synthesis technologies.

7.2 Future Outlook

The TCP is widely used as a communication protocol that guarantees reliable
data transmission. TCP functions include session management, a TCP state
machine, acknowledgment packets, and a sequence number in the TCP header
section of packets. However, owing to the popularization of long-distance high-
bandwidth networks, TCP features, which were advantageous when the protocol
was initially designed, have been revealed as disadvantages. Although many al-
ternative protocols have been proposed, a definitive next-generation protocol has
not been determined yet. Extended TCP specifications have been proposed and
standardized to extend the life of the TCP. In this study, we demonstrated that
the TCP can be employed to utilize network bandwidth efficiently even in long-
distance fat-pipe networks (LFNs). We implemented an FPGA-based accelerator
and evaluated its performance improvement. Issues that remain relative to the
use of the TCP in LFNs are that the fact that congestion control algorithms are
not suitable to such networks and that the protocol specification limits the band-
width delay product (BDP) to 1 gigabytes. We have already begun analyzing
buffering and scheduling in path-bottleneck switches using six well-known con-
gestion control algorithms, i.e., BIC-TCP, CUBIC-TCP, TCP Reno, high-speed
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TCP, H-TCP, and TCP Westwood. Furthermore, we have proposed proprietary
extensions for TCP to resolve the BDP limitation problem and evaluated the
throughput performance of our modified TCP stack implementation in real-world
long-distance networks. It is expected that this will provide helpful insights for
the design of a next-generation data transfer protocol.

Recently, Alpha Go, a computer-based Go player, has defeated a professional
human Go player [109]. Hardware acceleration has played an important role
in Alpha Go’s increasing effectiveness [110]. In addition, hardware acceleration
is receiving increasing attention in various AI applications. Many Al applica-
tions, such as convolutional neural networks, require an extraordinary amount of
computing resources. We have accelerated heavy computation of playout gener-
ation using a hardware algorithm adapted to complicated Go rules. Application-
oriented FPGA-based accelerators are expected to achieve high performance and
efficiency in other Al fields.

Skyline computation was initially proposed to extract interesting entries from
a large database. We introduced fast cell identification and selection on flow
cytometry as a new application of continuous skyline computation. A future
biological analysis will clarify the effectiveness of cells extracted by skyline com-
putation. Since our flow cytometry, i.e., the Serendipiter, targets a wide variety
of cells, various other schemes are extraction method candidates. For other ex-
traction schemes, FPGA-based acceleration will be a practical approach for the
low-latency cell identification system in Serendipiter.

In this research, we compared the performance of accelerators which are man-
ually implemented and accelerators implemented with behavioral synthesis for
evaluation of the proposed design methodology. Additionally, we will be able to
verify the effectiveness of the proposed methodology in actual educational sites.
We show an example of a verification method as follows. We divide students
of courses for mastering hardware design in higher education facility into two
groups randomly. They all have learned the HDL grammars and basic coding
techniques. We introduce the proposed methodology to students belonging to
one group, and textbooks including existing design guidelines to students be-
longing to the other group. Then, we give the students of the two groups the
same task of implementing applications like those shown in Section 6.6. We will
be able to the effectiveness of the proposed methodology in the implementation
of high-performance accelerators by comparing the number of the clock cycles of
latency and interval and runtime of implemented accelerators. In this evaluation
method, because a circuit of the accelerators designed by the students is evident
and analyzable, we can obtain statistical information such as what type of par-
allelized circuit was designed, what kind of memory was utilized, and what kind
of data was laid out. Such information is useful for analyzing the effectiveness of
parallelization and data layout.

Microarchitecture comprises instruction interpretation, execution, and inter-
connection components (Figure 1.3). In a CPU example, instruction interpreta-
tion, the execution, and interconnection components correspond to a control unit
(CU), an ALU/FPU, and data buses, respectively. In this thesis, we have pre-
sented a design methodology for the execution component. To design a large-scale
massively parallelized accelerator, it is essential to establish design methodologies
for the instruction interpretation and interconnection components of application-
specific circuits. However, this remains an unresolved problem. As discussed in
Chapter 2, there are hardware accelerators with and without instruction interpre-
tation components implemented by processor IP cores. It is difficult to determine
the following two points; (1) whether an accelerator should have an instruction
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interpretation component and (2) how design the instruction interpretation com-
ponent should have if the accelerator should have it. An effective design method-
ology for the instruction interpretation component would contribute to resolving
such uncertainties.

The clock frequency of FPGAs tends to be less than that of CPUs and ASICs.
In addition, there is a trade-off between memory capacity and access latency in
the memory environment of FPGA devices. These disadvantages and difficulties
have been bottlenecks for FPGA-based accelerators to achieve high performance.
However, new memory technologies for FPGAs are expected in the future. For
example, Ultra RAM is an on-chip memory block that complements the gap be-
tween capacity and latency relative to Block RAM and external memory chips.
The Bandwidth Engine and Hybrid Memory Cube (HMC) are off-chip memory
devices that have serial I/O interfaces, and High Bandwidth Memory 2 (HBM2)
has a wide parallel I/O interface. By increasing the degree of integration of
FPGAs, we expect greater freedom relative to multi-level parallelization. With
memory device diversification, we also expect greater design freedom relative to
data layouts. Beyond the specific fields discussed in the thesis, FPGA-based ac-
celerators are expected to be used in various other applications in which memory
bandwidth is a performance bottleneck. Thus, we consider that, in conjunction
with the increasing popularization of FPGA-based accelerators, the contributions
of this thesis will form a basis for future logic design methods.
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Appendix A

Source Code in Behavioral Synthesis

A.1 C-Like Code of Dominance Relation Calculation (Section
6.6.1)

Listing A.1: skydom.h

1 #ifndef _SKYDOM_H__

2 #define _SKYDOM_H__

3

4 #define DIMENSION 5

5 #define N 500

6

7 unsigned char dominates_array(unsigned short da[DIMENSION], unsigned short db|
DIMENSION]);

8 void dominates_array_top_function(unsigned short da[DIMENSION], unsigned short db|
DIMENSION], unsigned char *result);

10 #endif

Listing A.2: skydom.c

1 #include "skydom.h"

3 unsigned char dominates_array(unsigned short da[DIMENSION], unsigned short db|
DIMENSION]) {

4 int d;
5 unsigned char anyBetter = 0;
6 for (d = 0; d < DIMENSION; d++) {
7 if (da[d] > db[d])
8 return 0;
9 else if (da[d] < db[d])

10 anyBetter = 1;

11 }

12 return anyBetter;

13 }

14

15 void dominates_array-top_function(unsigned short da[DIMENSION], unsigned short db[
DIMENSION], unsigned char xresult) {
16 sresult = dominates_array(da, db);

Listing A.3: tb_main.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "skydom.h"

inline double get_dtime(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return ((double)(tv.tv_sec) + (double)(tv.tv_usec) * 0.001 * 0.001);
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int main() {

}

int i, j, k;

/*
* load input data
*/
unsigned short dataset[N][DIMENSION];
char buf[1024];
FILE xifh;
FILE xofh;
ifh = fopen("tv_large.input.txt", "r");
if (ith == NULL) {
printf(" [Error] can’t open input data file\n");
return 1;

}

for (i =0;i<N;it++) {
for (j = 0; j < DIMENSION; j++) {
int x;
fscanf(ith, "%d", &x);
dataset[i][j] = x;

char temp[10000];
fgets(temp, 10000, ifh);

}
fclose(ifh);

/*
* evaluation
*/
for (i=0;i < N-1;i++) {
for (j = i+1;j < N; j++) {
unsigned char result_sw;
unsigned char result_hw;

result_sw = dominates_array(dataset[i], dataset[j]);

dominates_array_top_function(dataset|[i], dataset[j], &result_hw);

if (result-hw != result_sw) {
printf(" [Error] simulation fault");
printf(" [Error] i = %d, j = %d\n", i, j);
printf(" [Error] result_hw = %d, result_sw
for (k = 0; k < DIMENSION; k++) {

%d\n", result_hw, result_sw);

printf("%d vs %d\n", dataset][i][k], dataset[j][k]);

}

return 1;
}
}

return 0;

Listing A.4: directive.tcl

#

# directives

set TopFunction dominates_array_top-function

set_directive_pipeline $TopFunction

set_directive_interface —mode ap_ctrl_hs $TopFunction
set_directive_interface —mode ap_hs —register $TopFunction da
set_directive_interface —mode ap_hs —register $TopFunction db
set_directive_interface —mode ap_vld —register $TopFunction result
set_directive_array_partition —type complete $TopFunction da
set_directive_array_partition —type complete $TopFunction db

A.2 C-Like Code of BCH Decoding (Section 6.6.2)
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Listing A.5: bchdec.h

#ifndef _BCHDEC_H__
#define _BCHDEC_H__

#include <stdio.h>

#define GF_ORDER 4
#define GF_N (2x2x2x2—1)
#define CODE_N 15
#define CODE_K 7

void conv_int_to_bitarray(unsigned char [|, int);

int conv_bitarray_to_int(unsigned char []);

void bchdec(unsigned char [CODE_N], const unsigned char [CODE_N]);
int bchdec_int(int);

#endif

Listing A.6: bchdec.c

#include "bchdec.h"

void conv_int_to_bitarray(unsigned char d[], int s) {
int i;
for (i = 0; i < CODEN; i++)
d[i] = (s >> (CODE_N—-1-1i)) & 0x1;

int conv_bitarray_to_int(unsigned char s[]) {
int i;
int ret = 0;
for (i = 0; i < CODEN; i++)
ret |= s[i] << (CODE_N—1—i);
return ret;

}

int gf2_ 4 _f(int s) {

s = (s + GF.N) % GF_N;
int tbl[] = {
0x1, 0x2, 0x4, 0x8,
0x3, 0x6, 0xC, 0xB,
0x5, OxA, 0x7, OxE,
0xF, 0xD, 0x9};
return tbl[s];
}
int gf2 4 b(int s) {
int tbl[] = {
~1,0,1, 4,
2,8, 5, 10,
3,14,9, 7,
6, 13, 11, 12};
return tbl[s];
}

unsigned int gf2_4_inv(int s) {
return gf2_ 4 f(gf2_ 4 b(1) — gf2_4.b(s));
}

unsigned int vec_mul(unsigned int srcl, unsigned int src2) {
if (srcl == 0x0) return 0x0;
if (src2 == 0x0) return 0x0;
return gf2 4 f((gf2_.4 b(srcl) + gf2_4 b(src2)) % 15);
}

void print_binary(unsigned int srcl, unsigned int bit) {
int i;
printf(" [");
for (i =bit — 1;i>=0;i——) {
printf("%1d", (srcl >> i) & 0x1);

printf("1\n");
return;
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}

void bchdec(unsigned char dst{CODE_N], const unsigned char src[CODE_N]) {
int i;

unsigned int sl = 0;
unsigned int s2 = 0;
unsigned int s3 = 0;
unsigned int s4 = 0;
for (i =0; i < CODE_N; i++) {
if (srcfi]) {
unsigned int idx = CODE_N — 1 — i;
sl = sl ~ gf2_4_f(idx);
s2 = s2 " vec_mul(gf2_4_f(idx), gf2_4_f(idx));
s3 = s3 " vec_mul(gf2_4_f(idx), vec_mul(gf2_4_f(idx), gf2_4_f(idx)));
s4 = s4 " vecomul(gf2_4_f(idx), vec-mul(gf2_4_f(idx), vec.mul(gf2_4_f(idx), gf2-4_f(idx))
));

}

unsigned int d = vec_mul(sl, s3) ~ vec_mul(s2, s2);
unsigned int 11 = 0xO0;

unsigned int 12 = 0xO0;

if (d 1= 0x0) {
/* two-bit error */
unsigned int 11_temp0 = vec_mul(vec_mul(sl, gf2_4_inv(s2)), s4) " s3;
unsigned int 11_templ = vec_mul(vec_mul(sl, gf2_4_inv(s2)), s3) " s2;
11 = vec.mul(11_temp0, gf2_4_inv(11_templ));
12 = vec_mul(vec_mul(s2, gf2_4_inv(sl)), 11) ~ vec_mul(s3, gf2_4_inv(sl));
} else if (sl != 0x0) {
/* one-bit error */
11 = vec.mul(s2, gf2_4_inv(sl));
12 = 0x0;
} else {

/* no error */

unsigned int ¢ CODE_NJ;
for (i = 0;i < CODEN; i++) {
eli] = 0;

for (i =0; i < CODE.N; i++) {
if ((vecmul(12, vec_mul(gf2_4_£(i), gf2-4_£(i))) ~ vecomul(11, gf2_4_£(i)) ~ gf2.4.£( 0)) == 0
x0) e[gf2_-4_b(gf2_4_inv(gf2_4_£(i)))] = 1;

for (i = 0; i < CODE.N; i++) {
int idx = CODE_N — 1 — i;
dst[i] = src[i] " e[idx];

}

int bchdec_int(int s_int) {
unsigned char s_array[CODE_NJ;
unsigned char d_array[CODE_NJ;
conv_int_to_bitarray(s_array, s-int);
bchdec(d-array, s_array);
return conv_bitarray_to_int(d-array);

Listing A.7: tb_main.c

#include <stdio.h>
#include <stdlib.h>

#include "bchdec.h"

int main() {
int i;

FILE *ifh;
ifh = fopen("bench_in.txt", "r");
if (ifth == NULL) {

printf(" [Error] fopen()");
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13 return 1;

14 }
15
16 for(;) {
17 int sent_int;
18 int recv_int;
19 int scnt = fscanf(ifh, "%x %x", &sent_int, &recv_int);
20 if (sent < 0) {
21 break;
22 }
23 unsigned char sent[ CODE_NJ;
24 unsigned char recv[CODE_NJ;
25 unsigned char corr[CODE_NJ;
26 conv_int_to_bitarray(sent, sent_int);
27 conv_int_to_bitarray(recv, recv_int);
28 conv_int_to_bitarray(corr, bchdec_int(sent_int));
29
30 int errbitl = 0;
31 int errbit2 = 0;
32 for (i = 0; i < CODE_N; i++) {
33 if (sent[i] != recvli])
34 errbit1++;
35 if (sent[i] != corrl[i])
36 errbit2++;
37
38 if (errbit2) {
39 return EXIT_FAILURE;
40 }
41
42 printf(" [Info] test pass!\n");
43 return EXIT_SUCCESS;
44 '}
Listing A.8: directive.tcl
1 #
2  # directives
3 #
4 set TopFunction bchdec
5
6 set_directive_pipeline $TopFunction
7 set_directive_interface —mode ap_ctrl_hs $TopFunction
8 set_directive_interface —mode ap_hs —register $TopFunction src
9 set_directive_interface —mode ap_vld —register $TopFunction dst
10 set_directive_array_partition —type complete $TopFunction src
11 set_directive_array_partition —type complete $TopFunction dst

A.3 C-Like Code of JR-tree Algorithm (Section 6.6.3)

This source code is compatible with the file format of the dataset provided in
MEMOCODE 2015 Design Contest !.

Listing A.9: parameter.h

#ifndef _PARAMETERS_H__
#define _PARAMETERS_H__

#define CARD_MAX 12000

#define MAX_SKYLINE_NUM 512
#define MAX_TIME_STEP_NUM 12000
#define OPERATION_DEFAULT 550
#define MAX_DIMENSION_NUM 8

O © 00O U W

[y

#endif

Listing A.10: mylib.h

"http://www.ece.stonybrook.edu/~pmilder/memocode15/
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#ifndef _MYLIB_H__
#define _MYLIB_H__

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <sys/time.h>

typedef unsigned long long int ULLI;

#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define REP(i, n) for ((i) = 0; (i) < (n); (i)++)
#define REPREV (i, n) for ((i) = (n)—1; (i) >= 0; (i)——)
#define DEBUG(s) \
do { \
printf("is\a", (5)); \
flush(stdout); \
} while (0)

double get_dtime(void);
void fprintf_space(FILE #, int);

void chomp(char *);

#endif

Listing A.11: mylib.c

#include "mylib.h"

double get_dtime(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return ((double)(tv.tv_sec) + (double)(tv.tv_usec) * 0.001 * 0.001);

void fprintf_space(FILE *stream, int len) {
int i;
REP(i, len) {
fprintf(stream, " ");
}

}

void chomp(char *s) {

int len;

len = strlen(s);

if ((len > 0) && s[len—1] == ’\n’)
sflen—1] = >\0?;

len = strlen(s);

if ((len > 0) && s[len—1] == ’\r’)
sllen—1] = ’\0?;

Listing A.12: skylib.h

#ifndef _SKYLIB_H__
#define _SKYLIB_H__

#include "parameter.h"
#include "mylib.h"

typedef unsigned int TYPE;
typedef unsigned short TYPE_E;

#define DOMINATES dominates_array
typedef struct skyio_structure {
int datasetSize;

int dimensions;
int maxSkylineElements;
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16 TYPE maxTimeSteps;

17 char benchmarkName[256];
18

19 TYPE_E *xdataset;

20 TYPE xxdatasetTimes;

21 TYPE *xskyline;

22 TYPE *numSkyline;

23 } SKYIO._T;

24

25 unsigned char dominates_array(TYPE_E [], TYPE_E [], int);
26 void getSettings(SKYIO_T %, char xx);

27 void initAllocation(SKYIO_T );

28 wvoid initValues(SKYIO_T x);

29 void outputAndCleanup(SKYIO_T x);

30 int outputVerification(SKYIO.T x);

31
32 #endif
Listing A.13: skylib.c
1 #include "skylib.h"
2
3 int cmpfunc(const void *a, const void xb) {
4 return (x(TYPE x)a — x(TYPE *)b);
5}
6
7 unsigned char dominates_array(TYPE_E da[]MAX_DIMENSION_NUM]|, TYPE_E db]
MAX_DIMENSION_NUM], int dim) {
8 int d;
9 unsigned char anyBetter = 0;
10 for (d = 0; d < dim; d++) {
11 if (da[d] > db[d])
12 return 0;
13 else if (da[d] < dbl[d])
14 anyBetter = 1;
15 }
16 return anyBetter;
17}
18
19 void getSettings(SKYIO_T xskyio_pack, char xargv[]) {
20 char ifname[8192];
21 sprintf(ifname, "%s.setup", argv[1]);
22 FILE *f = fopen(ifname, "r");
23 if (1) {
24 printf("Cannot open settings file ¥%s\n", ifname);
25 assert(0);
26
27 printf("Reading settings from %s.\n", ifname);
28
29 fscanf(f, "%d", &(skyio-pack—>datasetSize));
30 fscanf(f, "%d", &(skyio_pack—>dimensions));
31 fscanf(f, "%d", &(skyio_pack—>maxTimeSteps));
32 fscanf(f, "%d", &(skyio_pack—>maxSkylineElements));
33 fscanf(f, "%s", skyio_pack—>benchmarkName);
34 strepy (skyio_pack—>benchmarkName, argv(1]);
35 fclose(f);
36 }
37
38 wvoid initAllocation(SKYIO_T xskyio_pack) {
39 skyio_pack—>dataset = (TYPE_E %x)malloc(sizeof(x(skyio_-pack—>dataset)) * skyio_pack—>
datasetSize);
40 skyio_pack—>datasetTimes = (TYPE *x) malloc(sizeof(*(skyio_pack—>datasetTimes)) *
skyio_pack—>datasetSize);
41 skyio_pack—>skyline = (TYPE *x) malloc(sizeof(*(skyio_pack—>skyline)) * skyio_pack—>
maxTimeSteps);
42 skyio_pack—>numSkyline = (TYPE %) malloc(sizeof(TYPE) * skyio_pack—>maxTimeSteps);
43
44 if ((skyio_pack—>dataset == NULL) ||
45 (skyio_pack—>datasetTimes == NULL) ||
46 (skyio_pack—>skyline == NULL) ||
47 (skyio_pack—>numSkyline == NULL))
48 fprintf(stderr, " [Error] memory allocation, dataset, datasetTimes, skyline,

numSkyline.\n");
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19 }
50

51 void initValues(SKYIO_T xskyio_pack) {

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

int i, j;
TYPE ii;

int datasetSize = skyio_pack—>datasetSize;

int dimensions = skyio_pack—>dimensions;

int maxTimeSteps = skyio_pack—>maxTimeSteps;

int maxSkylineElements = skyio_pack—>maxSkylineElements;
char xbenchmarkName = skyio_pack—>benchmarkName;
TYPE_E xxdataset = skyio_pack—>dataset;

TYPE xxdatasetTimes = skyio_pack—>datasetTimes;

TYPE xx*skyline = skyio_pack—>skyline;

TYPE snumSkyline = skyio_pack—>numSkyline;

if (dataset) {
for (i = 0; i < datasetSize; i++) {
dataset[i] = (TYPE_E x)malloc(sizeof(TYPE_E) * dimensions);
if (dataset[i] == NULL)
fprintf(stderr, " [Error] memory allocation, dataset[%d].\n", i);

}

if (datasetTimes) {
for (i = 0; i < datasetSize; i++) {
datasetTimes[i] = (TYPE x)malloc(sizeof(TYPE) * 2);
if (datasetTimes[i] == NULL)
fprintf(stderr, " [Error] memory allocation, datasetTimes[%d].\n",i);

}
if (skyline) {
for (ii = 0; ii < maxTimeSteps; ii++) {
skyline[ii] = (TYPE *)malloc(sizeof(TYPE) * maxSkylineElements);
if (skylinelii] == NULL)
fprintf(stderr, " [Error] memory allocation, skylinel[%d].\n", ii);

}

char buf[256];
sprintf(buf, "%s.input", benchmarkName);
FILE *f = fopen(buf, "r");
if (If) {
printf("Can’t open file %s\n", buf);
assert(0);

REP(i, datasetSize) {
REP(j, dimensions) {
int x;
fscanf(f, "%d", &x);
dataset[i][j] = (TYPE_E)x;

char temp[10000];
fgets(temp, 10000, f);

}
fclose(f);

sprintf(buf, "%s.times", benchmarkName);
f = fopen(buf, "r");
if (If) {
printf("Can’t open file¥%s\n", buf);
assert(0);

REP(i, datasetSize) {
int x;
fscanf(f, "%d", &x);
datasetTimes[i][0] = (TYPE)x;
fscanf(f, "%d", &x);
datasetTimesli][1] = (TYPE)x;
}
fclose(f);

REP(ii, maxTimeSteps)
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123 numSkylinelii] = 0;

124 }

125

126 void outputAndCleanup(SKYIO_T xskyio_pack) {
127 int i;

128 TYPE ii;

129 TYPE ;

130 FILE *f;

131

132 int datasetSize = skyio_pack—>datasetSize;

133 int maxTimeSteps = skyio_pack—>maxTimeSteps;
134 char sbenchmarkName = skyio_pack—>benchmarkName;
135 TYPE_E sxdataset = skyio_pack—>dataset;

136 TYPE sxdatasetTimes = skyio_pack—>datasetTimes;
137 TYPE xxskyline = skyio_pack—>skyline;

138 TYPE snumSkyline = skyio_pack—>numSkyline;
139

140 char buf[8192];

141 sprintf(buf, "%s.out", benchmarkName);

142 f = fopen(buf, "w");

143 if () {

144 printf("Can’t open file %s\n", buf);

145 assert(0);

146 }

147

148 REP(ii, maxTimeSteps) {

149 gsort(skyline[ii], numSkylinelii], sizeof(TYPE), cmpfunc);
150 REP(1, numSkylinel[ii])

151 fprintf(f, "%d ", skylinelii][1]);

152 fprintf(f, "\n");

153 }

154 fclose(f);

155

156 REP(i, datasetSize)

157 free(dataset[i]);

158 free(dataset);

159

160 REP(i, datasetSize)

161 free(dataset Timesli]);

162 free(datasetTimes);

163

164 REP(ii, maxTimeSteps)

165 free(skylinelii]);

166 free(skyline);

167

168 free(numsSkyline);

169 }

170

171 int outputVerification(SKYIO_T xskyio_pack) {

172 char ofnamel[8192];

173 char ofname2[8192];

174 sprintf(ofnamel, "%s.out", skyio_pack—>benchmarkName);
175 sprintf(ofname2, "%s.refout", skyio_pack—>benchmarkName);
176 FILE xofhl = fopen(ofnamel, "rb");

177 FILE *ofh2 = fopen(ofname2, "rb");

178 if ((lofhl) || (fofh2)) {

179 printf("Can’t open out/refout files\n");
180 assert(0);

181 }

182

183 char buf1[100000];

184 char buf2[100000];

185 while(!feof(ofthl) && !feof(ofh2)) {

186 fgets(bufl, sizeof(bufl), ofhl);

187 fgets(buf2, sizeof(buf2), oth2);

188 chomp(bufl);

189 chomp(buf2);

190 if (strcmp(bufl, buf2) = 0) {

191 printf(" [Error] incorrect skyline: line mismatch.\n");
192 printf("<%s> <%s>\n", bufl, buf2);

193 return EXIT_FAILURE;

194 }

195 }

196 if (feof(ofhl) != feof(ofth2)) {
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197 printf(" [Error] incorrect skyline: short length.\n");

198 return EXIT_FAILURE;

199

200 printf(" [Infol correct skylines.\n");
201 return EXIT_SUCCESS;

202 }

Listing A.14: tree.h

1 #ifndef _TREE_H__
2 #define _TREE_H__
3
4 #include "parameter.h"
5 #include "skylib.h"
6
7 typedef unsigned short TYPE_TS;
8
9 typedef struct memory_pack {
10 int data_parent[CARD_-MAX];
11 int child_head[CARD_MAX];
12 int child_next(CARD_MAX];
13 int root_num;
14 int root_child[MAX_SKYLINE_NUM+10];
15 int root_child reversefl CARD_MAX];
16 int idmap[CARD_MAX];
17 TYPE_E m_dataset[CARD_MAX][MAX_DIMENSION_NUMJ;
18 int dimensions;
19 } MEMPACK;
20
21 void initAllocationMP(MEMPACK x, SKYIO_T x);
22 int reg id(MEMPACK *, SKYIO_T *, int);
23 void proc_single_timestep(MEMPACK %, TYPE, intx, intx, TYPE %, TYPE x);
24
25 #endif
Listing A.15: tree.c
1 #include "parameter.h"
2 #include "tree.h"
3
4 void initAllocationMP(MEMPACK smp, SKYIO_T *skyio_pack) {
5 mp—>root_-num = 0;
6 mp—>dimensions = skyio_pack—>dimensions;
7 int i;
8 REP(i, CARD_MAX)
9 mp—>idmapli] = —1;
10 }
11
12 int get_hash(int s) {
13 int offset = 0x97cd;
14 int prime = 0x0193;
15 int x;
16 x = offset * (s & 0xff);
17 x = ((x & Oxffff) * prime) & Oxffff;
18 x=x" ((s >> 8) & 0xff);
19 x = ((x & Oxffff) * prime) & Oxffff;
20 x = x % CARD_MAX;
21 return x;
22}
23
24 int reg_id(MEMPACK smp, SKYIO_T xskyio_pack, int s) {
25 int x = get_hash(s);
26 for(;) {
27 if (mp—>idmap([x] == —1) break;
28 x = (x + 1) % CARD_MAX;
29
30 mp—>idmap(x] = s;
31 int i;
32 REP(i, skyio_pack—>dimensions) {
33 mp—>m_dataset[x][i] = skyio-pack—>dataset|s][i];
34 }
35 return x;
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36}

37

38 int unreg id(MEMPACK *mp, int s) {

39 int x = get_hash(s);

40 for(;) {

41 if (mp—>idmap(x] == s) break;

42 x = (x + 1) % CARD_MAX;

43

44 mp—>idmap[x] = —1;

45 return x;

46 )

47

48 int remap_id(MEMPACK s*mp, int x) {

49 int s = mp—>idmap[x];

50 if (s == —1)

51 printf(" [Error] invalid idmap value, idx=%d\n", x);
52 return mp—>idmap[x];

53}

54

55 wvoid add_child(MEMPACK s*mp, int parent, int child) {
56 mp—>data_parent[child] = parent;

57 mp—>child_next[child] = mp—>child_head[parent];
58 mp—>child_head[parent] = child;

59}

60

61 void del_root_child(MEMPACK s*mp, int child) {

62 int tmpl = mp—>root_child_reverse[child];

63 int tmp2 = mp—>root_child[——mp—>root_num];
64 mp—>root_child[tmpl] = tmp?2;

65 mp—>root_child_reverse[tmp2] = tmpl;

66 }

67

68 void stree_root_-add(MEMPACK *mp, int target, int move_only) {
69 int num = mp—>root_num;

70 int i;

71 if (Imove_only) {

72 mp—>child_head[target] = —1;

73 }

74 mp—>data_parent[target] = —1;

75 REP (i, num) {

76 if (DOMINATES(mp—>m_dataset[mp—>root_child[i]], mp—>m_dataset[target], mp—>

dimensions)) {

77 add_child(mp, mp—>root_child[i], target);
78 return;

79 }

80

81 int candidate] MAX_SKYLINE_NUM];

82 REP(i, num) {

83 candidate[i] = mp—>root_child[i];

84 }

85

86 REP (i, num) {

87 if (DOMINATES(mp—>m_dataset[target], mp—>m_dataset[candidate[i]], mp—>

dimensions)) {

88 del_root_child(mp, candidate[i]);

89 add_child(mp, target, candidatel[i]);

90 }

91

92 mp—>root_child[mp—>root_num] = target;

93 mp—>root_child_reverse[target] = mp—>root_num;
94 mp—>root_num-+-+;

95 }

96

97 void stree_-remove(MEMPACK smp, int target) {

98 int parent = mp—>data_parent[target];

99 if (parent == —1) {
100 del_root_child(mp, target);

101 int z = mp—>child_head[target];
102 for (;;) {

103 if (z == —1) break;
104 int next = mp—>child_next[z];
105 stree_root_add(mp, z, 1);

106 7z = next;
107 }
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108 } else {

109 int x = mp—>child_-head[parent];

110 int z = mp—>child_next[x];

111 if (x == target) {

112 mp—>child_head[parent] = z;

113 } else {

114 for (;;) {

115 int y = z;

116 z = mp—>child_next[y];

117 if (y == —1) {

118 printf(" [Error] delete: node[%d] is not nodel%d]’s child.", target,
parent);

119 assert(0);

120

121 if (y == target) {

122 mp—>child_next[x] = z;

123 break;

124 }

125 X =Y;

126 }

127 }

128 z = mp—>child_head[target];

129 for (;;) {

130 if (z == —1) break;

131 int next = mp—>child_next[z];

132 add_child(mp, parent, z);

133 7z = next;

134 }

135 }

136 }

137

138 void stree_.dump(MEMPACK =mp, int target, int depth) {

139 if (depth == 0) {

140 int i;

141 REP(i, mp—>root_num) {

142 stree_.dump(mp, mp—>root_child[i], depth + 1);

143 }

144 } else {

145 fprintf_space(stdout, 2 * depth);

146 fprintf(stdout, "%d\n", target);

147 int z = mp—>child_head[target];

148 for (;;) {

149 if (z == —1) break;

150 stree_.dump(mp, z, depth + 1);

151 z = mp—>child_next|z];

152 }

153 }

154 }

155

156 void proc_single_timestep(

157 MEMPACK smp, TYPE timestep,

158 int addlist_t{OPERATION_DEFAULT], int remlist_t{OPERATION_DEFAULT],

159 TYPE skyline]MAX_SKYLINE_NUM], TYPE *numSkyline) {

160

161 int i;

162

163 REP(i, addlist_t[0]) {

164 stree_root_add(mp, addlist_t[i+1], 0);

165

166 REP(i, remlist_t[0]) {

167 int x = remlist_t[i+1];

168 x = unreg-id(mp, x);

169 stree_remove(mp, x);

170

171 xnumSkyline = mp—>root_num;

172 REP (i, mp—>root_num)

173 skyline[i] = remap_id(mp, mp—>root_child[i]);

174

175 #ifdef _EAGER_SIMPLE__

176 stree_eager_simple(mp);

177 #endif

178 #ifdef __ EAGER_DOUBLE__

179 stree_eager-double(mp);

180 #endif
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181 #ifdef __EAGER_FULL__

182 stree_eager(mp);
183 #endif
184
185 }
Listing A.16: tb_main.c
1 #include "mylib.h"
2 #include "skylib.h"
3 #include "tree.h"
4
5 int main(int argc, char sargv(]) {
6 if (arge 1= 2) {
7 printf("Usage: %s setupfile’s prefix\n", argv(0]);
8 } else {
9 SKYIO_T xskyio_pack = malloc(sizeof(SKYIO_T));
10 getSettings(skyio_pack, argv);
11 initAllocation(skyio_pack);
12 initValues(skyio_pack);
13
14 int xxaddlist = malloc(sizeof(xaddlist) * (skyio_pack—>maxTimeSteps+1));
15 int xxremlist = malloc(sizeof(xremlist) * (skyio_pack—>maxTimeSteps+1));
16 int time;
17 REP (time, skyio_pack—>maxTimeSteps+1) {
18 addlist[time] = calloc(sizeof(int), OPERATION_DEFAULT);
19 remlist[time] = calloc(sizeof(int), OPERATION_DEFAULT);
20 }
21 int i;
22 REP(i, skyio_pack—>datasetSize) {
23 int addtime = skyio_pack—>datasetTimes[i][0];
24 int remtime = skyio_pack—>datasetTimesli][1];
25 addlist[addtime][0]++;
26 addlist[addtime][addlist[addtime][0]] = i;
27 remlist{remtime][0]++;
28 remlist[remtime][remlist[remtime][0]] = i;
29 }
30
31 MEMPACK smp = malloc(sizeof( MEMPACK));
32 initAllocationMP (mp, skyio_pack);
33
34 TYPE t;
35 REP(t, skyio_pack—>maxTimeSteps) {
36 int addlist_t{OPERATION_DEFAULT];
37 int remlist_t{OPERATION_DEFAULT];
38 memcpy (addlist_t, addlist[t], sizeof(int) * OPERATION_DEFAULT);
39 memcpy (remlist_t, remlist[t], sizeof(int) * OPERATION_DEFAULT);
40
41 int mapped_addlist_t{OPERATION_DEFAULT];
42 mapped-addlist_t[0] = addlist_t[0];
43 REP(i, addlist_t[0]) {
44 int x = addlist_t[i+1];
45 mapped_addlist_t[i+1] = reg_id(mp, skyio_pack, x);
46
47
48 TYPE skylineMAX_SKYLINE_NUMJ;
49 TYPE numSkyline;
50
51 procsingle_timestep(mp, t, mapped_addlist_t, remlist_t, skyline, &numSkyline);
52
53 skyio_pack—>numSkyline[t] = numSkyline;
54 memcpy (skyio_pack—>skyline[t], skyline, sizeof(TYPE) * numSkyline);
55 }
56
57 free(mp);
58 outputAndCleanup(skyio_pack);
59 int return_status = outputVerification(skyio_pack);
60 free(skyio_pack);
61
62 return return_status;
63
64 return EXIT_FAILURE;
65 }
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Listing A.17: directive.tcl

#

# directives

#

set TopFunction proc_single_timestep

set_directive_pipeline $TopFunction

set_directive_interface —mode ap_ctrl_hs $TopFunction
set_directive_interface —mode ap_none —register $TopFunction mp
set_directive_interface —mode ap_hs —register $TopFunction timestemp
set_directive_interface —mode ap_fifo —register $TopFunction skyline
set_directive_interface —mode ap_vld —register $TopFunction numSkyline
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