34,416 research outputs found

    Modelling the Interfacial Flow of Two Immiscible Liquids in Mixing Processes

    Get PDF
    This paper presents an interface tracking method for modelling the flow of immiscible metallic liquids in mixing processes. The methodology can provide an insight into mixing processes for studying the fundamental morphology development mechanisms for immiscible interfaces. The volume-of-fluid (VOF) method is adopted in the present study, following a review of various modelling approaches for immiscible fluid systems. The VOF method employed here utilises the piecewise linear for interface construction scheme as well as the continuum surface force algorithm for surface force modelling. A model coupling numerical and experimental data is established. The main flow features in the mixing process are investigated. It is observed that the mixing of immiscible metallic liquids is strongly influenced by the viscosity of the system, shear forces and turbulence. The numerical results show good qualitative agreement with experimental results, and are useful for optimisating the design of mixing casting processes

    Proton tracking in a high-granularity Digital Tracking Calorimeter for proton CT purposes

    Get PDF
    Radiation therapy with protons as of today utilizes information from x-ray CT in order to estimate the proton stopping power of the traversed tissue in a patient. The conversion from x-ray attenuation to proton stopping power in tissue introduces range uncertainties of the order of 2-3% of the range, uncertainties that are contributing to an increase of the necessary planning margins added to the target volume in a patient. Imaging methods and modalities, such as Dual Energy CT and proton CT, have come into consideration in the pursuit of obtaining an as good as possible estimate of the proton stopping power. In this study, a Digital Tracking Calorimeter is benchmarked for proof-of-concept for proton CT purposes. The Digital Tracking Calorimeteris applied for reconstruction of the tracks and energies of individual high energy protons. The presented prototype forms the basis for a proton CT system using a single technology for tracking and calorimetry. This advantage simplifies the setup and reduces the cost of a proton CT system assembly, and it is a unique feature of the Digital Tracking Calorimeter. Data from the AGORFIRM beamline at KVI-CART in Groningen in the Netherlands and Monte Carlo simulation results are used to in order to develop a tracking algorithm for the estimation of the residual ranges of a high number of concurrent proton tracks. The range of the individual protons can at present be estimated with a resolution of 4%. The readout system for this prototype is able to handle an effective proton frequency of 1 MHz by using 500 concurrent proton tracks in each readout frame, which is at the high end range of present similar prototypes. A future further optimized prototype will enable a high-speed and more accurate determination of the ranges of individual protons in a therapeutic beam.Comment: 21 pages, 8 figure

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Beating the reaction limits of biosensor sensitivity with dynamic tracking of single binding events

    Full text link
    The clinical need for ultrasensitive molecular analysis has motivated the development of several endpoint-assay technologies capable of single-molecule readout. These endpoint assays are now primarily limited by the affinity and specificity of the molecular-recognition agents for the analyte of interest. In contrast, a kinetic assay with single-molecule readout could distinguish between low-abundance, high-affinity (specific analyte) and high-abundance, low-affinity (nonspecific background) binding by measuring the duration of individual binding events at equilibrium. Here, we describe such a kinetic assay, in which individual binding events are detected and monitored during sample incubation. This method uses plasmonic gold nanorods and interferometric reflectance imaging to detect thousands of individual binding events across a multiplex solid-phase sensor with a large area approaching that of leading bead-based endpoint-assay technologies. A dynamic tracking procedure is used to measure the duration of each event. From this, the total rates of binding and debinding as well as the distribution of binding-event durations are determined. We observe a limit of detection of 19 fM for a proof-of-concept synthetic DNA analyte in a 12-plex assay format.First author draf

    Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model

    Get PDF
    The enthalpy method for the thermodynamics of polythermal glaciers and ice sheets is tested and verified by a one-dimensional problem (parallel-sided slab). The enthalpy method alone does not include explicitly the transition conditions at the cold-temperate transition surface (CTS) that separates the upper cold from the lower temperate layer. However, these conditions are important for correctly determining the position of the CTS. For the numerical solution of the polythermal slab problem, we consider a two-layer front-tracking scheme as well as three different one-layer schemes (conventional one-layer scheme, one-layer melting CTS scheme, one-layer freezing CTS scheme). Computed steady-state temperature and water-content profiles are verified with exact solutions, and transient solutions computed by the one-layer schemes are compared with those of the two-layer scheme, considered to be a reliable reference. While the conventional one-layer scheme (that does not include the transition conditions at the CTS) can produce correct solutions for melting conditions at the CTS, it is more reliable to enforce the transition conditions explicitly. For freezing conditions, it is imperative to enforce them because the conventional one-layer scheme cannot handle the associated discontinuities. The suggested numerical schemes are suitable for implementation in three-dimensional glacier and ice-sheet models.Comment: 16 pages, 8 figure

    Atomic step motion during the dewetting of ultra-thin films

    Full text link
    We report on three key processes involving atomic step motion during the dewetting of thin solid films: (i) the growth of an isolated island nucleated far from a hole, (ii) the spreading of a monolayer rim, and (iii) the zipping of a monolayer island along a straight dewetting front. Kinetic Monte Carlo results are in good agreement with simple analytical models assuming diffusion-limited dynamics.Comment: 7 pages, 5 figure
    corecore