48 research outputs found

    Application of Wireless Nano Sensors Network and Nanotechnology in Precision Agriculture: Review

    Get PDF
    Due to a series of global issues in recent years, such as the food crisis, the impact of fertilizer on climate change, and improper use of irrigation that’s way precision agriculture is the best solution for alleviating this problem. One of the most important and interesting information technology is the wireless Nanosensor network with the help of Nanotechnology will boost crop productivity, maintain the fertility status of the soil, save the water with precise application of irrigation in the field and minimize the loss of excess fertilizer through the precise application. In this paper, we have surveyed the importance of sensor networks in precision agriculture and the importance of Nanosensors with the help of Nanotechnology for remote monitoring in the various application of the agriculture field. View Article DOI: 10.47856/ijaast.2022.v09i04.00

    Interference Mapping in 3D for High-Density Indoor IoT Deployments

    Get PDF
    Deployment of practical Internet of Things (IoT) in the context of 5G can be hindered by substantial interference and spectrum limitations, especially in the unlicensed frequency bands. Due to the high density of such devices in indoor scenarios, the need for interference characterization which facilitates more effective spectrum utilization is further emphasized. This chapter studies the influence of diverse scenarios for the dense placement of interferers on the spectrum occupancy through the use of 3D interference maps for two popular IoT technologies—LoRa and Wi-Fi. The experiments are performed with software-defined radio (SDR) platforms in real time and an automated positioning tool which provides the measurements to characterize the interference in 3D space. The findings demonstrate a nonuniform character of the interference and the significant impact of fading within the width, height, and length of the examined area. They suggest the role of dynamic relocation for realistic IoT scenarios

    From serendipity to sustainable Green IoT: technical, industrial and political perspective

    Get PDF
    Recently, Internet of Things (IoT) has become one of the largest electronics market for hardware production due to its fast evolving application space. However, one of the key challenges for IoT hardware is the energy efficiency as most of IoT devices/objects are expected to run on batteries for months/years without a battery replacement or on harvested energy sources. Widespread use of IoT has also led to a largescale rise in the carbon footprint. In this regard, academia, industry and policy-makers are constantly working towards new energy-efficient hardware and software solutions paving the way for an emerging area referred to as green-IoT. With the direct integration and the evolution of smart communication between physical world and computer-based systems, IoT devices are also expected to reduce the total amount of energy consumption for the Information and Communication Technologies (ICT) sector. However, in order to increase its chance of success and to help at reducing the overall energy consumption and carbon emissions a comprehensive investigation into how to achieve green-IoT is required. In this context, this paper surveys the green perspective of the IoT paradigm and aims to contribute at establishing a global approach for green-IoT environments. A comprehensive approach is presented that focuses not only on the specific solutions but also on the interaction among them, and highlights the precautions/decisions the policy makers need to take. On one side, the ongoing European projects and standardization efforts as well as industry and academia based solutions are presented and on the other side, the challenges, open issues, lessons learned and the role of policymakers towards green-IoT are discussed. The survey shows that due to many existing open issues (e.g., technical considerations, lack of standardization, security and privacy, governance and legislation, etc.) that still need to be addressed, a realistic implementation of a sustainable green-IoT environment that could be universally accepted and deployed, is still missing

    On the use of Wireless Sensor Networks in Preventative Maintenance for Industry 4.0

    Get PDF
    The goal of this paper is to present a literature study on the use of Wireless Sensor Networks (WSNs) in Preventative Maintenance applications for Industry 4.0. Requirements for industrial applications are discussed along with a comparative of the characteristics of the existing and emerging WSN technology enablers. The design considerations inherent to WSNs becoming a tool to drive maintenance efficiencies are discussed in the context of implementations in the research literature and commercial solutions available on the market

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Towards 6G

    Full text link
    The next wave of wireless technologies is proliferating in connecting things among themselves as well as to humans. In the era of the Internet of things (IoT), billions of sensors, machines, vehicles, drones, and robots will be connected, making the world around us smarter. The IoT will encompass devices that must wirelessly communicate a diverse set of data gathered from the environment for myriad new applications. The ultimate goal is to extract insights from this data and develop solutions that improve quality of life and generate new revenue. Providing large-scale, long-lasting, reliable, and near real-time connectivity is the major challenge in enabling a smart connected world. This paper provides a comprehensive survey on existing and emerging communication solutions for serving IoT applications in the context of cellular, wide-area, as well as non-terrestrial networks. Specifically, wireless technology enhancements for providing IoT access in fifth-generation (5G) and beyond cellular networks, and communication networks over the unlicensed spectrum are presented. Aligned with the main key performance indicators of 5G and beyond 5G networks, we investigate solutions and standards that enable energy efficiency, reliability, low latency, and scalability (connection density) of current and future IoT networks. The solutions include grant-free access and channel coding for short-packet communications, non-orthogonal multiple access, and on-device intelligence. Further, a vision of new paradigm shifts in communication networks in the 2030s is provided, and the integration of the associated new technologies like artificial intelligence, non-terrestrial networks, and new spectra is elaborated. Finally, future research directions toward beyond 5G IoT networks are pointed out.Comment: Submitted for review to IEEE CS&
    corecore